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Introduction



Introduction

1. The methods described before such as decision tree at the first find hypothesis and then

this hypothesis will be used for classification of new test examples.

2. These methods are called eager learning.

3. The instance based learning algorithms such as k-NN store all of the training examples

and then classify a new example x by finding the training example (xi , yi ) that is nearest

to x according to some distance metric.

4. Instance based classifiers do not explicitly compute decision boundaries. However, the

boundaries form a subset of the Voronoi diagram of the training data.
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Nearest neighbor algorithms



Nearest neighbor algorithms

1. Fix k ≥ 1, given a labeled sample

S = {(x1, t1), . . . , (xN , tN)}

where ti ∈ {0, 1}. The k-NN for all test examples x returns the hypothesis h defined by

h(x) = I


∑

i,ti=1

wi >
∑

i,ti=0

wi


 .

where the weights w1, . . . ,wN are chosen such that wi = 1
k if xi is among the k nearest

neighbors of x .

2. The boundaries form a subset of the Voronoi diagram of the training data.
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Nearest neighbor algorithms

1. The k-NN only requires

I An integer k.
I A set of labeled examples S .
I A metric to measure closeness.

2. For all points x , y , z , a metric d must satisfy the following properties.

I Non-negativity : d(x , y) ≥ 0.
I Reflexivity : d(x , y) = 0⇔ x = y .
I Symmetry : d(x , y) = d(y , x).
I Triangle inequality : d(x , y) + d(y , z) ≥ d(x , z).

4/18



Distance functions

1. The Minkowski distance for D-dimensional examples is the Lp norm.

Lp(x , y) =

(
D∑

i=1

|xi − yi |p
) 1

p

2. The Euclidean distance is the L2 norm

L2(x , y) =

(
D∑

i=1

|xi − yi |2
) 1

2

3. The Manhattan or city block distance is the L2 norm

L1(x , y) =
D∑

i=1

|xi − yi |

4. The L∞ norm is the maximum of distances along axes

L∞(x , y) = max
i
|xi − yi |Distance Functions

• A general class of metrics for d-dimensional patterns is the Minkowski
metric

Lp(x, y) =

 
dX

i=1

|xi � yi|p
!1

p

also referred to as the Lp norm.

• The Euclidean distance is the L2 norm

L2(x, y) =

 
dX

i=1

|xi � yi|2
!1

2

• The Manhattan or city block distance is the L1 norm

L1(x, y) =
dX

i=1

|xi � yi|

• The L� norm is the maximum of the distances along individual
coordinate axes

L�(x, y) = max
i

|xi � yi|

Distance Functions

• The L1 norm is the maximum of the distances along individual

coordinate axes

L1(x,y) =
d

max
i=1

|xi � yi|.

Figure 3: Each colored shape consists of points at a distance 1.0 from the origin,
measured using di�erent values of p in the Minkowski Lp metric.

CS 551, Spring 2006 9/12

Each colored shape consists of points at a distance 1.0 from the origin,
measured using di�erent values of p in the Minkowski Lp metric.

Nearest Neighbors

• Nearest Neighbors density estimation

• The k Nearest Neighbors classification rule

• kNN as a lazy learner

kNN as a lazy (machine learning) algorithm

• kNN is considered a lazy learning algorithm

– Defers data processing until it receives a request to classify an
unlabelled example

– Replies to a request for information by combining its stored training
data

– Discards the constructed answer and any intermediate results

• Other names for lazy algorithms

– Memory-based, Instance-based, Exemplar-based, Case-based,
Experience-based

• This strategy is opposed to an eager learning algorithm which

– Compiles its data into a compressed description or model
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Nearest neighbor algorithm for regression

1. The k-NN algorithm adapted for approximating continuous-valued target function.

2. We calculate the mean of k nearest neighborhood training examples rather than majority

vote : f̂ (x) =
∑k

i=1 f (xi )
k .

Figure 1: Example of Locally Weighted Learning, containing in the upper graphic the set of data
points (x,y) (blue dots), query point (green line), local linear model (red line) and prediction (black
dot). The graphic in the middle shows the activation area of the model. The corresponding weighting
kernel (receptive field) is shown in the bottom graphic.

is assumed with a continuous function f(x) and noise ✏. The basic cost function of LWL is defined
as

J =
1

2

nX

i=1

wi(xq)(yi � xi�q)
2 (2)

with the components:

- Labelled training data D = {(xi, yi)|i = 1, 2, ..., n} where each data point xi belongs to
a corresponding output value yi.

