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Introduction



Supervised learning

1. In supervised setting, we have a dataset S = {(x1, y1), (x2,)2), -+, (Xm» Ym)}-
2. Discriminative models estimate the conditional distribution P(y|x).

> Linear regression, logistic regression, generalized linear models
» Standard Neural Networks, CNN, RNN...
» Decision trees, boosting, random forests, kernel methods, KNN, ...

3. Generative models estimate the joint distribution P(x,y).
» Naive Bayes

» Linear/quadratic discriminant analysis

4. Generating new data requires to model the joint distribution P(x,y).
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Unsupervised learning

1. In unsupervised setting, we have a dataset S = {x1,x2,...,Xm}.

2. We have no target output, thus nothing to predict nor discriminate.

3. In unsupervised setting, we have different goals:

>

Descriptive analysis: detect structure, correlations in the data set using
descriptive/graphical tools or using more involved methods (PCA for example)
Clustering: create "homogeneous” groups of observations (usually spending 90% of
the allocated time to properly define “homogeneous”)

Estimating the distribution of observations: detect suspect data/behaviour, detect
changes in the data set if the data are collected through time

Generating new data: closely related to the previous point.
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Why Generative Models?

1. We have seen discriminative models

» Given an image x, predict label y
» Estimates P(y|x)

2. Discriminative models have several key limitations

» Can't model P(x), i.e. the probability of seeing a certain image
» Thus, can't sample from P(x), i.e. can't generate new images

3. Generative models (in general) cope with all of the above problems

» Can model P(x)
» Can generate x such as new images

4. Generate new data by sampling from the learned distribution.
5. Evaluate the likelihood of data observed at test time.

6. Find the conditional relationship between variables, eg learning the distribution
p(x2|x1) allows us to build discriminative classification or regression models.

7. Score algorithms by using complexity measures like entropy, mutual information,
and moments of the distribution.
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Generative Models

1. Given training data, generate new samples from same distribution®,

Train from x ~ pgata(x) Generate from x ~ pmodel(X)

Want to learn ppmodes(x) similar to pyaea(x)
2. Several flavors

» Explicit density estimation: explicitly define and solve for ppmoder(Xx)
» Implicit density estimation: learn model that can sample from pmogder(x) W/0
explicitly defining it

'Taken from Fei-Fei Li et al. slides and Tutorial on Generative Adversarial Networks, 2017.
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Generated images

1. The following images were generated from a generative model (Karras et al. 2018).
- . ,
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Taxonomy of Generative Models

Maximum Likelihood

~ \

Explicit density

Direct

/ GAN

N

Implicit density

Tractable density

Approximate density

-Fully visible belief nets
-NADE
-MADE

A

.

Markov Chain

GSN

Variational Markov Chain

-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)
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Different approaches for building generative models

1. Without using latent variables

» Parametric density estimation
» Non parametric density estimation

2. With using latent variables

» Mixture models
> Deep generative models
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Introduction

Generative models without using latent variables



Parametric density estimation

. We assume x1, x2, ..., Xm are 1ID random variables distributed as p(x; 6), hence

we have
m
p(x;i0) = plxi,x2, ... Xm0;) H (xk; 6)

p(x; 0) is a function of § and is known as likelihood function.

. The maximum likelihood (ML) method estimates € so that the likelihood function

takes its maximum value, that is,

m
O = argmax [ p(x; 0)

. To obtain éMI_ that maximizing the likelihood function, we must have

aHkmzlp(Xk;e) -0
00
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Parametric density estimation

1. It is more convenient to work with the logarithm of the likelihood function than
with the likelihood function itself. Hence,

LL®) = In]] pCxai0) = Inp(x;0)
k=1 k=1

N

Ove = argmaxLL(0)
0
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Nonparametric methods for density estimation

1. Parametric forms do not always fit the densities encountered in practice.

2. Most of parametric densities are unimodal, whereas many practical problems have
multi-modal densities.

3. Non-parametric methods can be used with arbitrary distributions without
assumption of knowing the forms of the underlying densities.

4. In nonparametric estimation, we assume that similar inputs have similar outputs.

5. This is a reasonable assumption because the world is smooth and functions,
whether they are densities, discriminants, or regression functions, change slowly.

6. Some approaches for nonparametric density estimation

» Histogram
» Parzen window

v

Kernel density estimator
> Nearest neighbors
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Histogram

1. Divide the space into a set of regular intervals of the form

I = (x0 + jh,xo + (j + 1)A], forje{...,—1,0,1,...}.

Distribution and Kernel Density for length

150 ;

/M
.

50

Count

)

06 072 0.84 096 1.08 12 1.32 144 156 168 1.8 192 204 2.16 228 2.4
length

. In each interval, the density is constant and is proportional to the number of
observations falling into this interval.
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Naive estimator

1. Naive estimator, addresses the choice of bin locations, thus the origin is

eliminated.
2. For bin width h, bin denoted by R(x) is interval [x — g,x + g) and the estimate
is
oy |R(X)]
p(X) - mh
3. The estimator can also be written as
m r R
p(x) = 1 w [ Xk | >
PR o £ h ———
- hj2  h/2
w is weight function and defined as W<w7wi'>
h
1 f < l Ppeeeeeees
wlu) = Tlul < 2 {
0 otherwise : | =
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Kernel density estimator

1. To get a smooth estimate, a smooth weight function (kernel function) is used.

mhz <x—x,>

w(.) is some kernel function and h is the smoothing parameter.
2. Gaussian kernel function with mean 0 and variance 1 is usually used.

1 u?
w(u) = mexp <2>
3. Function w(.) determines shape of influences and h determines window width.
4. The kernel estimator can be generalized to D—dimensional data.

50) = thZ <x—Xk>

0 - () e ()

5. The total number of data points lying in this window (cube) equals to (drive it.)

= 3w ()
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Kernel density estimator
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k—Nearest neighbor estimator

v

A difficulty with KDE is that the parameter h is fixed for all kernels.

v

Large value of h may lead to over-smoothing.

» Reducing value of h may lead to noisy estimates.
» The optimal choice of h may be dependent on location within the data space.
5
h = 0.005
0
0 0.5 1
h =007 '
A A
0
0 0.5 1
5 :
h=0.2
0 /\A
0 0.5 1
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k—Nearest neighbor estimator (cont.)

> Instead of fixing h and determining the value of k from the data, we fix the value
of k and use the data to find an appropriate value of h.

» To do this, we consider a small sphere centered on the point x at which we wish
to estimate the density p(x) and allow the radius of the sphere to grow until it
contains precisely k data points (Why?).

k
p(x) = v
V is the volume of the resulting sphere.
» Value of k determines the degree of smoothing and there is an optimum choice
for k that is neither too large nor too small.
» Note that: The model produced by k nearest neighborhood is not a true density

model because the integral over all space diverges.

Theorem

It can be shown that both the K-NN and the kernel density estimators converge to
the true probability density in the limit N — oo provided V' shrinks suitably with N,
and K grows with N (Duda, Hart, and Stork 2001).
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k—Nearest neighbor estimator

1

[ &
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Introduction

Generative models using latent variables



Mixture models for density estimation

1. An alternative way to model an unknown density function p(x) is via linear
combination of M density functions in the form of

M
plx) = > mep(xIK)
k=1
where
M
Zﬂk =1
k=1

/Xp(x|k)dx —1

2. This modeling implicitly assumes that each point x may be drawn from any M
model distributions with probability m, (for k =1,2,..., M).
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Mixture models for density estimation

1. It can be shown that this modeling can approximate closely any continuous density
function for a sufficient number of mixtures M and appropriate model parameters.

2. First, we select a set of density components p(x|k) in the parametric form

p(x|k,0).
M
p(x;0) = > mkp(x|6k)
k=1
3. Then, we compute parameters 61,65, ...,0y and w1, 7o, ..., Ty based on training
data.
4. The parameter set is defined as @ = {71, 72, ..., 7y, 01,602,...,0n} and
>o,m =1

5. In order to find parameters, we use EM algorithm.
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Deep generative models




Deep generative models

B

We assume that dataset S = {x1,x2,...,Xxm} are samples from distribution p(x).
Goal of any generative model is to approximate p(x) given access to the dataset S.

If we can learn a good generative model, we can use it for inference.

We usually have three fundamental inference queries for evaluating a generative
model.
» Density estimation: Given a point x, what is the probability assigned by the model,
i.e., p(x;0)?
» Sampling: How can we generate new data from the model distribution, i.e.,
Xnew ~ p(x;0)7?
» Unsupervised representation learning: How can we learn meaningful feature
representations for a point x?
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Boltzmann Machine




Boltzmann Machine (BM)

1. BMs are fully connected networks of binary units.

2. BM is an undirected symmetric network of binary units that are divided into
visible and hidden units.
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Boltzmann Machine (BM)

1. BMs are theoretically capable of learning any given distribution.

2. The network sets the strengths of the connections between the units to capture
the correlations between them to build a generative network capable of producing

new examples of the same distribution.

3. Since all variables in a BM are not directly observed, it gives us a handle to

control the sampling of new examples.

4. The model can take in an incomplete example and use it to output the complete

version.
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Boltzmann Machine (BM)

1. BM is a network with an energy defined for the overall network.

2. For a BM with only observed units, the energy is defined as

E(X) = — Z W,'jX,'XJ' — Z b,'X,'
ij i=1

= —x Wx—b'x

H(x) = —E(x) Alternatively, happiness is used to avoid multiple minus signs.

> x = (x1,%,...,%4) € {0,1}9 is the input vector.
» W = (w;) is the weight matrix
» b= (b1, b,...,bg) € {0,1}9 is the bias vector.

3. The joint probability distribution defined as

exp (—£(x))
pmodel(x) 7

Z is Partition function that ensures ) pmodel(x) = 1.
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Boltzmann Machine (BM)

1. BM becomes more powerful when not all the variables are observed.

2. The latent variables can act similarly to hidden units in a MLP.

3. By decomposing units into two subsets: visible v and hidden units h, we obtain.
E(v,h)= —v'Rv—v'Wh—-h"Sh—b'v—c'h

4. The joint probability distribution defined as

exp (—E(v, h))
Z

Z is Partition function that ensures > pmodel(x) = 1.

