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Introduction



Introduction

1. Reinforcement learning is what to do (how to map situations to actions) so as to

maximize a scalar reward/reinforcement signal

2. The learner is not told which actions to take as in supervised learning, but discover which

actions yield the most reward by trying them.

3. The trial-and-error and delayed reward are the two most important feature of

reinforcement learning.

4. Reinforcement learning is defined not by characterizing learning algorithms, but by

characterizing a learning problem.

5. Any algorithm that is well suited for solving the given problem, we consider to be a

reinforcement learning.

6. One of the challenges that arises in reinforcement learning and other kinds of learning is

tradeoff between exploration and exploitation.
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Introduction

1. A key feature of reinforcement learning is that it explicitly considers the whole problem of

a goal-directed agent interacting with an uncertain environment.

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

2. Experience is a sequence of observations, actions, rewards: o1, r1, a1, . . . , at−1, ot , rt

3. The state is a summary of experience : st = f (o1, r1, a1, . . . , at−1, ot , rt)

4. In a fully observed environment : st = f (ot)
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Elements of RL

Policy A policy is a mapping from received states of the environment to actions to be taken

(what to do?).

Reward function It defines the goal of RL problem. It maps each state-action pair to a single

number called reinforcement signal, indicating the goodness of the action. (what is good?)

Value It specifies what is good in the long run. (what is good because it predicts reward?)

Model of the environment This is something that mimics the behavior of the environment.

(what follows what?) This element is optional.
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An example : Tic-Tac-Toe

1. Consider a two-playes game (Tic-Tac-Toe)

X

X

X

O O

XO

..

•

our move{
opponent's move{

our move{

starting position

•

•

•

a

b

c*

d

ee*

opponent's move{

c

•f

•g*g

opponent's move{
our move{

.

•

e

2. Consider the following updating

V (s)← V (s) + α[V (s ′)− V (s)]
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Types of reinforcement learning

Non-associative reinforcement learning The learning method that does not involve learning

to act in more than one state.

Author's personal copy

of actions and applies it to a random environment. The random environment evaluates the applied action and gives it a
response. The response from the environment is used by automaton to modify its action probabilities (p) and to select its
next action. By continuing this process, the automaton learns to select the action with the highest reward. The interaction
of an automaton with its environment is shown in Fig. 2.

An automaton acting in an unknown random environment and improves its performance using a learning algorithm in
some specified manner, is referred to as learning automaton (LA). The crucial factor affecting the performance of a learning
automaton is learning algorithm. Various learning algorithms have been reported in the literature. Let ai be the action chosen
at time k as a sample realization from probability distribution pðkÞ. In linear reward-inaction algorithm the recurrence equa-
tion for updating pjðnÞ for j ¼ 1;2; . . . ; r is defined as

pjðnþ 1Þ ¼
pjðnÞ % a½1% bðnÞ'pjðnÞ j–i
pjðnÞ þ a½1% bðnÞ'

P
k–i

pkðnÞ j ¼ i;

8
<

: ð6Þ

where parameter 0 < a < 1 represent step length that determines the amount of increase of the action probabilities, r is the
number of actions for learning automaton and 0 6 bðnÞ 6 1 is the response of the environment, where smaller values of bðnÞ
means more favorable response. If output of the environment is binary, i.e. bðnÞ 2 f0;1g, where 0 is for reward and 1 is for
penalty, the environment is called P-model and the algorithm is denoted by LR%I . If output of the environment takes a finite
number of values in interval ½0;1', the environment is called Q-model and if output of the environment lies in interval ½0;1',
the environment is denoted by S-model. In Q- and S-model environments the algorithm is called SLR%I . Learning automata
have been used successfully in many applications such as routing and call admission control in computer network [13–
15], solving NP-Complete problems [16–19], capacity assignment [20,21], neural network engineering [22–26], cellular net-
works [6], and too many other applications [27–29] to mention a few.