- Point of interest xq (also called query point), which is the position where we want a pre-
diction ŷq .

- Weights wi describe the relevance of the corresponding training set (xi, yi) for the cur-
rent prediction. They are dependent on the query point and are computed by a weighting
function.

- Regression coefficient �q of our linear model, which we want to obtain for doing the
prediction.

The goal is to find a �q that minimizes equation (2) for the current query point xq . An important
difference to global least square methods is that �q is dependent of the current query point. One of
the most important part of LWL is the way how the weights wi are computed. The computation of
a weight can be separated in to two steps [2]:

I Distance function d(xi, xq): Measures the relevance of training points for the current pre-
diction. The distance function needs two input objects and returns a number (i.e. euclidean
distance d =

p
(x � q)D(x � q) with distance metric D). The distance metric D is a very

important parameter that describes the size and shape of the receptive field.

II Weighting function (Kernel function) K(d): Computes for each distance value a cor-
responding weight wi (i.e. K(d) = exp (�d2)). The smoothness of the used kernel will
influence the smoothness of the output function. Some kernel functions will converge com-
pletely to zero. This property can can be used for decreasing the computational costs by
ignoring all points with zero weight.

2

3. The effect of k on the performance of algorithm 1

K -NN Behavior for Regression

Pic credit: Alex Smola and Vishy Vishwanathan

Machine Learning (CS771A) Learning by Computing Distances: Distance-based Methods and Nearest Neighbors 21

1Pictures are taken from P. Rai slide.
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Nearest neighbor algorithms

1. The k-NN algorithm is a lazy learning algorithm.

I It defers the hypothesis finding until a test example x arrives.
I For test example x , the k-NN uses the stored training data.
I Discards the the found hypothesis and any intermediate results.

2. This strategy is opposed to an eager learning algorithm which

I It finds a hypothesis h using the training set
I It uses the found hypothesis h for classification of test example x .

3. Trade offs

I During training phase, lazy algorithms have fewer computational costs than eager algorithms.
I During testing phase, lazy algorithms have greater storage requirements and higher

computational costs.

4. What is inductive bias of k-NN?
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Properties of nearest neighbor algorithms

1. Advantages

I Analytically tractable
I Simple implementation
I Use local information, which results in highly adaptive behavior.
I It parallel implementation is very easy.
I Nearly optimal in the large sample (N →∞).

E(Bayes) < E(NN) < 2× E(Bayes).

2. Disadvantages

I Large storage requirements.
I It needs a high computational cost during testing.
I Highly susceptible to the irrelevant features.

3. Large values of k

I Results in smoother decision boundaries.
I Provides more accurate probabilistic information

4. But large values of k

I Increases computational cost.
I Destroys the locality of estimation.
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algorithms



Distance-weighted nearest neighbor algorithms

1. One refinement of k-NN is to weight the contribution of each k neighbors to their

distance to the query point x .

2. For two class classification

h(x) = I


∑

i,ti=1

wi >
∑

i,ti=0

wi


 .

where

wi =
1

d(x , xi )2

3. For C class classification

h(x) = argmax
c∈C

k∑

i=1

wiδ(c , ti ).

4. For regression

f̂ (x) =

∑k
i=1 wi f (xi )

wi
.
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Locally weighted regression



Locally weighted regression

1. In locally weighted regression (LWR), we use a linear model to do the local approximation

f̂ :
ˆf (x) = w0 + w1x1 + w2x2 + . . .+ wDxD .

2. Suppose we aim to minimize the total squared error:

E =
1

2

∑

x∈S

(f (x)− f̂ (x))2

3. Using gradient descent

∆wj = η
∑

x∈S

(f (x)− f̂ (x))xj

where η is a small number (the learning rate).
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Locally weighted regression i

1. How shall we modify this procedure to derive a local approximation rather than a global

one?

2. The simple way is to redefine the error criterion E to emphasize fitting the local training

examples.