Pmodel (Va h) =
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Boltzmann Machine (BM)

Example:

X1 X2 X3 W12 X1 X2 W13X1X3 W23 X2X3 b2X2 H(X) exp(H(x)) p(X)

-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 1 -1 1 -2 -1 -3 0.050 0.0003
11 -1 1 -1 -2 1 -3 0.368 0.0021
-101 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Z =172.420

Figure: Roger Grosse
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Boltzmann Machine (BM)

Marginal probabilities:

p(xi =1) = % Z exp(H(x))

x:x1=1

~20.086 + 0.050 + 0.368 + 2.718

172.420
=0.135

X1 Xe X3 | wixixe wizxixs  waxexs  boxe | H(x) | exp(H(x)) p(x)

-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 1 -1 1 -2 -1 -3 0.050 0.0003
-1 1 -1 1 -1 -2 1 -3 0.368 0.0021
.11 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 =2 =1l -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Z =172.420

Figure: Roger Grosse
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Boltzmann Machine (BM)

Conditional probabilities:

Pt = 1% = —1) = Zx:xlzl,xz:—l exp(H(x))
EX:XQZ—]. eXp(H(X))
B 20.086 -+ 0.050
~0.368 + 0.050 + 20.086 -+ 0.050

= 0.980

X1 X2 X3 W12 X1 X2 W13X1X3 W23 X2X3 b2X2 H(X) exp(H(x)) p(X)

-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 1 -1 1 -2 -1 -3 0.050 0.0003
11 -1 1 -1 -2 1 -3 0.368 0.0021
-1 01 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Figure: Roger Grosse
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Boltzmann Machine Learning

1. Learning algorithms for BMs are usually based on maximum likelihood.
2. All BMs have an intractable partition function, so the maximum likelihood
gradient must be approximated.

3. An interesting property of BMs is that the update for a particular w;; depends

only on the statistics of x; and x;.
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Boltzmann Machine Learning

1. A BM admits the following likelihood for points x(1), ... x("),

£V, x") = T] px?)
i=1
2. We will work with the log-likelihood instead of the true likelihood.

u (k)
log £(xM,...,x(") = 3" log exp (H(xY)

3. The aim is to maximize Exp,,,, [£(X)]
n

E [E(X)] = pdata(x = x(k))ﬁ(x(k))

X~ Pdata
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Boltzmann Machine Learning

L. Now, deriving the gradient with respect to the weights (V, ; log £)

vw,',j Z pdata(x = x(k))H( () — log Z Z Pdata X = X V H( (k))

- Z Pdata (X = X(k))vW;ﬂj Iog V4

2. The first term equals to

Z Pdata X= X V H(X(k Z pdata(x = x(k))VW,,j Z W;’J'X’.(k)xj(k)
= i#j

+ Zpdata X = x b X(k)
= Z Paata(x = xU))x(F) (8
k=1
= E [xxj]
X~ Pdata
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Boltzmann Machine (BM)

1. The second term equals to

Vw,logZ =V, log Z exp (H(x))

1
= Z - VW,J Zexp ?VW,J Zexp(H X
exp (H(x
- Zexp X))V, Hx) = 3 (Z‘”vw,,jH(x)
- Z Pmodel VW,JH( )
= Z Pmodel x)[Xin]

= E [xix]

X~ Pmodel

33/192



Boltzmann Machine learning

1. By combining the above equations, the gradient w.r.t weights becomes

vWi,_,' logL= E [X,'Xj] - E [Xin]

X~ Pdata X~ Pmodel

2. By combining the above equations, the gradient w.r.t biases becomes

VplogL= E [x]— E |[xi]

X~ Pdata X~ Pmodel
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Generating a sample by Boltzmann Machine

1. In BM, we generate in two steps:

» Pick the hidden states from p(h).
» Pick the visible states from p(v|h).

2. The probability of generating a visible vector, v, is computed by summing over all

visible

possible hidden states.

Zp p(vlh)
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Gibbs sampling

1. Given an ordered set of variable, xi, ..., x4, and a starting configuration

x9 = (Xi),...,xg),

Gibbs sampling uses the following procedure

» Repeat until convergence for t =1,2,...,

> Set x « x'71.

» For each variable x; in the order we fixed:
1) Sample x{ ~ p(x; | x_;).
2) Update x < (X1, .., X/, ..., Xd)-

> Set x' <+ x.

We use x_; to denote all variables in x except x;.

2. It is often very easy to performing each sampling step, since we only need to

condition x; on other variables.

3. Note that when we update x;, we immediately use its new value for sampling

other variables x;.
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Gibbs sampling (example)

1. We drive p(xj|x_;) using probability of axioms and discarding bias terms

p(xi =1,x_;)
p(xi =1,x_i) + p(xi = 0,x_;)

exp [Zi;ﬁj W,ij}
1

= o[> wix

J#

p(xi =1|x_;) =

37/192



Gibbs sampling (example)

1. Let d = 3, we need to define

X ~p(xo|x1, x2)
x1 ~p(xi|xp, x2)

X ~p(x2lxg, x1)

2. Each dimension is binary, the above 3 models must necessarily return the
probability of observing a 1.

3. Note that when we update x;, we immediately use its new value for sampling
other variables x;.
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Gibbs sampling (example)

1. We drive p(xp|x1, x2) using probability of axioms

p(X() = 1,X1,X2) N p(Xo = 1,X1,X2)
plxaxe)  Deqoy Plxos X1, x2)
p(xo =1, x1, x2)
~ plxo =0,x1,%) + p(xo = 1,x1,x)
1 1

p(0=0x1.%0) exp (H(x0=0,x1,x2)))
1+ plxo=1,x1,%2) 1+ exp (H(x0=1,x1,x2)))

p(xo = 1lx1,x2) =

1
14 exp (H(xo = 0,x1,x2) — H(xo = 1, x1, x2))
1
T exp (X wipxixi + 20 bixi — (X wixix + 32 bixi))

1
1+ exp (= X jzim0 WiXj — bi)

= a( Z Wi jXj + b;)

j#i=0
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Boltzmann Machine

Restricted Boltzmann Machine



Restricted Boltzmann Machine (RBM)

1. The tractability of the joint distribution is one of the biggest drawbacks of BMs.
2. RBMs are a special type of BMs with two layers: One visible and one hidden layer.

hiden units

visible units

3. The connections in an RBM are undirected and the graph is a bipartite graph.
4. By the Markov property, p(h|v) and p(v|h) both factorize (Show later).

p(hlv) = Hp (hi|v)
i) =TT o
J

5. There is no need for variational Bayes and Gibbs sampling can be implemented
efficiently by alternating between hidden and visible levels, known as block Gibbs
sampling.

6. The marginal distributions p(v) and p(h) do not factorize (Show it).
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Restricted Boltzmann Machine (RBM)

1. This bipartite architecture allows us to have more control over the joint
distribution.

2. RBMs are a powerful replacement for fully connected BMs when building a deep
architecture because of the independence of units within the same layer, which
allows for more freedom and flexibility.

3. The latent variables can act similarly to hidden units in a MLP.
4. RBMs can be trained using the techniques of maximum likelihood.

5. Sampling from an RBM can be done using Gibbs sampling method or any other
Markov Chain Monte Carlo (MCMC) method.
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Restricted Boltzmann Machine (RBM)

1. Hidden units are conditionally independent given the visible units and vice versa.

p(v,':].|h)20' ZWUhj+bi
J

p(hj = ]_‘V) =0 <Z Wij Vi + Cj)

2. Given visible v, we can sample each h independently.

3. Given hidden h, we can sample each v; independently.
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Restricted Boltzmann Machine (RBM)

1. The energy of the joint state {v, h} is defined as follows:
E(v,h;0) = —v'Wh—b'v—a'h

where § = {W,b,a} are the model parameters. W; represents the symmetric
interaction term between visible variable / and hidden variable j, and b; and a; are
bias terms.

2. The joint distribution equals to

p(v,h;0) =

2(19) exp (—E(v, h: 0))

Z(0) =YY exp(—E(v, h;0))
v h
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Restricted Boltzmann Machine (RBM)

1. The model assigns the following probability to a visible vector v
p(v; 6 Zexp E(v,h;0))
2. The hidden variables can be explicitly marginalized out
70) Zh: exp (—E(v,h; 0))

1
= ﬁ Z exp (vTWh +b'v+ aTh>

exp bT H Z exp (ajh —i—ZW,Jv, )

Jj=1h;e{0,1}

F
— T . /s
_Z( exp(b' v H<1+exp (aj+zi:W,Jv,>>

j=1
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Restricted Boltzmann Machine (RBM)

1. Bipartite graph structure of RBM has the following property.
2. Conditionals p(h|v) and p(v|h) are factorized and easy computed.

p(h|v) = p,(:(lv‘)l) - p(lv); exp (bTv +cTh+ vTWh)

% exp ( Th+ VTWh>

—exp chh +ZVTW ihi
= 7 Hexp (thj + VTW:jhj>
J

3. Normalizing the distributions over individual binary h

ph = 1|v)
p(h; =1lv) = < ~
(s =) = 5 = o) + (hy = 11v)
= exp (CJ—FVTW ) <C —I-VTW )
exp (0) +exp (¢j +v W, ) J

4. Similarly
p(vi = 1lh) = o (¢; + W;.h) 45/192



Restricted Boltzmann Machine Training (Contrastive Divergence)

1. Step 1:Take input vector to the visible node

2. Step 2:Update the weights of all hidden nodes in parallel given the current states
of the units in the other layer.

3. Step 3: Reconstruct the input vector with the same weights used for hidden
nodes. Even though we use the same weights, the reconstructed input will be
different as multiple hidden nodes contribute the reconstructed input.