4. Dynamic guard channel algorithms

In this section, we consider cellular networks with two classes of calls and introduce two learning automata based algo-
rithms to determine the near optimal number of the guard channels when parameters kn, kh and l are unknown and possibly
time varying. In these algorithms, learning automata are used to adapt the number of guard channels as the network
operates. Let gðtÞ be the number of guard channels at time instant T which takes values in interval gmin; gmax½ ', (for
0 6 gmin < gmax 6 C). In these algorithms, each base station uses one learning automaton with action set a ¼
fa1;a2; . . . ;arg, where r ¼ gmax % gmin þ 1. Selection of action ai by learning automaton means that the base station uses
gðtÞ ¼ gmin þ ai % 1 guard channels. The operation of these algorithms can be described as follows. These algorithms accept
handoff calls as long as the cell has free channels. When a new call arrives at a given cell, the learning automaton assigned to
this cell chooses one of its actions, say ai. If the cell has at least gmin þ ai % 1 free channels, then the call will be accepted;
otherwise it will be blocked. Then the base station computes the current estimate of the dropping probability of handoff calls
ðbBhÞ and based on the result of comparison of this quantity with the specified level of QoS ðphÞ, the reinforcement signal is
produced and the action probability vector of the learning automaton updated using a learning algorithm. The differences
between the proposed algorithms are the way that they produce reinforcement signal for the learning automata and the
learning algorithm used to update the action probability vector.

4.1. Dynamic guard channel algorithm I

This algorithm, which is depicted in Algorithm 2, uses an SLR%I learning automaton in each cell of the network. The rein-
forcement signal at time instant n is generated using the following expression.

bðnÞ ¼ w bBh % ph

!!!
!!!

" #
; ð7Þ

where w : R! ½0;1' is a projection function. The projection function wð:Þ is considered to be a continuous, nondecreasing and
non-negative function that maps the set of real numbers ðRÞ into ½0;1', for example wðxÞ ¼ x can be a projection function,
which maps ½0;1' into ½0;1'. The continuity of w is needed because the response produced by the environment is a real num-
ber in interval ½0;1', the non-negativity of function w is needed in order to maintain the reward and penalty nature of updat-

Fig. 2. The interaction of an automaton and its environment.

604 H. Beigy, M.R. Meybodi / Computers and Electrical Engineering 37 (2011) 601–613

Associative reinforcement learning The learning method that involves learning to act in

more than one state.

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state
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Non-associative reinforcement learning



Multi-arm Bandit problem

1. Consider that you are faced repeatedly with a choice among n different options or actions.

2. After each choice, you receive a numerical reward chosen from a stationary probability

distribution that depends on the action you selected.

3. Your objective is to maximize the expected total reward over some time period.

4. This is the original form of the n−armed bandit problem called a slot machine.

8/53



Action-value methods

1. Consider some simple methods for estimating the values of actions and then using the

estimates to select actions.

2. Let the true value of action a denoted as Q∗(a) and its estimated value at tth play as

Qt(a).

3. The true value of an action is the mean reward when that action is selected.

4. One natural way to estimate this is by averaging the rewards actually received when the

action was selected.

5. In other words, if at the tth play action a has been chosen ka times prior to t, yielding

rewards r1, r2, . . . , rka , then its value is estimated to be

Qt(a) =
r1 + r2 + . . .+ rka

ka
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Action selection strategies

Greedy action selection This strategy selects the action with highest estimated action value.

at = argmax
a

Qt(a)

ε−greedy action selection This strategy selects the action with highest estimated action

value most of time but with small probability ε selects an action at random, uniformly,

independently of the action-value estimates.

Softmax action selection This strategy selects actions using the action probabilities as a

graded function of estimated value.

pt(a) =
expQt(a)/τ∑
b expQt(b)/τ
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Learning automata

1. Environment represented by a tuple 〈α, β,C 〉,
I α = {α1, α2, . . . , αr} shows a set of inputs,
I β = {0, 1} represents the set of values that the reinforcement signal can take,
I C = {c1, c2, . . . , cr} is the set of penalty probabilities, where ci = P [β(k) = 1 | α(k) = αi ].

