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Introduction



Introduction

. Reinforcement learning is what to do (how to map situations to actions) so as to

maximize a scalar reward/reinforcement signal

. The learner is not told which actions to take as in supervised learning, but discover which

actions yield the most reward by trying them.

. The trial-and-error and delayed reward are the two most important feature of

reinforcement learning.

. Reinforcement learning is defined not by characterizing learning algorithms, but by

characterizing a learning problem.

. Any algorithm that is well suited for solving the given problem, we consider to be a

reinforcement learning.

. One of the challenges that arises in reinforcement learning and other kinds of learning is

tradeoff between exploration and exploitation.
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Introduction

1. A key feature of reinforcement learning is that it explicitly considers the whole problem of
a goal-directed agent interacting with an uncertain environment.
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state rreward action
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2. Experience is a sequence of observations, actions, rewards: o1, r,a1,...,a:_1, O¢, I't
3. The state is a summary of experience : s; = f(o1,r1,a1,...,3t—1, Ot, I't)

4. In a fully observed environment : s; = f(o;)
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Elements of RL

Policy A policy is a mapping from received states of the environment to actions to be taken
(what to do?).

Reward function It defines the goal of RL problem. It maps each state-action pair to a single
number called reinforcement signal, indicating the goodness of the action. (what is good?)

Value It specifies what is good in the long run. (what is good because it predicts reward?)

Model of the environment This is something that mimics the behavior of the environment.
(what follows what?) This element is optional.
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An example : Tic-Tac-Toe

1. Consider a two-playes game (Tic-Tac-Toe)

opponent's move

our move

opponent's move

our move

o

opponent's move

our move

>

O

O
e P A A A

starting position

2. Consider the following updating

V(s) <= V(s) + aV(s)) = V(s)]
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Types of reinforcement learning

Non-associative reinforcement learning The learning method that does not involve learning
to act in more than one state.

e N
> Random Environment
. Y,
a(n) B(n)
e N
Stochastic Automaton ¢
\ Y,
Associative reinforcement learning
more than one state.

The learning method that involves learning to act in

=
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Multi-arm Bandit problem

1. Consider that you are faced repeatedly with a choice among n different options or actions.

2. After each choice, you receive a numerical reward chosen from a stationary probability
distribution that depends on the action you selected.

3. Your objective is to maximize the expected total reward over some time period.

4. This is the original form of the n—armed bandit problem called a slot machine.
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Action-value methods

1. Consider some simple methods for estimating the values of actions and then using the
estimates to select actions.

2. Let the true value of action a denoted as @*(a) and its estimated value at t* play as
Q:(a).
3. The true value of an action is the mean reward when that action is selected.

4. One natural way to estimate this is by averaging the rewards actually received when the
action was selected.

5. In other words, if at the t™ play action a has been chosen k, times prior to t, yielding
rewards ry, ra, . .., rg,, then its value is estimated to be

n+nrn+...+r,
ka

Qi(a) =
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Action selection strategies

Greedy action selection This strategy selects the action with highest estimated action value.
a; = argmax Q:(a)
a

e—greedy action selection This strategy selects the action with highest estimated action
value most of time but with small probability € selects an action at random, uniformly,
independently of the action-value estimates.

Softmax action selection This strategy selects actions using the action probabilities as a
graded function of estimated value.
eprt(a)/T
pt(a) = Zb eXth(b)/T
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Learning automata

1. Environment represented by a tuple (a, 3, C),
» a={ai,a,...,a} shows a set of inputs,
» [ ={0,1} represents the set of values that the reinforcement signal can take,
» C= {c1,,...,c} is the set of penalty probabilities, where ¢c; = P[B(k) = 1| a(k) = ai].
2. A variable structure learning automaton is represented by triple (5, «, T),
2.1 B =1{0,1} is a set of inputs,
2.2 a={o,q,...,a,} is a set of actions,
2.3 T is a learning algorithm used to modify action probability vector p.
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Lr_.p learning algorithm

1. In linear reward-epenalty algorithm (Lg_.p) updating rule for p is defined as

_ . pj(k)+3>< [1—pj(k)] if i=j
pj(k+1){ pj(k) — a x pj(k) if ]
when 3(k) =0 and
_ ) pi(k) x(1—=b) if i=j
pi(k+1) = { Lrtp(k)(1=b) i Q]

when g(k) = 1.
2. Parameters 0 < b < a < 1 represent step lengths.
3. When a = b, we call it linear reward penalty(Lg_p) algorithm.