4. Step 4: Compare the input to the reconstructed input based on KL divergence.

5. Step 5: Reconstruct the input vector again and keep repeating for all the input
data and for multiple epochs. This is repeated until the system is in equilibrium
distribution.
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Boltzmann Machine

Deep Boltzmann Machine



Deep Boltzmann Machine (DBM)

1. DBM is an undirected deep network of several hidden layers (Salakhutdinov and
Larochelle 2010).

2. Every unit is connected to every unit from the adjacent layers.

3. There are no connections between units of the same layer.
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Deep Boltzmann Machine (DBM)

1. DBMs can also be viewed as a group of RBMs stacked together.

() (+)
o0
AR
D O DO
% N
O‘\\“’i@‘\\

2. Training of DBMs is often done in two stages:

> A pre-training stage where every RBM is trained independently.
> a fine tuning stage where the network is trained at once using backpropagation.
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Deep Boltzmann Machine (DBM)

1. Considering two architectures for MNIST dataset.

( 1000 units )

!

(1000 units )

! I

2. The results using Gibbs sampling.
2-layer BM

W\ Q Wy
~N waN\ W~

Tt 027 ¢ 20 F21) 9
6\ 78 LERLOYT S
I 27171/ | 842606
7/ 249 798 & 3Jd
&S s8¢ SOSsS7495¢8
25230 §7206s0
&894l 70 sS4 8447
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Deep Boltzmann Machine (DBM)

1. Considering the following architecture for NORB dataset.

|

4000 units

.

4000 units

Preprocessed
transformatlon

é Stereo pair

2. The results using Gibbs sampling.

Training Samples Generated Samples

c(/--?}.q

e~ L|h B

s
b
N
>
T
N~

LK e = |«
iR ALk A
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Boltzmann Machine

Deep Belief Networks



Deep Belief Networks (DBN)

. DBN is a hybrid PGM involving both directed and undirected connections.
. Deep belief networks consisting of many hidden layers.

. Connections between top two layers are undirected

A~ W NN =

. Connections between all other layers is directed, pointing towards data.

p(v, i, 0@, bR = p(vhD)p(hD]h?). .. p(h*D|R*D) p(hkD), h(4)

5. p(h*=1) h(k) (the marginal distribution over the top two layers) is an RBM.
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Deep Belief Networks (distribution represented by DBN)

1. A DBN with k hidden layers has k weight matrices W) ... W(k)

2. It contains k + 1 bias vectors b(®, ... b(), where b(®) is bias vector for visible
layer.

3. Probability distribution represented by DBN is
p(h1) h(R)Y o exp [b(k)Th(k—l) + bk=DTR(k) L h(k—l)Tw(k)h(k)]
p(h0) = 1[n0¥1) = o (5 4+ WU IRG+D)
p(vi = 11hM) = o (67 + wPh®)

4. For generating a sample from a DBN, do

» Use several Gibbs sampling steps from top two hidden layers.
» Use a single pass of ancestral sampling through rest of model.

52/192



Deep Belief Networks Training

1. Deep belief networks training

@OO?OOO} h?

RBM
Y
(OOOEEOOO) ho (OOOAOOOO) h?
RBM wh

Y A 4
QO0O0000) v QOO0000) v

(a) Stage 1 (b) Stage 2

(OOOS%OOO) ol
RBM
Y
QCOOO0O0O0) n?
wa %
A 4
QCOOO0OO0)
wo 3
LY
COO00000 v

(c) Stage 3
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Autoencoder models




4;3
Autoencoder E

o

1. An autoencoder consists of 3 components: encoder, code and decoder.

Encoder Decoder

Input Code Output

2. The encoder compresses the input and produces the code, the decoder then
reconstructs the input only using this code.
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Autoencoder

1. Autoencoders are simple neural networks that their output is their input.

2. Their goal is to learn how to reconstruct the input-data.

Input Output
— T~ _—x n
— \\ /—\ \\7—> Code 4‘—r// T\ // —
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How train an Autoencoder

1. We don't use labels but the Autoencoder is trained in supervised manner.

L2 Loss function:

Iz — 2|2 +—
Reconstructed :'IT}
input data i
Decoder
Features A
A
Encoder
Input data T
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Probabilistic model of Autoencoders

1. The Autoencoder has the following probabilistic model.

pencoder<h ‘ .’,B) pdecoder(a3 | h)
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Autoencoders for generation

1. Can we generate new sample from an auto encoder?
2. Suppose training data is generated from latent representation z.

3. x is an input sample, z is latent factors used to generate x.

h

Decoder
network

Z

4. How generate a new sample?

» Sample from some prior p(z).
» Obtain p(x|z).
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Autoencoders for generation

1. A sample generated from an Autoencoder.

Input Reconstruction

P "N

2. MSE can ignore small but task-relevant features.

3. The ping pong ball vanishes because it is not large enough to significantly affect
the MSE.

4. Unfortunately, the autoencoder has limited capacity, and the training with MSE
did not identify the relevant features.

5. We want to sample from complex, high-dimensional training distribution. No

direct way to do this! How do it?
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Autoregressive models

1. We assume we are given access to a dataset S = {x1, x2, ..., X} of n-dimensional
points x.

2. For simplicity, we assume points are binary, i.e., x € {0,1}".

3. Using chain rule, we can factorize the joint distribution as
n n
p(x) = p(x1,x2, ..., Xp) = HP(X,'!XLXz, e Xim1) = HP(Xi\X<i)
i=1 i=1
where x; = [x1, %2, ..., xj—1] denotes the vector of random variables with index

less than 1i.

4. The chain rule factorization can be expressed graphically as a Bayesian network.
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Autoregressive models

The autoregressive constraint is a way to model sequential data.

The factorization contains n factors and some of these factors contain many
parameters ( O(2") in total).

It is infeasible to learn such an exponential number of parameters.

4. AR models use (deep) neural network to parameterize these factors p(x;|x<;).

We assume the conditional distributions p(x;|x<;) to correspond to a Bernoulli
random variable and learn a function that maps the proceeding random variables
X1,X2,...,X;_1 to the mean of this distribution as

p@,‘(XI'|X<I' = Bern(f—,'(X]_, X2y e e 7Xi—1))
where 0; denotes the set of parameters used to specify the mean function
f; - {0, 1}~ [0, 1].

The number of parameters of an autoregressive generative model equals to

27:1‘9i|-

7. Tractable exact likelihood computations.

10.

No complex integral over latent variables in likelihood
Slow sequential sampling process.

Cannot rely on latent variables to couple pixels.
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Autoregressive models

1. The nth output should only be connected to the previous n — 1 inputs.

2. For example, when computing p(xs|x3, x2, x1) the only inputs that we should
consider are xi, x2, x3 because these are the only variables given to us while
computing the conditional probability.

N
N o
A A
(@ &w\w w\w@ @ o
Y Y Y Y
X1 T2 T3 T4

62/192



Autoregressive models

1. In the simplest case, we can specify the function as a linear combination of the
input elements followed by a sigmoid non-linearity (to restrict the output to lie
between 0 and 1).

2. This gives us the formulation of a fully-visible sigmoid belief network (FVSBN).

fi(x1,x2,...,xi—1) =0 | ap + g ajx;
where o is sigmoid function and ¢; = {a},...,al ;}.

3. At the output layer we want to predict n conditional probability distributions.

4. At the input layer we are given the n input variables.

5. The conditional variables x;|x1, ..., x;_1 are Bernoulli with parameters

Ri=p(xi=1lx1,...,xi-1;0;)) =0 36 + Zaj’:xj-
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Autoregressive models

1. How to evaluate p(xi,..., Xo00)?
2. Multiply all the conditionals factors.
3. How to sample from p(xi, ..., x900)?
» Sample X1 ~ p(x1).
» Sample Xz ~ p(xa|x1 = X1).
» Sample X3 ~ p(x3|x1 = X1, %2 = X2).

4. How many parameters? 1 +2+3+...+n~ %

5. This model is called Fully Visible Sigmoid Belief Network (FVSBN).
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FVSBN results (Gan et al. 2015)

1. Left: Training (Caltech 101 Silhouettes) Right: Samples from the model
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Autoregressive models
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Neural Autoregressive Density Estimator

1. To increase the expressiveness of an autoregressive generative model, we can use
more flexible parameterizations for the mean function such as MLP instead of
logistic regression.

2. For example, consider the case of a neural network with 1 hidden layer.

3. The mean function for variable i can be expressed as

hi = o(Aix<i +¢c;)
f,'(Xl,Xz, . 7X,',l) =0 (aih; + b,')

where h; € R? is hidden layer activations of MLP.
4. Hence, we have the following architecture

— (w0, = 1]o.,)
— (10, = 1| @0_,)

—p (10, = 1| @0_y)

7P (‘1.0.“\‘:; =1 “7:0»;7\‘:;)

1 (o = 01

500 units

784 units 784 units
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Neural Autoregressive Density Estimator

1. To improve model, use a neural network with one hidden layer instead of logistic

regression.

hi = o(Aix<i +¢))
K= p(xi = 1x1,...,xi—1; Gi) = J(a(i)h; + b;)
oi — {A,-,c;,a(i), bl}

2. h; € R? denotes the hidden layer activations for the MLP.
3. 0; = {A e R*(=D ¢; e R, al) € RY, b; € R} are the set of parameters.

4. The total number of parameters in this model is dominated by the matrices A;
and given by O(n%d).
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Neural Autoregressive Density Estimator

1. The Neural Autoregressive Density Estimator (NADE) provides an alternate
MLP-based parameterization that is more statistically and computationally
efficient than the given approach (Larochelle and Murray 2011).

2. In NADE, parameters are shared across the functions used for evaluating the
conditionals.

3. The hidden layer activations are specified as

hi =o(W <ix<i+c)
Ri=p(xi =1|x1,...,xi—1; Gi) = J(a(i)h,’ + b;)

4.0 ={W cR?" cc R {al) ¢ RI}7_, {b; € R}7_,} is the full set of
parameters.