2. A variable structure learning automaton is represented by triple 〈β, α,T 〉,
2.1 β = {0, 1} is a set of inputs,

2.2 α = {α1, α2, . . . , αr} is a set of actions,

2.3 T is a learning algorithm used to modify action probability vector p.
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LR−εP learning algorithm

1. In linear reward-εpenalty algorithm (LR−εP) updating rule for p is defined as

pj(k + 1) =

{
pj(k) + a× [1− pj(k)] if i = j

pj(k)− a× pj(k) if i 6= j

when β(k) = 0 and

pj(k + 1) =

{
pj(k)× (1− b) if i = j
b

r−1 + pj(k)(1− b) if i 6= j

when β(k) = 1.

2. Parameters 0 < b � a < 1 represent step lengths.

3. When a = b, we call it linear reward penalty(LR−P) algorithm.

4. When b = 0, we call it linear reward inaction(LR−I ) algorithm.
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Measure learning in learning automata

1. In stationary environments, average penalty received by automaton is

M(k) = E [β(k)|p(k)] = P [β(k) = 1|p(k)] =
r∑

i=1

cipi (k).

2. A learning automaton is called expedient if

lim
k→∞

E [M(k)] < M(0)

3. A learning automaton is called optimal if

lim
k→∞

E [M(k)] = min
i

ci

4. A learning automaton is called ε−optimal if

lim
k→∞

E [M(k)] < min
i

ci + ε

for arbitrary ε > 0
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Associative reinforcement learning

The learning method that involves learning to act in more than one state.

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state
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Goals, rewards, and returns



Goals,rewards, and returns

1. In reinforcement learning, the goal of the agent is formalized in terms of a special reward

signal passing from the environment to the agent.

2. The agent’s goal is to maximize the total amount of reward it receives. This means

maximizing not immediate reward, but cumulative reward in the long run.

3. How might the goal be formally defined?

4. In episodic tasks the return, Rt , is defined as

Rt = r1 + r2 + . . .+ rT

5. In continuous tasks the return, Rt , is defined as

Rt =
∞∑
k=0

γk rt+k+1

6. The unified approach

r1 = +1
s0 s1

r2 = +1
s2

r3 = +1 r4 = 0
r5 = 0

∑
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Markov decision process



Markov decision process

1. A RL task satisfying the Markov property is called a Markov decision process (MDP).

2. If the state and action spaces are finite, then it is called a finite MDP.

3. A particular finite MDP is defined by its state and action sets and by the one-step

dynamics of the environment.

Pa
ss′ = P [st+1 = s ′|st = s, at = a]

Ra
ss′ = E [rt+1|st = s, at = a, st+1 = s ′]

4. Recycling Robot MDP

search

high low
1,  0

 1–β ,   –3

search

recharge

wait

wait

search1–α ,  R

β ,  R search

α, Rsearch

1,  R�
wait

1,  R�
wait

{∑ ∣∣∣∣

}

{∑ ∣∣∣∣

}
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Value functions

1. Let in state s action a is selected with probability of π(s, a).

2. Value of state s under a policy π is the expected return when starting in s and following π

thereafter.

V π(s) = E
π

[Rt | st = s] = E
π

[ ∞∑
k=0

γk rt+k+1

∣∣∣∣∣ st = s

]
=
∑
π

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γV π(s ′)] .

3. Value of action a in state s under a policy π is the expected return when starting in s

taking action a and following π thereafter.

Qπ(s, a) = E
π

[Rt | st = s, at = a] = E
π

[ ∞∑
k=0

γk rt+k+1

∣∣∣∣∣ st = s, at = a

]
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Optimal value functions

1. Policy π is better than or equal of π′ iff for all s V π(s) ≥ V π′(s).

2. There is always at least one policy that is better than or equal to all other policies. This is

an optimal policy.