4. When b =0, we call it linear reward inaction(Lg_;) algorithm.
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Measure learning in learning automata

1. In stationary environments, average penalty received by automaton is
M(k) = E[B(k)|p(k)] = P[B(k) = Lp(k)] = > _ cipi(k).
i=1

2. A learning automaton is called expedient if

lim E[M(K)] < M(0)

3. A learning automaton is called optimal if

klim E[M(k)] = ming;

4. A learning automaton is called e—optimal if
lim E[M(k)] < minci +e€
k—00 i

for arbitrary € > 0
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Associative reinforcement learning

The learning method that involves learning to act in more than one state.
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Goals, rewards, and returns




Goals,rewards, and returns

1. In reinforcement learning, the goal of the agent is formalized in terms of a special reward
signal passing from the environment to the agent.

2. The agent's goal is to maximize the total amount of reward it receives. This means
maximizing not immediate reward, but cumulative reward in the long run.

3. How might the goal be formally defined?

4. In episodic tasks the return, Ry, is defined as
Ri=n+n+...4+r1

5. In continuous tasks the return, R;, is defined as

[ee}

k
R: = E Y rtk+1
k=0

6. The unified approach

rp =+l r,=+l1 ry=+l1 r=0
’—> (:>—>(:>—> rs=0
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Markov decision process

[

. A RL task satisfying the Markov property is called a Markov decision process (MDP).

2. If the state and action spaces are finite, then it is called a finite MDP.

w

. A particular finite MDP is defined by its state and action sets and by the one-step
dynamics of the environment.

P, =Plstr1 =5|st = s,a; = a]

;15’ = E[rt+1|5t =S5,dt = a,5t41 = 5/]

S

. Recycling Robot MDP

1, Rvait 1, -3
B, Rsearch

a, Rseu\:ch 17“’ Rsearch
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Value functions

1. Let in state s action a is selected with probability of (s, a).

2. Value of state s under a policy 7 is the expected return when starting in s and following 7

StZS]

= Z 7T(S, a) ZP;S/ [Ris/ + ’Yvﬂ-(s/)] N

thereafter.

Vi(s) =E[R: |ss =s]=E lz ek

3. Value of action a in state s under a policy 7 is the expected return when starting in s

taking action a and following 7 thereafter.

Q7 (s,a) =E[R:|st=s,a:=a]=E lkaerH St =5,a; = a}

k=0
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Optimal value functions

1. Policy  is better than or equal of «' iff for all s V™(s) > V™ (s).

2. There is always at least one policy that is better than or equal to all other policies. This is
an optimal policy.

3. Value of state s under the optimal policy (V*(s)) equals

V*(s) = max V7(s)

T

4. Value of action a in state s under the optimal policy ( Q*(s, a) equals

Q*(s,a) = max Q" (s, a)

5. Backup diagram for V* and Q*

s’ a
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Approaches to RL

1. Model-based RL

» Build a model of the environment.
> Plan (e.g. by lookahead) using model.

2. Value-based RL

> Estimate the optimal value function Q*(s, a)
> This is the maximum value achievable under any policy

3. Policy-based RL

» Search directly for the optimal policy 7.
> This is the policy achieving maximum future reward.
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Model based methods




Model based methods (dynamic programming)

1. The key idea of DP is the use of value functions to organize and structure the search for
good policies.

2. We can easily obtain optimal policies once we have found the optimal value functions, or ,
which satisfy the Bellman optimality equations:

Vi(s) = maxE[ra +7V(sera)lse = 5,3 = 4]

= max > P RL + V().
S/

3. Value of action a in state s under a policy 7 is the expected return when starting in s
taking action a and following 7 thereafter.

