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Introduction



Introduction

1. Networks are a general language for describing and modeling complex systems.

2. Many data are networks such as

Social networks

Economic networks
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Biological networks

Networks of neurons
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Graphs

1. Graph G = (V,E) is a data structure consisting of two components:
> the set of vertices/nodes V and
> and the set of edges E.

2. Edges can be either directed or undirected.
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Machine learning tasks on graphs

Node classification
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Node embedding

1. Goal is to encode nodes so that similarity in the embedding space (e.g., dot product)
approximates similarity in the original network.

2. Let z, be the embedding of node u.
3. Goal is to find the encoder function f such that similarity(u,v) ~ z z, .

4. Learning node embedding

> Define an encoder

> Define a node similarity function

» Optimize the parameters of the encoder so that similarity(u,v) =~ z, z,.
5. Two key components

> Encoder function f(u) = z,.
> Similarity measure similarity(u, v) ~ 2l z,.
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Why is it hard to analyze a graph?

1. Graph data is so complex that it's created a lot of challenges for existing machine learning
algorithms.

Images with the same structure and size can be considered as fixed-size grid graphs.
Text and speech are sequences, so they can be considered as line graphs.
Graphs have arbitrary size and complex topological structure.

In graphs, there is no fixed node ordering or reference point.
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Graphs are often dynamic and have multimodal features.
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Graph neural networks




Node embedding @

1. Goal is to encode nodes so that similarity in the embedding space (e.g., dot product)
approximates similarity in the original network.

C(u)

encode nodes

2. Graph neural network is a neural network architecture that learns embeddings of nodes in
a graph by looking at its nearby nodes.
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. .
) o °
Input = L4

Output

ReLU ReLU

7/17



Graph neural networks (GNNs)

1. The idea is to generate node embeddings based on local neighborhoods.

TARGET NODE

2. The intuition is nodes aggregate information from their neighbors using neural networks.
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Neural message passing

1. GNN uses a form of neural message passing in which vector messages are exchanged
between nodes and updated using neural networks.

2. During each message-passing iteration, a hidden embedding hX corresponding to each
node u € U is updated according to information aggregated from its neighborhood N(u).
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3. This message-passing update can be expressed as follows:
h ™ = Update® (hk, Aggregate(hf | Vv € N(u)))
k (Wk ok
= Update (hu,mN(u)>
where
> Update and Aggregate are arbitrary differentiable functions and

> mf‘v(u) is the message aggregated from neighborhoods of u.
4. The initial embeddings at k = 0 are set to the input features for all the nodes, i.e.,

h© = x, YueV

u
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The basic GNN

1. The basic GNN message passing is defined as

h5:0' Wselfhk 1+Wkelgh Z hk l
veN(u)

2. As a simplification of the neural message passing approach, it is common to add self-loops
to the input graph and omit the explicit update step.

hk = Aggregate ({hf™" | Vv € N(u) U {u}})

3. A benefit of this approach is that we no longer need to define an explicit update function.

4. Simplifying message passing in this way limits the expressiveness of GNN, because we
can't distinguish the information coming from neighboring nodes from the node itself.

5. Adding self-loops is equivalent to sharing parameters between W s and Wk 5 Mmatrices.
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Training GNNs

1. How do we train the model to generate high-quality embeddings?
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2. We need to define a loss function on the embeddings, £(z4).
3. Train on a set of nodes, i.e., a batch of compute graphs.
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Graph convolutional networks




Graph convolutional networks (GCNs)

1. In GNN, we have aggregated the neighbor messages by taking their weighted average. Can

we do better?
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2. Any differentiable function that maps set of vectors in N(u) to a single vector can be used

as the Aggregate function.
h !

3. GCN defines the message passing function as

h = ¢ ([W,.Aggregate ({hf ' ue N(v)}) 7Bkh571])

v
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Neighborhood aggregation

1. The basic GNN can be improved upon and generalized in many ways: improving
Aggregate and Update functions.

2. GNN has the two following limitations:

> Multiplication with A means that, for every node, we sum up all the feature vectors of all
neighboring nodes.

> A is typically not normalized and therefore the multiplication withA will completely change
the scale of the feature vectors.

3. The most basic neighborhood aggregation operation takes sum of neighboring embeddings.
4. One issue is that it can be unstable and highly sensitive to node degrees.

5. Let |[N(u)| > |N(v)|, then we would reasonably expect that

> ow=| Y w
u’€N(u) v/ EN(v)
for any reasonable vector norm.

6. This drastic difference in magnitude can lead to numerical instabilities as well as
difficulties for optimization.
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Neighborhood aggregation

1. This drastic difference in magnitude can lead to numerical instabilities as well as
difficulties for optimization.

2. One solution is to normalize the aggregation operation based upon the degrees of the
given node.

3. The simplest approach is to just take an average rather than sum

o >ven(u) v
N T TN )

4. Other normalization is symmetric normalization.
h,
My () = ———————
%) V(@) IN(v),

5. GCN employs the symmetric-normalized aggregation as well as the self-loop update
approach.

6. GCN defines the message passing function as

hf=o WK > .
venmop VINWIIN(Y)|
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Neighborhood aggregation

1. Simple neighborhood aggregation
k k hf(: k—1
hi=o W )~ + Byh;
) TN
2. GraphSAGE concatenates neighbor embedding and self-embedding.
h = o ([Wy.Aggregate ({hf ™ | u € N(v)}),BchE™1])
3. Pool aggregate function transforms neighbor vectors and apply symmetric vector function.

Aggregate = v ({th1 | ue N(v)})

where ~ is element-wise min / max.

4. LSTM aggregate function applies LSTM to the reshuffles neighbors.
Aggregate = LSTM ([hf™ | u € m(N(v))])

5. Many aggregations can be performed efficiently by (sparse) matrix operations.
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Readings

1. Chapter 5 of Graph Representation Learning?.
2. Paper A Comprehensive Survey on Graph Neural Networks?.

3. Paper Deep Learning on Graphs: A Survey*.

2William L. Hamilton (2020). Graph Representation Learning. Morgan and Claypool.

3Zonghan Wu et al. (2021). “A Comprehensive Survey on Graph Neural Networks". In: |EEE Trans. Neural
Networks Learn. Syst. 32.1, pp. 4-24.

4Ziwei Zhang, Peng Cui, and Wenwu Zhu (2018). “Deep Learning on Graphs: A Survey”. In: CoRR
abs/1812.04202. URL: http://arxiv.org/abs/1812.04202.
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Questions?
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