3. Value of state s under the optimal policy (V ∗(s)) equals

V ∗(s) = max
π

V π(s)

4. Value of action a in state s under the optimal policy ( Q∗(s, a) equals

Q∗(s, a) = max
π

Qπ(s, a)

5. Backup diagram for V ∗ and Q∗

s,as

a

s'

r

a'

s'

r

(b)(a)

max

max

{ ∣∣∣∣

}

∑ [ ]
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Approaches to RL

1. Model-based RL

I Build a model of the environment.
I Plan (e.g. by lookahead) using model.

2. Value-based RL

I Estimate the optimal value function Q∗(s, a)
I This is the maximum value achievable under any policy

3. Policy-based RL

I Search directly for the optimal policy π∗.
I This is the policy achieving maximum future reward.
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Model based methods



Model based methods (dynamic programming)

1. The key idea of DP is the use of value functions to organize and structure the search for

good policies.

2. We can easily obtain optimal policies once we have found the optimal value functions, or ,

which satisfy the Bellman optimality equations:

V ∗(s) = max
a

E [rt+1 + γV ∗(st+1)|st = s, at = a]

= max
a

∑
s′

Pa
ss′ [Ra

ss′ + γV ∗(s ′)] .

3. Value of action a in state s under a policy π is the expected return when starting in s

taking action a and following π thereafter.

Q∗(s, a) = E
[
rt+1 + γmax

a′
Q∗(st+1, a

′)|st = s, at = a
]

=
∑
s′

Pa
ss′

[
Ra

ss′ + γmax
a′

Q∗(s ′, a′)
]
.
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Policy iteration

1. Policy iteration is an iterative process

π0
E−−−→V π0

I−−→π1 E−−−→V π1
I−−→π2 E−−−→ . . . . . .

I−−→π∗ E−−−→V ∗

2. Policy iteration has two phases : policy evaluation and improvement.

3. In policy evaluation, we compute state or state-action value functions

V π(s) = E
π

[Rt | st = s] = E
π

[ ∞∑
k=0

γk rt+k+1

∣∣∣∣∣ st = s

]
=
∑
π

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γV π(s ′)] .

4. In policy improvement, we change the policy to obtain a better policy

π′(s) = argmax
a

Qπ(s, a)

= argmax
a

∑
s′

Pa
ss′ [Ra

ss′ + γV π(s ′)] .
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Value and generalized policy iteration

1. In value iteration we have

Vk+1(s) = max
a

E [rt+1 + γVk(st+1) | st = s, at = a]

= max
a

∑
s′

Pa
ss′

[
Ra

ss′ + γV
(
k s
′)
]
.

2. Generalized policy iteration

π V

evaluation

improvement

V →V
π

π→greedy(V)

*Vπ*
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DP Backup diagram

V (St)← E
π

[Rt+1 + γV (St+1)]

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Unified View

Dynamic Programming Backup

V (St) E⇡ [Rt+1 + �V (St+1)]

T!

T! T! T!

st

rt+1
st+1

T!

T!T!

T!

T!T!

T!

T!

T!

23/53



Value-based methods



Value-based methods

1. These methods lean policy function implicitly.

2. These methods first learn a value function Q(s, a).

3. Then infer policy π(s, a) from Q(s, a).

4. Examples

I Monte-carlo methods
I Q-learning
I SARSA
I TD(λ)
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Value-based methods

Monte Carlo methods



Monte Carlo (MC) methods

1. MC methods learn directly from episodes of experience.

2. MC is model-free: no knowledge of MDP transitions / rewards

3. MC learns from complete episodes

4. MC uses the simplest possible idea: value = mean return

5. Goal: learn Vπ from episodes of experience under policy π

S1
α1−→
R1

S2
α2−→
R2

S3
α3−→
R3

S4 . . .
αk−1−−−→
Rk−1

Sk

6. The return is the total discounted reward:

Gt = Rt+1 + γRt+2 + . . .+ γT−1RT

7. The value function is the expected return:

Vπ(s) = E
π

[Gt | St = s]