5. The weight matrix W and the bias vector ¢ are shared across the conditionals.
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Neural Autoregressive Density Estimator

1. Sharing parameters has two benefits:

» The total number of parameters gets reduced from O(n?d) to O(nd).
» The hidden unit activations can be evaluated in O(nd) time via the following
recursive strategy:

h,' = O’(a,')
aiy1 =a; + W[, ilx

with the base case given by a; = c.

2. Training of NADE is done by minimizing the average negative log-likelihood of the
parameters given the training set:

1 T
— = _logp(x)
i=1
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Neural Autoregressive Density Estimator Results

1. Samples from NADE trained on a binary version of MNIST.

217
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.
)
7|2
,
n
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Deep NADE

1. The input to the network (DeepNADE) is the concatenation of the masked data
and the mask itself (Uria, Coté, et al. 2016).

2. This allows the network to identify cases when input data is truly zero from cases
when input data is zero because of the mask.

3. NADE also explored other autoencoder architectures such as convolutional neural
networks

4. DeepNade with two hidden layers

n I()<r/ ==
S
e 3
mr) Y
- =~ y
: 101 J %
784 units 784 units ® 1O : v
L 5 | > J
| @ > > > O | > o)
o [ < 8
| O | bl -
D 11© 500 units 500 units o ) n
: uni unt 784 units 784 units I
1568 units 2
=
,

784 units

71/192



Real-Valued NADE

1. The RNADE algorithm extends NADE to learn generative models over real-valued
data (Uria, Murray, and Larochelle 2013).

2. For real-valued variables, the conditionals are modeled via a continuous
distribution such as mixture of K Gaussian.

3. Instead of learning a mean function, we know learn the means 1 1, tj 2, ..., thi K,
variances 0;1,0;2,...,0; K, and probability of sampling from each mixture
i1, TiK,- .-,k of the K Gaussian for every conditional.

p(xilx<i) Z N (g, o5)
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Real-Valued NADE

1. Output of the network are parameters
of a mixture model for p(xk|x<x)

N i p.
2. Means are fi; x = bl.,’k + a,.,’kh,

3. Standard deviations are

o s
Oik = exp (bi,k + a:;khi)

4. Mixing weights are

ik = softmax (bf’k + a?"kh,-)
5. Please study DocNADE.
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Autoregressive models vs. Autoencoders

1. Considering the following models.

Autoencoder

2. FVSBN and NADE look similar to an autoencoder.
3. An encoder computing hidden.
4. A decoder computing densities.

5. A loss function, which is likelihood.
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Autoregressive Autoencoders

1. An autoencoder is not a generative model: it does not define a distribution over x

for sampling new data points.

Jopoousojny

2. Can we get a generative model from an autoencoder?
3. We need to make sure it corresponds to a valid Bayesian Network, i.e., we need an
ordering. If the ordering is 1, 2, 3, then
» X1 cannot depend on any input x.
> X, can only depend on xj.
4. We can use a single neural network to produce all the parameters.

75/192



Masked Autoencoder for Distribution Estimation (MADE)

1. MADE is an autoencoder that preserves autoregressive property (Germain et al.
2015).

p(rilwa,3)  plza)  plas|re)

zy T2 T3

Autoencoder x Masks ——

76/192



Masked Autoencoder for Distribution Estimation (MADE)

1. MADE is a specially designed architecture to enforce the autoregressive property

in the autoencoder efficiently.

2. MADE removes the contribution of certain hidden units by using mask matrices
so that each input dimension is reconstructed only from previous dimensions in a
given ordering in a single pass.

3. In a multilayer fully-connected neural network, say, we have L hidden layers with
weight matrices W', ... W and an output layer with weight matrix V. The
output X has dimensions X; = p(x;|x1.;—1)

4. Without any mask, we have

ho = x
h! = activation'(W'h’'~1 4+ b’)
% = o(Vht +¢)
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Masked Autoencoder for Distribution Estimation (MADE)

1. Without any mask, we have

h? = x
h! = activation'(W'h’'~1 4 b’)
% = o(Vht +¢)

2. To zero out some connections between layers, we can simply element-wise
multiply every weight matrix by a binary mask matrix.

h! = activation’((W’@MW/)h’*1 +b)
% =o((VoMY)ht +¢)

3. Mask matrix is constructed by a labeling process.
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1. The results of MADE on MNIST
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Masked Autoencoder for Structured Distribution Estimation (MASDE)

1. We know the structure (Markov random field) of the data (Khajenezhad, Madani,
and Beigy 2021).

2. In structured distributions, the graph structure of the variables declares their
conditional dependencies.

3. Therefore, having a graph structure, each of the chain rule conditional terms
might be presentable by a conditional probability on a smaller set of variables.

4. In other words, for each i, we can assume that there is a subset
B; C {1, B 1} such that p(X,'|X<,') = p(X,'|XBi).
5. We call B; as Looking-back Markov blanket of the i-th dimension. Then

p(x1, .-, xq) = P(x1)p(x2|xs,) - - - P(x4|x5,)

6. Use an auoencoder that has the above autoregressive property.

7. Mask matrix is constructed by a labeling process.
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Masked Autoencoder for Structured Distribution Estimation (MASDE)

1. MASDE needs a smaller training set in comparison with its counterparts.
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PixelRNN

1. PixelRNN is a deep generative model for images (Oord, Kalchbrenner, and
Kavukcuoglu 2016).

2. Dependency on previous pixels modeled using an RNN (LSTM).
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PixelCNN

1. The main drawback of PixelRNN is that training is very slow.

2. PixelCNN uses standard convolutional layers to capture a bounded receptive field
and compute features for all pixel positions at once (Oord, Kalchbrenner,
Espeholt, et al. 2016).

3. In PixelCNN, pooling layers are not used.

4. Masks are adopted in the convolutions to restrict the model from violating the
conditional dependence.

O OOO0O0o

Masked convolution

1
110
010

PixelCNN

5. Please also PixelCNN++ (Salimans, Karpathy, et al. 2017).
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PixelCNN
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PixelCNN

1. The training set (CIFAR-10 (left)) and the samples generated by the Pixel CNN
(right).

d. RS ASLER L @Ilpﬂlﬂﬁthll
GRS Mt el TR
Eﬁﬁﬂﬂaﬁ@l J
Al

ﬁl

e e b H.-.
S el P

86/192



WaveNet

1. WaveNet is very similar to PixelCNN but applied to 1-D audio signals (Oord,
Dieleman, et al. 2016).

2. WaveNet consists of a stack of causal convolution which is a convolution
operation designed to respect the ordering.

3. Causal convolutions are a type of convolution used for temporal data which
ensures the model cannot violate the ordering in which we model the data: the
prediction p(x¢41|x1, ..., Xt).

4. The causal convolution in WaveNet is simply to shift the output by a number of
timestamps to the future so that the output is aligned with the last input element.
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WaveNet

1. One big drawback of convolution layer is a very limited size of receptive field.

2. WaveNet therefore adopts dilated convolution, where the kernel is applied to an

evenly-distributed subset of samples in a much larger receptive field of the input.
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Generative Adversarial Networks

1. Generative adversarial networks (GANs) are relatively new (l. J. Goodfellow et al.
2014).
2. GANs are a new way to build generative models P(x).

3. Generative adversarial networks

» Generative: Learns a generative model.
> Adversarial: Trained in an adversarial setting
» Networks: Use Deep Neural Networks
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Generative adversarial networks

1. Which one is Computer generated?

original bicubic SRResNet SRGAN
(21.59dB/0.6423)

2. How do we generate a fake image?

3. Can we generate a fake image from a random number?
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GAN results

1. Results obtained from GAN (Radford, Metz, and Chintala 2016).

i o — -.u'\ =, r
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GAN results

1. Results obtained from GAN (Radford, Metz, and Chintala 2016).

man man woman
with glasses without glasses without glasses

woman with glasses
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GAN Architecture

1. GAN has the following architecture

Real
Samples

’ ‘— Learn how to tell apart

Latent fake data from true data
Space

] Learn data .
I distribution 5 D C oty

v Discriminato

Generated
Fake
Samples

Fine Tune Training

2. Z (input to generator) is some random noise (Gaussian/Uniform).

3. Z can be thought as the latent representation of the image.
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Generating an Image

1. Opposite of convolutional neural nets.

Stride 2

Code Project and Stride 2
reshape Deconv 1

Deconv 2
Deconv 3 o

Deconv 4 U
Image

2. Deconvolution layer or transposed convolutional layer is pad the original input
(blue entries) with zeroes (white entries) (Dumoulin and Visin 2016).
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Generating an Image

1. How to train it?

generated distribution true data distribution
A

P(x)

unit gaussian

generative
Q model .
2 || (neural net) .oss|
image space image space
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Generator

The generator tries to learn P(x|z).
Inputs are directly sampled from Q(z).

Problem: No true data x is provided when training the generator

ol

Instead of a traditional loss function, gradient is provided by a discriminator
(another network)

97/192



Discriminator

1. The discriminator attempts to tell the difference between real and fake images.

2. It tries to learn P(y|x), where y is the label (real or generated) and x is the real
or generated data.

3. Trained using standard cross entropy loss to assign the correct label (although this
has changed in recent GANs).

4. Generator weights are frozen while training discriminator; inputs are generated
data and real data, targets are 0 and 1

5. From generator’s point-of-view, discriminator is a black-box loss function
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GAN Architecture

1. Let x be a sample (fake or real).
2. Let D(x) be the probability that x came from real data rather than p,.

3. For a fake sample G(z), the discriminator is expected to output a probability,
D(G(z)), close to zero by maximizing I, (,)[log(1 — D(G(2)))].

4. For real data, the discriminator is expected to output a probability x, close to one
by maximizing ., [log D(x)].

5. The generator is trained to increase the chances of D producing a high probability
for a fake example, thus to minimize £, _, (;)[log(1 — D(G(z)))].