3. Three possible criteria are given below. Note we write the error E (xq) to emphasize the

fact that now the error is being defined as a function of the query point xq.

I Minimize the squared error over just the k nearest neighbors:

E1(xq) =
1

2

∑
x∈KNN(xq)

(f (x)− f̂ (x))2

I Minimize 1 squared error over the set S of training examples, while weighting the error of

each training example by some decreasing function k of its distance from xq

E2(xq) =
1

2

∑
x∈S

(f (x)− f̂ (x))2K(d(xq, x))

I Combine 1 and 2:

E3(xq) =
1

2

∑
x∈KNN(xq)

(f (x)− f̂ (x))2K(d(xq, x))
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Locally weighted regression ii

4. If we choose criterion (3) and re-derive the gradient descent rule, we obtain

∆wj = η
∑

x∈KNN(xq)

K (d(xq, x))(f (x)− f̂ (x))xj

where η is a small number (the learning rate).

5. Criterion (2) is perhaps the most esthetically pleasing because it allows every training

example to have an impact on the classification of xq.

6. However, this approach requires computation that grows linearly with the number of

training examples.

7. Criterion (3) is a good approximation to criterion (2) and has the advantage that

computational cost is independent of the total number of training examples; its cost

depends only on the number k of neighbors considered.
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Finding KNN(x) efficiently

1. How efficiently find KNN(x)?

2. Tree-based data structures: pre-processing.

3. Often kd-trees (k-dimensional trees) used in applications.

4. A kd-tree is a generalization of binary tree in high dimensions

4.1 Each internal node is associated with a hyper-rectangle and the hyper-plans is orthogonal to

one of its coordinates.

4.2 The hyper-plan splits the hyper-rectangle to two parts, which are associated with the child

nodes.

4.3 The partitioning goes on until the number of data points in the hyper-plane falls below some

given threshold.

Improving the nearest neighbor search procedure

• The problem of nearest neighbor can be stated as follows:

Given a set of N points in d-dimensional space and an unlabeled
example xu � Rd, find the point that minimizes the distance to
xu.

The näıve approach of computing a set of N distances, and finding the
(k) smallest becomes impractical for large values of N and d.

• There are two classical algorithms that speed up the nearest neighbor
search

– Bucketing (a.k.a Elias’s algorithm) [Welch 1971]
– k-d trees [Bentley, 1975; Friedman et al, 1977]

Bucketing

• In the Bucketing algorithm

– The space is divided into identical cells and for each cell the data
points inside it are stored in a list

– The cells are examined in order of increasing distance from the query
point and for each cell the distance is computed between its internal
data points and the query point

– The search terminates when the distance from the query point to
the cell exceeds the distance to the closest point already visited

Introduction to Pattern Analysis

Ricardo Gutierrez-Osuna

Texas A&M University
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! k-d trees
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" The effect of a k-d tree is to partition the (multi-dimensional) sample space according to the underlying 
distribution of the data, the partitioning being finer in regions where the density of data points is higher

! For a given query point, the algorithm works by first descending the the tree to find the data points lying in the cell that 
contains the query point

! Then it examines surrounding cells if they overlap the ball centered at the query point and the closest data point so far

k-d trees

• A k-d tree is a generalization of a binary search tree in high dimensions

– Each internal node in a k-d tree is associated with a hyper-rectangle and a

hyper-plane orthogonal to one of the coordinate axis

– The hyper-plane splits the hyper-rectangle into two parts, which are associated

with the child nodes

– The partitioning process goes on until the number of data points in the

hyper-rectangle falls below some given threshold

• The e�ect of a k-d tree is to partition the (multi-dimensional)
sample space according to the underlying distribution of the data,
the partitioning being finer in regions where the density of data points
is higher.

– For a given query point, the algorithm works by first descending the the tree to

find the data points lying in the cell that contains the query point

– Then it examines surrounding cells if they overlap the ball centered at the query

point and the closest data point so far

KD-tree construction

......