8. Monte-Carlo policy evaluation uses empirical mean return instead of expected return
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First-Visit Monte-Carlo Policy Evaluation

1. To evaluate state s

2. The first time-step t that state s is visited in an episode, Increment counter

N(s)← N(s) + 1

3. Increment total return

S(s)← S(s) + Gt

4. Value is estimated by mean return

V (s) =
S(s)

N(s)

5. By law of large numbers,

V (s)→ Vπ(s)

as

N(s)→∞
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Every-Visit Monte-Carlo Policy Evaluation

1. To evaluate state s

2. Every time-step t that state s is visited in an episode, Increment counter

N(s)← N(s) + 1

3. Increment total return

S(s)← S(s) + Gt

4. Value is estimated by mean return

V (s) =
S(s)

N(s)

5. By law of large numbers,

V (s)→ Vπ(s)

as

N(s)→∞
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MC Backup diagram

V (St)← V (St) + α(Gt − V (St))

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Unified View

Monte-Carlo Backup

V (St) V (St) + ↵ (Gt � V (St))

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!
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Value-based methods

Temporal-difference methods



Temporal-difference methods

1. TD learning is a combination of Monte Carlo ideas and dynamic programming (DP) ideas.

2. Like Monte Carlo methods, TD methods can learn directly from raw experience without a

model of the environment’s dynamics.

3. Like DP, TD methods update estimates based in part on other learned estimates, without

waiting for a final outcome (they bootstrap).

4. Monte Carlo methods wait until the return following the visit is known, then use that

return as a target for V (st) while TD methods need wait only until the next time step.

5. The simplest TD method, known as TD(0), is

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)]
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Temporal-Difference Backup

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)]

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Unified View

Temporal-Di↵erence Backup

V (St) V (St) + ↵ (Rt+1 + �V (St+1)� V (St))

T! T! T! T!T!

T! T! T! T! T!

st+1
rt+1

st

T!T!T!T!T!

T! T! T! T! T!
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Temporal-difference methods (cont.)

1. Algorithm for TD(0)
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Temporal-difference methods (SARSA)

1. An episode consists of an alternating sequence of states and state-action pairs:

st+2,at+2st+1,at+1

rt+2
rt+1st st+1

st ,at

st+2

2. SARSA, which is an on policy, updates values using

Q(st , at)← Q(st , at) + α [rt+1 + γQ(st+1, at+1)− Q(st , at)]
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Temporal-difference methods (Q-learning)

1. An episode consists of an alternating sequence of states and state-action pairs:

st+2,at+2st+1,at+1

rt+2
rt+1st st+1

st ,at

st+2

2. Q-learning, which is an off policy, updates values using

Q(st , at)← Q(st , at) + α
[
rt+1 + γmax

a
Q(st+1, a)− Q(st , at)

]

33/53



Policy-based methods



Policy-based methods

1. In policy-based learning, there is no value function.

2. The policy π(s, a) is parametrized by vector θ (π(s, a; θ)).

3. Explicitly learn policy π(s, a; θ) that implicitly maximize reward over all policies.

4. Given policy π(s, a; θ) with parameters θ, find best θ.

5. How do we measure the quality of a policy π(s, a; θ)?

6. Let objective function be J(θ) .

7. Find policy parameters θ that maximize J(θ) .

8. Sample algorithm: REINFORCE
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Policy-based methods versus value-based methods

1. Advantages of policy-based methods over value-based methods

I Usually, computing Q-values is harder than picking optimal actions
I Better convergence properties
I Effective in high dimensional or continuous action spaces
I Can benefit from demonstrations
I Policy subspace can be chosen according to the task
I Exploration can be directly controlled
I Can learn stochastic policies

2. Disadvantages of policy-based methods over value-based methods

I Typically converge to a local optimum rather than a global optimum
I Evaluating a policy is typically data inefficient and high variance
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Deep Reinforcement Learning in Atari