6. When combining both aspects together, D and G are playing a minimax game in

which we should optimize the following loss function:
min max V(D, 6) = Eyp, 9[108 D] + Exop, o) loB(L ~ D(G(2)))]
= Eoopania () [108 D(X)] + Exop, () [log(1 — D(x)]
7. Eypy(x)[log D(x)] has no impact on G during gradient descent updates.

99/192



Min-Max Game

1. Loss function is

V(6.0) = [ pi(x)log(D0))dx + [ p.(2)log(1 - D(G(2)ez
_ / (,,,(X) log(D(x)) + pg(x) log(1 — D(x))) dx

2. The full two-player game can be summarily described by the below.

min max V(D, G)
G D
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Training GAN

1. It is important to understand that both the generator and discriminator are trying
to learn moving targets. Both networks are trained simultaneously.

2. The discriminator needs to update based on how well the generator is doing.
3. The generator is constantly updating to improve performance on the discriminator.

4. These two need to be balanced correctly to achieve stable learning instead of
chaos.
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Training GAN

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our

experiments.
for number of training iterations do
for k steps do
o Sample minibatch of m noise samples {z(1), ..., z(™} from noise prior py(2).
Discriminator o Sample minibatch of m examples {z(!),... (™} from data generating distribution
updates Daata ().
e Update the discriminator by ascending its stochastic gradient:
1 < ) )
Vo, — Z [logD (w(l)) + log (1 —-D (G (z(l)>))} .
m
i=1
end for —
o Sample minibatch of m noise samples {z*), ..., 2"/} from noise prior py(2).
Generator e Update the generator by descending its stochastic gradient:
updates

vo, Y (10 (6()).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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Training GAN

1. How GAN is trained?

--------------

--------------

.
Y

T L T TN

(a) (b)

teeey

(d)

2. discriminative distribution D(x), real data pga¢,, generative distribution py.

(a) An adversarial pair near convergence: p, is similar to pgar, and D is a
partially accurate classifier.

(b) In inner loop of algorithm, D is trained to discriminate samples from data,
converging to D*(x).

(c) After an update to G, gradient of D has guided G(z) to flow to regions that
are more likely to be classified as data.

(d) After several steps of training, if G and D have enough capacity, they will
reach a point at which both cannot improve because pg; = pyata-
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GAN Results

1. Visualization of samples from the model.

2. Rightmost column shows the nearest training example of the neighboring sample.
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GAN Results

1. Digits obtained by linearly interpolating between coordinates in z space of the full
model.

/AVAYAVARARAVAVAVAY
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Optimality of GAN

Theorem (Optimality of GAN)

For G fixed, the optimal discriminator D is

% . pdata(x)
D) = D) + Pal)

Theorem (Convergence of training algorithm of GAN)

If G and D have enough capacity, and at each step of training Algorithm, the
discriminator is allowed to reach its optimum given G, and pg is updated so as to
improve the criterion V(D, G), then, pg converges to pdata
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What is the global optimal?

1. When both G and D are at their optimal values, we have p; = pgat, and
D*(x) = 3, and the loss function becomes:

V(G,D*) = / (pdata(x) log(D*(x)) + pg(x)log(1 — D*(x))> dx

X

1 1
= log 5 / Pdata(x)dx + log 5 / pg(x)dx
X X
= —2log?2
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What does the loss function represent?

1. KL divergence measures how one probability distribution p diverges from a second

probability distribution g

Dra(pla) = [ plx)iog 2o

2. KL divergence is asymmetric.

3. In cases where p(x) is close to zero, but g(x) is significantly non-zero, the g's
effect is disregarded.

4. Jensen—Shannon Divergence is a measure of similarity between two probability
distributions, bounded by [0, 1].

1 + 1 +
Dus(plle) = 30 (125 ) + 500 (alP57)

5. JS divergence is symmetric and more smooth.
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What does the loss function represent?

1. JS divergence between pg,:; and pgy can be computed as:

1

Djs(pdatallPg) =7 Dk <Pdata”ata2g> + 5Dk (ng|"’“26’>

1 pdata(X) )
=—| log2+ / x)log —————————dx
2 < g . Pdata( ) g Pdata + ,Dg(X)

+;<|og2+/xpg(x) |og[wfif);)g(x)dx>
:;<Iog4+ V(G, D*)>

2. Thus
V(G, D*) = 2D s(pdatalpg) — 2 log 2

3. The best G* that replicates the real data distribution leads to the minimum
V(G*,D*) = —2log 2, which is aligned to the optimal solution.
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Problems in GANs

1. Hard to achieve Nash equilibrium (Salimans, I. J. Goodfellow, et al. 2016).

2. Low dimensional supports: When the intrinsic dimension is low, then training
GAN will be instable (Arjovsky and Leon Bottou 2017).

3. Vanishing gradient: When the discriminator is perfect, loss function is zero and
there is not any training.

4. Mode collapse: During the training, the generator may collapse to a setting where

it always produces same outputs.

5. Lack of a proper evaluation metric
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Improved GAN Training i

1. Feature Matching: This suggests to optimize the discriminator to inspect
whether the generator's output matches expected statistics of the real samples.
New objective function

B p, F () = B, () F(G(2)) 2

where f(x) can be any computation of statistics of features, such as mean or
median.

2. Mini-batch Discrimination: Instead of processing each point independently, the
discriminator is able to digest the relationship between training data points in one
batch.

3. Historical Averaging: This adds a term penalizes the training speed when
parameters are changing too dramatically in time.

4. One-sided Label Smoothing: When feeding the discriminator, instead of
providing 1 and 0 labels, use soften values such as 0.9 and 0.1
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Improved GAN Training ii

5. Virtual Batch Normalization: Each data sample is normalized based on a fixed
batch (reference batch) of data rather than within its minibatch. The reference

batch is chosen once at the beginning and stays the same through the training.

6. Adding Noises:

7. Use Better Metric of Distribution Similarity: The JS divergence fails to provide a
meaningful value when two distributions are disjoint. Wasserstein metric is
introduced.
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Generative Adversarial Networks

Wasserstein GAN



Wasserstein GAN (WGAN)

1. Wasserstein Distance is a measure of the distance between two probability
distributions.

2. When dealing with the continuous probability domain, the distance becomes

W (pdatas = inf E oy |lx —
(Poss-Pe) = inf Byl =l

where TN(pgata, pg) s the set of all possible joint probability distributions between
Pdata and Pg-

3. It is intractable to exhaust all the possible joint distributions in M(pgata, pg) to

compute inf the following metric is used.

Y~MN(PdatasPg)

1
W (Pdatas Pg) = 7o SUP  Ecpyos [F(X)] = B [F(X)]
K yei<k

where ||f]|; < K means that f is K-Lipschitz.

4. what are their meaning and their difference?
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Wasserstein GAN (WGAN)

1. In WGAN, discriminator network instead of producing the probability of generating
real data, the network produces a scaler score (Arjovsky and Leon Bottou 2017).

2. This score can be interpreted as how real the input images are.

3. In reinforcement learning, we call it the value function which measures how good
a input is.

4. We rename the discriminator to critic to reflect its new role.

5. The loss function for WGAN is
V(Pdataa pg) = W(Pdataa pg) = vryealf\(/ ]EXNPdata[fW(X)] - EZdiata(z)[fW(gG(Z))]

f comes from a family of K-Lipschitz continuous functions {7, },cw
parameterized by w.

6. The discriminator model is used for learning w to find a good f,, and the loss
function is configured as measuring the Wasserstein distance between pya:, and

Pg-
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Wasserstein GAN (WGAN)

1. WGAN architecture is (Arjovsky, Chintala, and Léon Bottou 2017).
Vo [ Ty fula®) = & T4 Fulge(z9))]

Real image @

2z~ N(©,1)
o
7~ U(1,1) B |
Vol S fulge(z9))
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Generative Adversarial Networks

Conditional GAN



Conditional GAN

1. In GAN, we have two neural nets: the generator G(z) and the discriminator D(x).
2. Now, as we want to condition those networks with some vector y.

3. The easiest way to do it is to feed y into both networks (Mirza and Osindero
2014).

4. Hence, generator and discriminator are now G(z,y) and D(x, y), respectively.

5. We can see it with a probabilistic point of view. G(z,y) is modeling the
distribution of our data, given z and y, that is, the data is generated with this
scheme xg ~ G(x|z,y)

6. Likewise for the discriminator, now it tries to find discriminating label for x and
X, that are modeled with d ~ D(d|x, y).
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Conditional GAN

1. Hence, we could see that both D and G is jointly conditioned to two variables z
or x and y.

2. Now, the objective function is given by:

mGin max V(D,G)= E [log D(x,y)]

Xdiata(X)

+ E [log(1—-D(G(z,y),y))]

z~p;(2)

3. If we compare the above loss to GAN loss, the difference only lies in the additional
parameter y in both D and G.
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Conditional GAN architecture

1. The architecture of CGAN is

/ Discrminator Dm@ I
YYYY)
‘\“\\\\\\\\\\\\\\\\\\\\
ee000 (00000
00000
YYYY)
- 00000 00000

/
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Conditional GAN results

1. The following figure shows some of the generated samples.

2. Each row is conditioned on one label and each column is a different generated

sample.
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Generative Adversarial Networks

Deep Convolutional GAN



Deep Convolutional Generative Adversarial Networks

1. DCGAN maps from random noise to an image matrix.

It uses convolutional Layers in the generator network to produce better
results (Radford, Metz, and Chintala 2016).

3. Combine CNN and GAN for unsupervised learning.

4. Learns a hierarchy of feature representations

© N o O

Generator i Discriminator

@
Replace any pooling layers with strided convolutions.
Use batch-normalization in both the generator and the discriminator.
Remove fully connected hidden layers for deeper architectures.
Use RelL U activation in generator for all layers except for the output, which uses

Tanh.