.1.95

.55.03

.15 .1

YX

Start with a list of n-dimensional points5. Splitting order : Widest first

6. Splitting value : Median

7. Stop condition : fewer than a threshold or box hit some minimum width.
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kd-tree

1. initial data set
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– Each internal node in a k-d tree is associated with a hyper-rectangle and a

hyper-plane orthogonal to one of the coordinate axis

– The hyper-plane splits the hyper-rectangle into two parts, which are associated

with the child nodes

– The partitioning process goes on until the number of data points in the

hyper-rectangle falls below some given threshold

• The e�ect of a k-d tree is to partition the (multi-dimensional)
sample space according to the underlying distribution of the data,
the partitioning being finer in regions where the density of data points
is higher.

– For a given query point, the algorithm works by first descending the the tree to
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KD-tree construction

......

.1.95

.55.03

.15 .1

YX

Start with a list of n-dimensional points2. After first split

KD-tree construction

......

.55.03

.15 .1

YX

......

.95 .1

YX

X > .5 

No
Yes

Split the points into 2 groups by choosing a dimension X
and values v and separating the points into x > v and x � v.

KD-tree construction

......

.55.03

.15 .1

YX

......

.95 .1

YX

X > .5 

No
Yes

Consider each group separately and possibly split again
(along same/di�erent dimension).

KD-tree construction

......

.95 .1

YX

X > .5 

No Yes

......

.15 .1

YX

Y> .5 

......

.03 .55

YX

No Yes

Consider each group separately and possibly split again
(along same/di�erent dimension).

KD-tree construction

Keep splitting the points in each set to create a tree
structure. Each node with no children (leaf node) contains a

list of points.
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kd-tree

1. After second split

KD-tree construction

......

.55.03

.15 .1

YX

......

.95 .1

YX

X > .5 

No
Yes

Split the points into 2 groups by choosing a dimension X
and values v and separating the points into x > v and x � v.

KD-tree construction

......

.55.03

.15 .1

YX

......

.95 .1

YX

X > .5 

No
Yes

Consider each group separately and possibly split again
(along same/di�erent dimension).

KD-tree construction

......

.95 .1

YX

X > .5 

No Yes

......

.15 .1

YX

Y> .5 

......

.03 .55

YX

No Yes

Consider each group separately and possibly split again
(along same/di�erent dimension).

KD-tree construction

Keep splitting the points in each set to create a tree
structure. Each node with no children (leaf node) contains a

list of points.
2. Final split.

KD-tree construction

Will keep around one additional piece of information at each
node. The (tight) bounds of the points at or below this node.

KD-tree construction

Use heuristics to make splitting decisions:

• Which dimension do we split along ?

Widest

• Which value do we split at ?

Median of value of the split dimension for the points.

• When do we stop ?

When there are fewer then m points left OR the box has

hit some minimum width.

Nearest neighbour with KD-trees

Traverse the tree looking for the nearest neighbor of the
query point.

Nearest neighbour with KD-trees

Examine nearby points first: Explore the branch of the
tree that is closest to the query point first.
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Nearest neighbor with kd-tree

1. Traverse tree looking for the nearest neighbor of the query point.

KD-tree construction

Will keep around one additional piece of information at each
node. The (tight) bounds of the points at or below this node.

KD-tree construction

Use heuristics to make splitting decisions:

• Which dimension do we split along ?

Widest

• Which value do we split at ?

Median of value of the split dimension for the points.

• When do we stop ?

When there are fewer then m points left OR the box has

hit some minimum width.

Nearest neighbour with KD-trees

Traverse the tree looking for the nearest neighbor of the
query point.

Nearest neighbour with KD-trees

Examine nearby points first: Explore the branch of the
tree that is closest to the query point first.

2. Explore a branch of tree that is closest to the query point first

KD-tree construction

Will keep around one additional piece of information at each
node. The (tight) bounds of the points at or below this node.

KD-tree construction

Use heuristics to make splitting decisions:

• Which dimension do we split along ?

Widest

• Which value do we split at ?

Median of value of the split dimension for the points.

• When do we stop ?

When there are fewer then m points left OR the box has

hit some minimum width.

Nearest neighbour with KD-trees

Traverse the tree looking for the nearest neighbor of the
query point.

Nearest neighbour with KD-trees

Examine nearby points first: Explore the branch of the
tree that is closest to the query point first.
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Reading



Readings

1. Chapter 8 of Machine Learning Book (Mitchell 1997).
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