Deep Reinforcement Learning in Atari

state

reward

action

at

rt

st
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Deep Reinforcement Learning

1. Use deep network to represent value function/ policy/model.

2. Optimize value function/ policy/model end–to–end.

3. Use stochastic gradient descent.Deep Reinforcement Learning�

http://videolectures.net/rldm2015_silver_reinforcement_learning/ 

Deep 
Learning�

Reinforcement 
Learning�

Deep 
Reinforcement 

Learning�

What is RL?
Deep Reinforcement Learning

Future of Deep RL

Intro
DQN
Stability Issues
AlphaGo
Continuous Control

Deep Reinforcement Learning

Patrick Emami Deep Reinforcement Learning: An Overview

Source:
http://people.csail.mit.edu/hongzi/
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Value-Based Deep RL



Q-Networks

1. Represent value function by Q-network with weights w : Q(s, a;w) ≈ Q∗(s, a)

Q-Networks

Represent value function by Q-network with weights w

Q(s, a,w) ⇡ Q⇤(s, a)

s sa

Q(s,a,w) Q(s,a1,w) Q(s,am,w)…

w w
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Deep Q-Network (Mnih et al. 2015)

1. End-to-end learning of values Q(s, a) from pixels s.

2. Input state s is stack of raw pixels from last 4 frames

3. Output is Q(s, a) for 18 joystick/button positions

4. Reward is change in score for that step

What is RL?
Deep Reinforcement Learning

Future of Deep RL

Intro
DQN
Stability Issues
AlphaGo
Continuous Control

Deep Q-Network (DQN)

Patrick Emami Deep Reinforcement Learning: An Overview
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Deep Q-Network (Mnih et al. 2015)

1. Deep Q-network consists of
I Q network predicting Q-values
I Target network, which has the same structure as Q-network
I Experience replay component

2. Experience replay selects an ε−greedy action from the current state, executes it in the

environment, and gets back a reward and the next state. It saves this observation as a

sample of training data.

3. A batch of training data is given to both networks.
I The Q network takes the current state and action from each data sample and predicts the Q

value for that particular action.
I The Target network takes the next state from each data sample and predicts the best Q

value out of all actions that can be taken from that state.

4. The loss function at iteration i is defined as

Ji (θi ) = E
(s,a,r ,s′)∼U(S)

[[(
r + γmax

a′
Q(s ′, a′; θ−i )− Q(s, a; θi )

)2]]
where U(S) is uniform distribution from the training set S and θ−i is the target network

parameters.

5. Only Q-network is trained and the target network is fixed.

6. Every T steps, the weights of Q-network is copied to the target network.
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Deep Q-Network (Mnih et al. 2015)

Q-Network architecture

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learningprocedure throughout—takinghigh-dimensionaldata (210|160
colour video at 60Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputswithonlyveryminimalpriorknowledge (that is,merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradientdescent in a stablemanner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional humangames tester playingunder controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional humangames tester across the set of 49games, achievingmore
than75%of the human score onmore thanhalf of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in theMethods. The input to the neural
network consists of an 843 843 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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Deep Policy Networks

1. Represent policy by deep network with weights w : a = π(a|s,w)

Policy network

91Policy function using neural networks

epsilon-greedy approach, where we selected an action at random with probability ε,
and with probability 1 – ε we selected the action associated with the highest Q value
(the action the Q-network predicts is the best, given its experience so far). There are
any number of other policies we could have followed, such as using a softmax layer on
the Q values. 

 What if we skip selecting a policy on top of the DQN and instead train a neural net-
work to output an action directly? If we do that, our neural network ends up being a
policy function, or a policy network. Remember from chapter 3 that a policy function,
π:State → P(ActionState), accepts a state and returns the best action. More precisely, it
will return a probability distribution over the actions, and we can sample from this dis-
tribution to select actions. If a probability distribution is an unfamiliar concept to you,
don’t worry. We’ll discuss it more in this chapter and throughout the book.