Use LeakyReLU activation in the discriminator for all layers.
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DCGAN results
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DCGAN results @

smiling neutral neutral
woman woman man

smiling man
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DCGAN results

man man woman
with Alaceac withniit nlaccac TR PR

woman with glasses
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DCGAN results
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Variational Autoencoder models

1. An ideal autoencoder will learn descriptive attributes of input to describe an
observation in some compressed representation.

e ™
Smile: 0.99
Skin tone: 0.85

Gender: -0.73

encoder decoder

Beard: 0.85

Glasses: 0.002

Hair color: 0.68

Latent attributes
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Variational Autoencoder models

1. However, we may prefer to represent each latent attribute as a range of possible
values.

/ N

Smile: H—A—»

1 0 1

Skin tone: H—A—H

1 o 1

Gender: 4—0—A—H
1

0 1

encoder Q decoder
Beard:

1 0 1

Glasses: H—A&—»
1

0 1

Hair color: oo—o—j\—»

o 1

\\ 1 //‘

~ _

Latent attributes
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Variational Autoencoder models

1. For any sampling of the latent distributions, we're expecting our decoder model to
be able to accurately reconstruct the input.

(‘Smile: 023 )
/ ) AN Skin tone: 0.02
Smile: iy e ! Gender: -0.18
_{ 5 Beard: 0.71 decoder
Skin tone:
1 o N
N Glasses: -0.19
Gender: | ot . Hair color:0.33
1 \. y
encoder - -
Beard: «—o—A» (‘smile: 0.17 )
1 o 1
0 Skin tone: 0.28
Glasses:
1 0 1 Gender: -0.11 decoder
Hair color: «—o«/\—» Beard: 0.66
( : o N
A / Glasses: -0.14
N — We expect an accurate
\ Hair color: 0.26 .
\Jlair color:0.28) reconstruction for any
. . sample from the latent
Latent distributions Sampled latent attributes P

state distributions
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Latent Variable Models?

1. Lots of variability in images x due to gender, eye color, hair color, pose, etc.

2. However, unless images are annotated, these factors of variation are not explicitly
available (latent).

3. ldea: explicitly model these factors using latent variables z.

2Sc:)me slides of this lecture are from S. Ermon and A. Grover slides.
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Latent Variable Models

1. Consider an image x, and some of its latent factors such as gender, eye color, hair
color, pose, etc.

() Ethnicity

Zy

() Hair color () Pose

Image X

2. Only shaded variables x are observed in the data (pixel values).
3. Latent variables z correspond to high level features.

» If z chosen properly, p(x|z) could be much simpler than p(x).
> If we trained this model, then we could identify features via p(z|x).

4. Challenge: Very difficult to specify these conditionals by hand.
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Latent Variable Models

1. Consider an observed variable x, and latent variable z.
z

X

2. Instead of modelling p(x) directly, we use an unobserved latent variable z and

define p(x|z) for the data.
3. We can use prior distribution p(z) over the z and

p(x, z) = p(x| z)p(2).
4. Generative process for the observed data x.
z~p(z)
x ~ p(x| z).
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Latent Variable Models

1. Given a set of observed random variables x = {x1,x2,- -+, x,} and a set of latent

random variables z = {z;, 25, -+ , z, }, we need to compute the posterior p(z|x).

2. Using Bayes' theorem, we have

_ p(x,2)
p(x)
_ p(x|z)p(2)
p(x)

p(z|x)

3. p(x) is the marginal density which is also called evidence.

4. For most of the models, computing p(x) is intractable. Hence computing p(z|x)
is also intractable.
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Variational Inference

1. Since directly computing p(z|x) is intractable, we have to do some approximate
inference.

2. Variational inference considers a family of parametric distributions that
approximates p(z|x).

palx)

S KL(g(z:v*) || plz] %)

v = 60 is parameter of g.
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Variational Inference: Optimization Goal

1. Variational inference leverages optimization to find the best distribution g(z;0).

2. In variational inference, we specify a family of distributions Q over the latent
random variables.

3. Each g(z) € Q is a candidate approximation to the posterior.

4. Qur goal is to find the best candidate that has the smallest KL divergence to the
posterior we want to compute.

5. Mathematically, the optimization goal is

q*(2) = argming(z)caKL(q(2)||p(2|x))

where g*(-) is the best approximation to the posterior in distribution family Q.
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Variational Inference: Kullback-Leibler Divergence

1. To measure the difference between two probability distributions over the same
variable x, Kullback-Leibler divergence is used.

2. The KL divergence between two distributions p and g with discrete support is
defined as

KL(pllg) = Zp |0g )

3. The KL divergence has the following properties

> KL(pllq) > 0 for all p, q.
» KL(p|lg) =0ifand only if g =p

4. KL divergence is not symmetric, i.e.

KL(qllp) # KL(pllq)
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Variational Inference

1. The KL divergence between two distributions p and g with discrete support is

p(x)

defined as (
L(pllq) p(x) lo =E,log —.

2. It is hard to compute KL(p||q), because taking expectation wrt p is assumed to
be intractable.

3. An alternative is the reverse KL divergence, which is

Ki(qlp) = 3" a(x)log ZEX — K, log 28

4. The main advantage is that computing expectation wrt q is tractable, by choosing

X

a suitable form of gq.

5. The above equation is still not tractable because p(x) = p(x|S) is intractable,
where S is the given dataset.
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Variational Inference

1. We'll assume that p is a general undirected model of the following form

(X1 .y Xn;

p(x1, ..., xn; 0) = 2(0) %) = Z(10) 1:[¢k(xk;(9)a

where the ¢y are the factors and Z(0) is the normalization constant.

2. Given this formulation, optimizing KL(q||p) directly is not possible because of the
potentially intractable normalization constant Z(6).

3. Evaluating KL(q||p) is not possible, because we need to evaluate p.

4. Instead, we work with the following objective (the same form as the KL
divergence), but only involves the unnormalized probability p(x) = [[, ¢« (xk; 0).
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Variational Inference

1. We use the following objective function

q(x)
p(x)

2. This function is not only tractable, it also has the following important property

J(q) =) q(x)log

X

=" q(x)log p—x —log Z(6)
= KL(ql|p) —log Z(0)

3. Since KL(ql||p) > 0, we get by rearranging terms that

log Z(0) = KL(qllp) — J(q) = —J(q).
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Variational Inference

1. Thus, —J(q) is a lower bound on the log Z(6).

2. Because of this property, —J(q) is called variational lower bound or evidence
lower bound (ELBO).

3. ELBO it often written in the form

log Z(0) > Eq(x[log p(x) — log g(x)].

4. The difference between log Z(6) and —J(q) is KL(q|/p).
5. Thus, by maximizing ELBO, we are minimizing KL(q||p).
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Variational Autoencoder models

1. The idea of VAE is actually less similar to all the autoencoder models, but deeply
rooted in graphical models (Kingma and Welling 2014).

2. Instead of mapping the input into a fixed vector, we want to map it into a
distribution (in practice, a Gaussian distribution) over encodings.

3. The decoder will then sample an encoding from that probability distribution, and

try to reconstruct the original input.

4. This forces the decoder to produce reasonable outputs over a range of different
encodings.

5. Since a Gaussian distribution can be parametrized by its mean vector and
covariance matrix, we have the encoder output a mean vector p and a covariance
matrix X (restricted to a diagonal matrix for simplicity).
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1. The VAE has the following architecture.

Define
latent state
distributions

Mean Sample from
distributions

N4
AN I 2 Nw ‘\v'lA [T
X0 ) \
\ \ . /XN
. 4!“‘\v QA@

D o
/e @/ \@
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1. We can generate through VAE as

T
Ny \\I‘N

q(zx): | pe(x)  Be(x)

Sample

Ny \\I‘N

p(x|z):
Sample
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Variational Autoencoder models

1. The VAE introduces a loss other than the reconstruction loss: the KL divergence
between the distribution produced by the encoder and a unit Gaussian distribution.

2. We maximize the ELBO.
3. Optimize both networks jointly with SGD.
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Reparameterization Trick

1. Autoencoders are simple to train since you simply have to backpropagate the
reconstruction loss across the weights of the network.

2. VAEs are not as simple to optimize though.
3. The key problem is that the sampling operation is not differentiable.

4. This means we cannot propagate the gradients from the reconstruction error to
the encoder.

5. Normally we would have to resort to more complicated optimization techniques
like REINFORCE.
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Reparameterization Trick

1. We are able to resolve this problem through the reparameterization trick.

2. The idea behind this trick is to isolate the sampling from the parameter
estimation (mean and variance).

3. First, we sample ¢ from a unit Gaussian distribution.

4. We can make the sample to adhere to a Gaussian distribution with mean y and
covariance matrix ¥ by transforming it.
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Variational Autoencoder models (Sampling)

1. We can generate through Reparametrized VAE as

N \\N‘N Sample
q(zlx):  pe(x) Yg(x) z ~ N(0,I)
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Variational Autoencoder models (results)

1. The comparison between VAE and GAN.

VAE

GAN
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Normalizing Flow Models




Jacobian Matrix and Determinant

1. Given a function of mapping a n-dimensional input vector x to a m-dimensional
output vector, f : R” — R, the Jacobian matrix, J, is

ofp of

ox1 " Oxp
J=

Ofm Ofm

ox1 "7 Oxp

2. The determinant of a n X n matrix M is

dil1 4d12 ... din
daz1 a2 ... aop L.
det (M) = det . . . = E (_1)7—(11',2“%)31]1 azj, - - - dnj,
: . . Juj2--dn
dnl dn2 ... @ann
3

7(.) indicates the signature of a permutation.

3Most slides of this section are adopted from https:

//lilianweng.github.io/1il-1log/2018/10/13/flow-based-deep-generative-models.html
147/192


https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Change of Variable Theorem

1. Given a random variable z and its known probability density function z ~ 7(z),
we would like to construct a new random variable using a one-one mapping
function x = f(z).