QR*(s;a) = E {rm + 7y max Q(se+1, als: =s,a = a}

Z PZ, [Ris/ +7ymax Q*(s', a')} )
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Policy iteration

1. Policy iteration is an iterative process

E / E i E
To—— VT ——m—— VT ——my——

2. Policy iteration has two phases : policy evaluation and improvement.
3. In policy evaluation, we compute state or state-action value functions
o0
VW(S) = E[Rt | St = S] =k l27krt+k+1 S = 5]
s s
k=0
=> w(s,a)Y P [RL +yV7(s)].
™ s’
4. In policy improvement, we change the policy to obtain a better policy

7'(s) = argmax Q7 (s, a)

= argmax Z Pz [RZ, +~V7(s")].
s/

21/53



Value and generalized policy iteration

1. In value iteration we have
Vipa(s) = maaXE[rt+1 +yVi(sey1) | st = s,a: = 4]

= mfxzpjs, [’R;, —&-’yV,Es’) .
s/

2. Generalized policy iteration

evaluation

Vv —sV"

! Vv
ni—>greedy(V)

improvement
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DP Backup diagram

V(S:) E [Re+1 +7V(Se41)]
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Value-based methods

These methods lean policy function implicitly.
These methods first learn a value function Q(s, a).

Then infer policy (s, a) from Q(s, a).

A

Examples
> Monte-carlo methods
> Q-learning

SARSA

TD(A)

v

v
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Value-based methods

Monte Carlo methods



Monte Carlo (MC) methods

ok~ e

MC methods learn directly from episodes of experience.

MC is model-free: no knowledge of MDP transitions / rewards
MC learns from complete episodes

MC uses the simplest possible idea: value = mean return

Goal: learn V. from episodes of experience under policy 7

S5 5 25 5 25 5. 5 S,
Ry R, Rs Rk—1
The return is the total discounted reward:
T—1
Gt =Rep1 +YRepa+...+9 Rt
The value function is the expected return:

Ve(s) = IE,[Gt | S; = 5]

Monte-Carlo policy evaluation uses empirical mean return instead of expected return
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First-Visit Monte-Carlo Policy Evaluation

1. To evaluate state s

2. The first time-step t that state s is visited in an episode, Increment counter
N(s) « N(s)+1

3. Increment total return
5(s) < S(s) + G:

4. Value is estimated by mean return

5. By law of large numbers,

as
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Every-Visit Monte-Carlo Policy Evaluation

1. To evaluate state s

2. Every time-step t that state s is visited in an episode, Increment counter
N(s) « N(s)+1

3. Increment total return

S5(s) « S(s) + G;

4. Value is estimated by mean return

5. By law of large numbers,

as
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MC Backup diagram

V(St) = V(St) + a(Gr — V(St))
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Value-based methods

Temporal-difference methods



Temporal-difference methods

1. TD learning is a combination of Monte Carlo ideas and dynamic programming (DP) ideas.

2. Like Monte Carlo methods, TD methods can learn directly from raw experience without a
model of the environment's dynamics.

3. Like DP, TD methods update estimates based in part on other learned estimates, without
waiting for a final outcome (they bootstrap).

4. Monte Carlo methods wait until the return following the visit is known, then use that
return as a target for V(s;) while TD methods need wait only until the next time step.

5. The simplest TD method, known as TD(0), is

V(st) < V(st) + alreer +vV(se1) — V(st)]
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Temporal-Difference Backup

V(se) < V(st) + afreer + 7V (sev1) — V(se)]
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Temporal-difference methods (cont.)