4.1 Policy function using neural networks
In this chapter we’ll introduce a class of algorithms that allow us to approximate the
policy function, π(s), instead of the value function, Vπ or Q. That is, instead of training
a network that outputs action values, we will train a network to output (the probability
of) actions.

4.1.1 Neural network as the policy function

In contrast to a Q-network, a policy network tells us exactly what to do given the state
we’re in. No further decisions are necessary. All we need to do is randomly sample
from the probability distribution P(AS), and we get an action to take (figure 4.2).
The actions that are most likely to be beneficial will have the highest chance of being
selected from random sampling, since they are assigned the highest probability.

Imagine the probability distribution P(AS) as a jar filled with little notes with an
action written on each. In a game with four possible actions, there will be notes with
labels 1–4 (or 0–3 if they’re indices in Python). If our policy network predicts that
action 2 is the most likely to result in the highest reward, it will fill this jar with a lot of
little notes labeled 2, and fewer notes labeled 1, 3, and 4. In order to select an action
then, all we do is close our eyes and grab a random note from the jar. We’re most
likely to choose action 2, but sometimes we’ll grab another action, and that gives us
the opportunity to explore. Using this analogy, every time the state of the environment

Input to Outputs
Policy networkState
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ba
bi

lit
y

Action(s)

Figure 4.2 A policy network is a function that takes a state and returns a 
probability distribution over the possible actions.

2. Define objective function as total discounted reward: L(w) = E
[∑

k=0 γ
k rk+1

∣∣ π(∆,w)
]

3. Optimize objective end-to-end by SGD (adjust policy parameters to achieve more reward)

Policy network
98 CHAPTER 4 Learning to pick the best policy: Policy gradient methods

fixed set of parameters. When we are training the policy network, we need to vary the
parameters with respect to a fixed input to find a set of parameters that optimizes our
objective (i.e., minimizes a loss or maximizes a utility function), which is the function
πs(θ).

DEFINITION The probability of an action, given the parameters of the policy
network, is denoted πs(aθ). This makes it clear that the probability of an
action, a, explicitly depends on the parameterization of the policy network. In
general, we denote a conditional probability as P(x | y), read “the probability distri-
bution over x given y.” This means we have some function that takes a parame-
ter y and returns a probability distribution over some other parameter x.

In order to reinforce action 3, we want to modify our policy network parameters θ
such that we increase πs(a3θ). Our objective function merely needs to maximize
πs(a3θ) where a3 is action 3 in our example. Before training, πs(a3θ) = 0.25, but we
want to modify θ such that πs(a3θ) > 0.25. Because all of our probabilities must sum
to 1, maximizing πs(a3θ) will minimize the other action probabilities. And remem-
ber, we prefer to set things up so that we’re minimizing an objective function instead
of maximizing, since it plays nicely with PyTorch’s built-in optimizers—we should
instead tell PyTorch to minimize 1 – πs(aθ). This loss function approaches 0 as πs(aθ)
nears 1, so we are encouraging the gradients to maximize πs(aθ) for the action we
took. We will subsequently drop the subscript a3, as it should be clear from the context
which action we’re referring to.

4.2.3 Log probability

Mathematically, what we’ve described is correct. But due to computation imprecisions
we need to make adjustments to this formula to stabilize the training. One problem is
that probabilities are bounded by 0 and 1 by definition, so the range of values that the
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Figure 4.6 Once an action is sampled from the policy network’s probability distribution, it produces 
a new state and reward. The reward signal is used to reinforce the action that was taken, that is, it 
increases the probability of that action given the state if the reward is positive, or it decreases the 
probability if the reward is negative. Notice that we only received information about action 3 
(element 4), but since the probabilities must sum to 1, we have to lower the probabilities of the 
other actions.
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AlphaGo



Go

I More than 2500 years old

I Considered the hardest classical board game

I Played on 19× 19 board simple rules:

I Players alternately place a stone
I Surrounded stones are removed
I Player with more territory wins

Lee Sedol’s hand of god (game 4, move 78)

(Aalto University) Artificial Intelligence 2016 70 / 71
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AlphaGo

1. Deep learning + Monte Carlo Tree Search(MCTS) + High Performance

Computing (Silver, Huang, et al. 2016) & (Silver, Schrittwieser, et al. 2017).