2. The function f is invertible, so z = f ~1(x).

3. The question is how to infer the unknown probability density function of the new
variable, p(x)?

/p(x)dx = /W(z)dz =1 Definition of probability distribution.
L -1
P = 7(2) | 5| = (7720 | %] = =Rl ()

4. By definition, the integral [ 7(z)dz is the sum of an infinite number of rectangles
of infinitesimal width Az.

5. The height of such a rectangle at position z is the value of the density function

m(z).
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Change of Variable Theorem

1. When we substitute the variable, z = f~1(x) yields 22 = (f~1(x))’ and
Az = (f~1(x)) Ax.

2. Here |(f~%(x))’| indicates the ratio between the area of rectangles defined in two
different coordinate of variables z and x, respectively.

3. The multivariable version has a similar format:
z~7(z),x = f(2),z = f1(x)

det <Z)Z<>

— r(F1(x))|det (df;) ’

where det (%) is the Jacobian determinant of the function f.

p(x) = n(z)
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Change of Variable Theorem (example)

1. Consider a random variable Z that is uniformly distributed over the unit cube
z e [0,1]3.

2. We can scale Z by a factor of 2 to get a new random variable X,

x=1f(z) =Az=

o O N

o N O

N O O
N

where X is uniform over a cube with side length 2.
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Change of Variable Theorem (example)

1. How is the density p(x) related to 7(z)?

2. Since every distribution sums to 1 and the unit cube has volume V7 = 1.
TI'(Z) VZ =1

3. and 7(z) =1 for all z in the unit cube.
4. The volume of the larger cube is easy to compute: Vyx =23 = 8.

5. The total probability mass must be conserved, so we can solve for the density of

X.
m(z)Vz 1

Vx 8
6. The new density is equal to the original density multiplied by the ratio of the

p(x) =

volumes.
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Change of Variable Theorem (example)

1. The change of variables formula allows us to tractably compute normalized
probability densities when we apply an invertible transformation f.

det (E)f;((x)) ‘ = m(z) ’det <8g(zz)>

2. The invertible function is just multiplication by a scaling matrix, so the

-1

p(x) = (2)

determinant of the Jacobian matrix is easy to compute:

det (ag(zz)> =det(A) = 8.
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What is Normalizing Flows?

1. Density estimation has several important applications in many machine learning

problems.

2. In deep learning models, the embedded probability distribution is expected to be
simple enough to calculate the derivative easily and efficiently.

3. This is why Gaussian distribution is often used in latent variable generative
models.

4. Normalizing Flow (NF) models are used for better and more powerful distribution
approximation (Rezende and Mohamed 2015).

5. A normalizing flow transforms a simple distribution into a complex one by
applying a sequence of invertible transformation functions.
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Normalizing Flows

1. Normalizing flow transforms a simple distribution into a complex one by applying

a sequence of invertible transformation functions (Rezende and Mohamed 2015).

,,jl(ZO) @ fi(Zi_l)/@]ji\_}_l(zi)

Zg ~ pK(ZK)
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Normalizing Flows

1. From the previous slide, we have

Zi_1~ Pi—1(Zi—1)

z; = fi(zj_1), thus z;_; = f,-_l(zi)

df,!
det | —

2. Repeating above, we can do inference using base distribution.

pi(zi) = pi—1(f1(z1))

pi(zi) = pi-1(zi-1)(f; ()
det <<dj,-fil)l>
ger (2]

Using property of Jacobians of invertible func.
df,
det d
dz; 4

According to the inverse func theorem.

= pi—1(zi-1)

= pi—l(zi—l)

log pi(z;) = log pi—1(zi—1) — log
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Normalizing Flows

1. Given chain of pdfs, we can expand the equation of the output x step by step
until tracing back to the initial distribution z.

x =2zk = fgofk_10---0fi(z0)

log p(x) = log 7k (zk) = log Tk_1(zk—1) — log

= log Tk—2(zKk—2) — log

dfx
det ( p— ) '

K
= logmo(20) — ) _ log
i—1

— log

df;
det ( dz > ‘
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Normalizing Flows

1. The path traversed by the random variables z; = fi(z;_1) is the flow.
2. The full chain formed by the successive distributions ; is called a normalizing

flow.

3. For computation of equation, a transformation function f; should satisfy two
properties:
> It is easily invertible.
> Its Jacobian determinant is easy to compute.
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Normalizing Flows (loss function)

1. With normalizing flows, the exact log-likelihood of input data log p(x) becomes
tractable.

2. The training criterion of flow-based generative model is simply the negative
log-likelihood (NLL) over the training dataset S.

L(S) = Z log p(x)

x€5
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Real-valued Non-Volume Preserving (RealNVP)

1. The RealNVP model implements a normalizing flow by stacking a sequence of
invertible bijective transformation functions (Dinh, Sohl-Dickstein, and S. Bengio
2017).

2. In each bijection f : x —y, the input dimensions are split into two parts:
» The first d dimensions stay same (x1);
» The second part, d + 1 to D dimensions (x;) transformed using
Yi.d = X1.q4

Yd+1:D0 = Xd+1:0 © exp(s(X1:4)) + t(X1.4)

where s(.) and t(.) are scale and translation functions and both map R +— RP—¢9,
The ® operation is the element-wise product.
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Real-valued Non-Volume Preserving (RealNVP)

1. This network has

» Stack many invertible coupling layers.
» Each has simple inverse and determinant
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Real-valued Non-Volume Preserving (RealNVP)

1. This transformation satisfy two properties of flow transformations.

> It is easily invertible.

{ylzd = X1.d
Yd+1:0 = Xd+1:0 © exp(s(X1.4)) + t(X1.4)

N {Xl:d = Y1.d
Xd+1:0 = (Yd+1.0 — t(¥1.4)) © exp(—s(y1:4))

> Its Jacobian determinant is easy to compute. The Jacobian is a lower triangular
matrix.

B [ Iy 04x(D—d)

%‘%}f diag(exp(s(x1:4)))

Hence, the determinant is simply the product of terms on the diagonal.

det(9) = [ explstxsa)); = oxp( Y slxs))
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Real-valued Non-Volume Preserving (RealNVP)

1. The inverse transformation
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Data space X Latent space Z

Inference
T~ Ppx

z=[(x)

Generation
z~Ppz

z=f""(2)
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Real-valued Non-Volume Preserving (RealNVP)

Dataset samples from model

164/192



Non-linear Independent Component Estimation (NICE)

1. The NICE model is a predecessor of Real NVP (Dinh, Krueger, and Y. Bengio
2015).

2. The transformation in NICE is the affine coupling layer without the scale term,
known as additive coupling layer.

Yi:d = X1.d X1:d =Y1d
Yd+1:D = Xd+1.D + M(X1.q) Xd+1:D0 = Yd+1:0 — M(Y1:d)
3. mis an arbitrarily complex function, in this case a ReLU MLP.
4. Additive layers have unit Jacobian determinant, and their composition will
necessarily have unit Jacobian determinant too.
5. NICE includes a diagonal scaling matrix S as the top layer.
6. Final layer of NICE applies a rescaling transformation x; = s;z; and inverse
mapping z; = 3

s;i°
7. Jacobian of forward mapping:

J = diag(S)
det (J) = Hs,
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Glow model

1. The Glow model extends NICE and RealNVP, and simplifies the architecture by
replacing the reverse permutation operation on the channel ordering with
invertible 1 x 1 convolutions (Kingma and Dhariwal 2018).

2. There are three substeps in one step of flow in Glow.

» Activation normalization (short for actnorm):

Activation normalization

> Actnorm layer performs an affine transformation of the activations using a scale and bias
parameter per channel.

> These parameters are initialized such that the post-actnorm activations per-channel have zero
mean and unit variance.

> After initialization, the scale and bias are treated as regular trainable parameters that are
independent of the data.

> Invertible 1 x 1 convolution: Instead of fixed ordering, 1 x 1 convolution is used.
» Affine coupling layer (Same as in RealNVP)
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Glow model

1. Latent factors

Image x
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Glow model @

Smile Add Beard Increase Age

.

Remove Beard Decrease Age

https://blog.openai.com/,
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Glow Results

Synthetic celebrities sampled from Glow model
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Glow Results

Random samples from the Glow model.

See also https://openai.com/blog/glow/.
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Autoregressive Flows

1. In autoregressive models, the probability of observing x; is conditioned on
X1, .-.,Xj—1 and the product of these conditional probabilities gives us the
probability of observing the full sequence:

D D
p(x) = H p(X,"Xl, ... 7X,‘_1) = H p(Xi‘Xlzi—l)
i=1 i=1

2. If a flow transformation in a normalizing flow is framed as an autoregressive
model, the model is an autoregressive flow.
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Masked Autoregressive Flow (MAF)

1. MAF is a type of normalizing flows, where the transformation layer is built as an
autoregressive neural network (Papamakarios, Murray, and Pavlakou 2017).

4 1
. scale &

Zi—1 shift terms | Li—1
i | ; T

7z Tit+1
i+l 2, © 03 (X1o1) + pa(X11) T
ZD Tp

z ~ m(z) ? ~ X ~ p(x)
(known) (unknown)
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Masked Autoregressive Flow

1. Given two random variables z ~ 7(z) and x ~ p(x), and the probability density
function 7(z) is known, MAF aims to learn p(x).

2. MAF generates each x;, conditioned on the past dimensions xy.;_1.

» Data generation, producing a new x.

Xj = zj exp o + [

where

i = f;(X1:i-1)
= fa;(xlilfl)
zi ~ N(0,1)
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Inverse autoregressive flow (I1AF)

1. IAF models the conditional probability of the target variable as an autoregressive
model too, but with a reversed flow (for efficient sampling process) (Kingma,

Salimans, and Welling 2016).