1. Algorithm for TD(0)

Initialize V/(s) arbitrarily, m to the policy to be evaluated
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
a < action given by m for s
Take action a; observe reward, r, and next state, S
V(s) + V(s)+alr+9V(s") - V(s)]
55
until s is terminal

!
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Temporal-difference methods (SARSA)

1. An episode consists of an alternating sequence of states and state-action pairs:

12 1
St >G4 Sty Oy Sty A0

2. SARSA, which is an on policy, updates values using

Q(st, ar) < Q(se, ar) + afrepr + YQ(Se41, aev1) — Q(St, ar)]
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Temporal-difference methods (Q-learning)

1. An episode consists of an alternating sequence of states and state-action pairs:

r T
+1 +2 °
@ . m . @ " " "

S, J St+10 %41 \ Str2 40

2. Q-learning, which is an off policy, updates values using

Q(5t7 3t) — Q(St’ at) + « [rt-rl + v m;‘:\x Q(5t+17 3) - Q(Sh at)
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Policy-based methods

In policy-based learning, there is no value function.

The policy 7 (s, a) is parametrized by vector 6 (7 (s, a; 0)).

Explicitly learn policy 7 (s, a; 6) that implicitly maximize reward over all policies.
Given policy 7(s, a; 0) with parameters 6, find best 6.

How do we measure the quality of a policy (s, a;0)?

Let objective function be J(0) .

Find policy parameters 6 that maximize J(6) .

Sample algorithm: REINFORCE

© N o a k~ w b=
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Policy-based methods versus value-based methods

1. Advantages of policy-based methods over value-based methods

>

>

>

>

>

>

>

Usually, computing Q-values is harder than picking optimal actions
Better convergence properties

Effective in high dimensional or continuous action spaces

Can benefit from demonstrations

Policy subspace can be chosen according to the task

Exploration can be directly controlled

Can learn stochastic policies

2. Disadvantages of policy-based methods over value-based methods

>

>

Typically converge to a local optimum rather than a global optimum
Evaluating a policy is typically data inefficient and high variance
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Deep Reinforcement Learning in Atari

reward
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Deep Reinforcement Learning

1. Use deep network to represent value function/ policy/model.
2. Optimize value function/ policy/model end—to—end.

3. Use stochastic gradient descent.

Deep Reinforcement
Learnin Learnin
g g l Reward |
D Take Environment
eep action
Reinforcement
Learnlng Observe state

$
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Value-Based Deep RL




Q-Networks

1. Represent value function by Q-network with weights w : Q(s, a; w) ~ Q*(s, a)
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Deep Q-Network (Mnih et al. 2015)

1. End-to-end learning of values Q(s, a) from pixels s.

2. Input state s is stack of raw pixels from last 4 frames
3. Output is Q(s, a) for 18 joystick/button positions
4

. Reward is change in score for that step

32 4x4 filcers 256 hidden units Fully-connected linear

output layer

4x84x84

L0

Stack of 4 previous ) Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units

of rectified linear units of rectified linear units
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Deep Q-Network (Mnih et al. 2015)

1. Deep Q-network consists of
> Q network predicting Q-values
» Target network, which has the same structure as Q-network
> Experience replay component
2. Experience replay selects an e—greedy action from the current state, executes it in the
environment, and gets back a reward and the next state. It saves this observation as a
sample of training data.
3. A batch of training data is given to both networks.
» The Q network takes the current state and action from each data sample and predicts the Q
value for that particular action.
> The Target network takes the next state from each data sample and predicts the best Q
value out of all actions that can be taken from that state.

4. The loss function at iteration i is defined as

= .5 H(“”ma?x Q(s',a:67) - Q(s,a;e,-))2”

(s,a,r,s")~U(S)

where U(S) is uniform distribution from the training set S and 6 is the target network
parameters.
5. Only Q-network is trained and the target network is fixed.