2. Learn from 30 million human expert moves and 128,000+ self play games.

3. AlphaGo uses
I Use policy network to explore better (and fewer) moves.
I Use value network to estimate lower branches of tree in MCTS.

4. Convolutional neural networks are used.

Go board states
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AlphaGo

Separate 12-layer CNNs with ReLU activations

Policy and Value Networks

I Separate 12-layer CNNs with ReLU activations

Credit: Silver (IJCAI 2017)

6 / 17
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AlphaGo

SL-RL Training Pipeline

I Fast policy network (p⇡) and strong policy network (p�) initially trained to predict
expert moves

I p� later trained through games of self-play to maximize probability of winning (p⇢)

I Value network (v✓) trained from self-play board positions to predict win probability

9 / 17
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Training AlphaGo networks (step 1)

1. Learn to predict human moves

2. Used a large database of online expert

games.

3. Learned two versions of the neural

network:

I A fast network Pπ for use in evaluation
I An accurate network Pσ for use in

selection.

Step	1:	learn	to	predict	human	moves

• Used	a	large	database	of	online	
expert	games.

• Learned	two	versions	of	the	neural	
network:

• A	fast	network	P! for	use	in	evaluation.

• An	accurate	network	P" for	use	in	
selection.

CS63 topic
neural networks

weeks 8–9
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Training AlphaGo networks (step 2)

Improve Pσ (accurate network)

1. Run large numbers of self-play games.

2. Update Pσ using reinforcement learning.

3. Weights updated by stochastic gradient descent.

Step	2:	improve	P" (accurate	network)

• Run	large	numbers	of	self-play	games.

• Update	P" using	reinforcement	learning

• weights	updated	by	stochastic	gradient	descent
CS63 topic

reinforcement 
learning

weeks 6-7

CS63 topic
stochastic 

gradient descent
week 3
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Training AlphaGo networks (step 3)

1. Learn a better board evaluation Vθ

2. use random samples from the self-play

database

3. prediction target: probability that black

wins from a given board

Step	3:	learn	a	better	boardEval V#

• use	random	samples	from	the	
self-play	database

• prediction	target:	probability	that	
black	wins	from	a	given	board

CS63 topic
avoiding 

overfitting
weeks 9-10
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Policy Network and MCTS Search Breadth

1. Approximate leaf values in MCTS using rollouts specified by policy network instead of MC

random rollouts

2. Reduce the search breadth in MCTS

Policy Network and MCTS Search Breadth

I Approximate leaf values in MCTS using rollouts specified by policy
network instead of MC random rollouts

I Reduce the search breadth in MCTS

Credit: Silver (IJCAI 2017)

7 / 17
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Value Network and MCTS Search Depth

1. Approximate leaf values in MCTS using a value network instead of MC rollouts

2. Reduce the search depth in MCTS

Value Network and MCTS Search Depth

I Approximate leaf values in MCTS using a value network instead of MC
rollouts

I Reduce the search depth in MCTS

Credit: Silver (IJCAI 2017)

8 / 17
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Reading



Readings

1. Chapters 1 to 6 and 13 of Reinforcement Learning: An Introduction1.

2. Paper An Introduction to Deep Reinforcement Learning2.

1Richard S. Sutton and Andrew G. Barto (2018). Reinforcement Learning: An Introduction. Second edition.

The MIT Press.
2Vincent Francois-Lavet et al. (2018). “An Introduction to Deep Reinforcement Learning”. In: Foundations

and Trends in Machine Learning 11.3-4, pp. 219–354.
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Questions?
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