6. Every T steps, the weights of Q-network is copied to the target network.
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Deep Q-Network (Mnih et al. 2015)

Q-Network architecture

Convolution Convolution Fully connected Fully connected
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Policy-Based Deep RL




Deep Policy Networks

1. Represent policy by deep network with weights w : a = 7(als, w)

Policy network

2
3
©
D/\
2
o

Input to Outputs
State Policy network

Action(s)

2. Define objective function as total discounted reward: L(w) = [>, o7 rci1 | 7(A, w)]
3. Optimize objective end-to-end by SGD (adjust policy parameters to achieve more reward)

Policy network

0.25 0.17
Input to Outputs U2 Updated to il
State ———| Policy network -% 0.25 017
G
And Probability Probability
Is used to
reinforce action
Reward

Sample action, which produces new
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AlphaGo




Go

» More than 2500 years old
» Considered the hardest classical board game

> Played on 19 x 19 board simple rules:

> Players alternately place a stone
> Surrounded stones are removed
> Player with more territory wins
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AlphaGo

1. Deep learning + Monte Carlo Tree Search(MCTS) + High Performance
Computing (Silver, Huang, et al. 2016) & (Silver, Schrittwieser, et al. 2017).
2. Learn from 30 million human expert moves and 128,000+ self play games.
3. AlphaGo uses
> Use policy network to explore better (and fewer) moves.
» Use value network to estimate lower branches of tree in MCTS.
4. Convolutional neural networks are used.

Go board states
Extended Data Table 2 | Input features for neural networks
Feature # of planes  Description
Stone colour 3 Player stone / opponent stone / empty
Ones 1 A constant plane filled with 1
Turns since 8 How many turns since a move was played
Liberties 8 Number of liberties (empty adjacent points)
Capture size 8 How many opponent stones would be captured
Self-atari size 8  How many of own stones would be captured
Liberties after move 8 Number of liberties after this move is played
Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1 Whether a move at this point is a successful ladder escape
Sensibleness I Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0
Player color 1 Whether current player is black
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AlphaGo

Separate 12-layer CNNs with ReLU activations

Move probabilities

Position

p(als)

Evaluation
L 2

Position
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AlphaGo

Rollout policy SL policy network RL policy network Value network

pd
Py Py pp Vo 8
g
3
o
=
Policy gradient o
=
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o
L
[M]

Human expert positions Self-play positions
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Training AlphaGo networks (step 1)

1. Learn to predict human moves

2. Used a large database of online expert
games.

3. Learned two versions of the neural
network:

» A fast network P, for use in evaluation
» An accurate network P, for use in
selection.

Human expert positions
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Training AlphaGo networks (step 2)

Improve P, (accurate network)

1. Run large numbers of self-play games.
2. Update P, using reinforcement learning.

3. Weights updated by stochastic gradient descent.

Fy Py

kR mep
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Training AlphaGo networks (step 3)

1. Learn a better board evaluation Vj
2. use random samples from the self-play
database

3. prediction target: probability that black
wins from a given board

Self-play Positions

49/53



Policy Network and MCTS Search Breadth

1. Approximate leaf values in MCTS using rollouts specified by policy network instead of MC
random rollouts

2. Reduce the search breadth in MCTS

{ﬁj
o g3
-h‘h“““-ﬁi_
<7
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Value Network and MCTS Search Depth

1. Approximate leaf values in MCTS using a value network instead of MC rollouts
2. Reduce the search depth in MCTS

T P P i P T T T
------------ 2 ] CAr  CAx CAY AN AR 2
........... » ['es) o OO0 O O te ¢} (o6

............................................................
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Reading




Readings

1. Chapters 1 to 6 and 13 of Reinforcement Learning: An Introduction?.

2. Paper An Introduction to Deep Reinforcement Learning?.

IRichard S. Sutton and Andrew G. Barto (2018). Reinforcement Learning: An Introduction. Second edition.
The MIT Press.
2Vincent Francois-Lavet et al. (2018). “An Introduction to Deep Reinforcement Learning”. In: Foundations

and Trends in Machine Learning 11.3-4, pp. 219-354.
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Questions?
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