2z zy % Zy
i scale & = scale & -
Zi-1 shift terms | Li—1 Zi—1 | shiftterms Ti—1
= - E—E -
o Titq 3 o . s
i+l 20 03(Xpio1) + pi(Xnio) | 20 6i(Xpio1) + Bi(Xpaog) | T
2D Zp Zp Zp
z ~ (z) ? ——— x~p(x) z ~ 7(2) ? — 2~ p(X)
(unknown) (known) (unknown)

(known)

Masked Autoregressive Flow (MAF) Inverse Autoregressive Flow (IAF)

2. In IAF, the nonlinear shift/scale statistics are computed using the previous noise
variates z;.;_1, instead of the data samples:
Xj = Zi eXp aj + b
Hi = fui(zlzi—l)

aj = fo,(z1:i-1) 175/192



Inverse autoregressive flow

1. The reverse transformation in MAF is

X; — pi(X1i-1) _Mi(xl:ifl)

il oi(xuic1)  oi(Xwio1) e oi(X1:-1)
2. If we consider
%= 2, 5() = 7(), % ~ (%)
z=x, 7(.)=p(.), Z~ 7(2)
fi(21:i-1) = fi(X1:i-1) = —'LLIE)(lll)
o xl:l—l)
G(21:-1) = 6(x1:j-1) = 0,(X3,_1)

3. Then, X; ~ p()N(,"il;,') =Z©® 5,‘(21;,’_1) + ﬂ;(il;,’_l), where Z ~ ﬁ(i)
4. |AF intends to estimate the probability density function of X given that 7(2) is

already known.
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Evaluating deep generative models




Introduction

1. Evaluation of generative models is tricky
2. The key questions is about underlying task of the generative model.

> Density estimation

Sampling / generation

» Latent representation learning
» More than one task.

v

3. How do we evaluate generative models?

Example (Evaluating density estimation)
When the given model has tractable likelihood, the evaluation is straightforward.

» Split dataset into train, validation, and test sets.
» Evaluate gradients based on the train set.
» Tune hyper-parameters based on the validation set.

» Evaluate generalization by measuring likelihoods on the test set.
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Introduction

1. We have a dataset that sampled from pg,:, and generated samples from p,.
2. Evaluating deep generative models (DGM) is hard because

» the distributions of interest are often high dimensional,
> the likelihood functions are not always available or easily computable.

3. A common way to evaluate a DGM is to measure how close pgat, is to pg.

4. Since sample complexity of traditional measure such as KL divergence or
Wasserstein distance is exponential in the dimensionality of the distribution, they
cannot be used for real world distributions.

5. The reduced sample complexity comes at the cost of reduced discriminative power.

6. These metrics cannot tell the difference between a model that memorizes the
training data and a model that generalizes.
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Introduction

1. Some generative models such as VAE and GAN have intractable likelihoods.

2. For example, in VAE we can compare the evidence lower bounds (ELBO) to
log-likelihoods.

3. For general case, kernel density estimates only via samples can be used.

4. Consider the following generated images, which of them is better?

bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.44dB/0.7777) (20.34dB/0.6562)
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Human evaluations

1. One intuitive metric of performance can be obtained by having human annotators
judge the visual quality of samples.

2. This process can be automated using Amazon Mechanical Turk (Salimans,

I. J. Goodfellow, et al. 2016).

3. The task is to ask annotators to distinguish between generated data and real
data.

4. For MNIST dataset and GAN model, annotators were able to distinguish samples
in 52.4% of cases (2000 votes total), where 50% would be obtained by random
guessing.

5. For CIFAR-10 dataset and GAN model, annotators were able to distinguish
samples in 78.7% of cases.

6. A downside of using human annotators is that the metric varies depending on the
setup of the task and the motivation of the annotators.

7. Also, results change drastically when we give annotators feedback about their
mistakes.

8. By learning from such feedback, annotators are better able to point out the flaws

in generated images, giving a more pessimistic quality assessment.
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Inception score

1. The inception score takes a list of images and returns a single number, the score.
The score is a measure of how realistic the output of a generative model (GAN) is.
3. The score measures two things simultaneously:

» The images have variety.

» Each image distinctly looks like something.
4. If both things are true, the score will be high; otherwise, the score will be low.
5. The lower bound of this score is zero and the upper bound is co.
6. The inception score takes its name from the Inception classifier, an image

classification network from Google.
Classifier takes an image, and returns probability distribution of labels for image.

\/
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Inception score

1. If image contains just one well-formed thing, then output of classifier is a narrow
distribution.

2. If image is a jumble, or contains multiple things, it's closer to the uniform
distribution of many similar height bars.

3. The next step is combine the label probability distributions for many of generated
images (50,000 images).

4. By summing the label distributions of our images, a new label distribution
(marginal distribution) will be obtained.

5. The marginal distribution tells the variety in the generator’s output:

Similar labels sum to give focussed distribution Different labels sum to give uniform distribution
5 - i
v ¥
— —_—
sum
ECH

6. The final step is to combine these two different things into one single score.

Ca

sum
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Inception score

1. The final step is to combine these two different things into one single score.

2. By comparing label distribution with marginal label distribution for images, a
score will be obtained that shows how much those two distributions differ.

3. The more they differ, the higher a score we want to give, and this is the inception
score.

4. To produce the inception score, the KL divergence between label distribution and
marginal label distribution is used.

» Construct an estimator of the Inception Score from samples x() by constructing an
empirical marginal class distribution,
1 m
5(v) — ()
= X
py)=—> ply | x)

i=1

» Then an approximation to the expected KLdivergence is computed by

IS(G Nexp< ZDKL ply | x) || ﬁ(ﬂ))
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Evaluation metrics

1. Several metrics have been proposed for evaluation of generative
models (Thanh-Tung and Tran 2020).
2. Divergence based evaluation metrics
> Inception score
» Fréchet inception distance
> Neural net divergence
3. Precision-Recall based evaluation metrics
» k-means based Precision-Recall
» k-NN based Precision-Recall
4. Other evaluation metrics

» Metrics for class-conditional models
» Topological /Geometrical approaches
» Non-parametric approaches

184/192



Summary




Learning deep latent variable models

1. Marginal distribution on x obtained by integrating out z
p(z) =N(z;0,1)
) = [ pl2)plxlf(2)

2. Problem: Evaluation of py(x) intractable due to integral involving flexible
non-linear deep net fy(z).
3. Solutions: by different unsupervised deep learning paradigms

» Avoid integral: Generative adversarial networks (GAN)

» Approximate integral: Variational autoencoders (VAE)

» Tractable integral: constrain fy(z) to invertible flow. Please read (Kobyzev, Prince,
and Brubaker 2020).

» Avoid latent variables: autoregressive models
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Different generative models using latent variables

GAN: minimax the < || x Discriminator Generator Ao
classification error loss. D(x) G(z) X
VAE: maximize ELBO. Decoder >l 5!
Po(x|2)
Flow-based I
generative models: x Flow | : nverse <
minimize the negative f(x) f—l (z)
log-likelihood
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Reading




1. Chapter 10 of Deep Learning Book*

*lan Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press.
187/192



References i

@ Arjovsky, Martin and Leon Bottou (2017). “Towards Principled Methods for Training
Generative Adversarial Networks”. In: International Conference on Learning
Representations.

[ Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). “Wasserstein GAN" . In:
ArXiv.

@ Dinh, Laurent, David Krueger, and Yoshua Bengio (2015). “NICE: Non-linear
Independent Components Estimation”. In: International Conference on Learning
Representations.

[§ Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2017). “Density estimation
using Real NVP" . In: International Conference on Learning Representations.

[ Duda, Richard O., Peter E. Hart, and David G. Stork (2001). Pattern classification,
2nd Edition. \Wiley.

[4 Dumoulin, Vincent and Francesco Visin (2016). “A guide to convolution arithmetic for
deep learning” . In: ArXiv. eprint: 1603.07285.

188/192


1603.07285

References ii

) ) = &

Gan, Zhe et al. (2015). “Learning Deep Sigmoid Belief Networks with Data
Augmentation”. In: Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Statistics, AISTATS.

Germain, Mathieu et al. (2015). “MADE: Masked Autoencoder for Distribution
Estimation”. In: Proceedings of the 32nd International Conference on Machine
Learning.

Goodfellow, lan J. et al. (2014). “Generative Adversarial Nets". In: Advances in Neural
Information Processing Systems, pp. 2672-2680.

Goodfellow, lan, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT
Press.

Karras, Tero et al. (2018). “Progressive Growing of GANSs for Improved Quality,
Stability, and Variation”. In: International Conference on Learning Representations.
Khajenezhad, Ahmad, Hatef Madani, and Hamid Beigy (2021). “Masked Autoencoder
for Distribution Estimation on Small Structured Data Sets". |n: /[EEE Transactions

on Neural Networks and Learning Systems.

189/192



References ii

[§ Kingma, Diederik P. and Prafulla Dhariwal (2018). “Glow: Generative Flow with
Invertible 1x1 Convolutions”. In: Advances in Neural Information Processing
Systems, pp. 10236-10245

@ Kingma, Diederik P., Tim Salimans, and Max Welling (2016). “Improving Variational
Inference with Inverse Autoregressive Flow". In:

@ Kingma, Diederik P. and Max Welling (2014). “Auto-Encoding Variational Bayes”. In:
Proc. of the 2nd Int. Conf. on Learning Representations.

@ Kobyzev, Ivan, Simon J.D. Prince, and Marcus A. Brubaker (2020). “Normalizing
Flows: An Introduction and Review of Current Methods". In: |[EEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI).

[ Larochelle, Hugo and lain Murray (2011). “The Neural Autoregressive Distribution
Estimator”. In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, AISTATS.

[d Mirza, Mehdi and Simon Osindero (2014). “Conditional Generative Adversarial Nets”.
In: arXiv.

@ Oord, Aaron van den, Sander Dieleman, et al. (2016). “WaveNet: A Generative Model
for Raw Audio”. In: The 9th ISCA Speech Synthesis Workshop.

190/192



References iv

[ Oord, Airon van den, Nal Kalchbrenner, Lasse Espeholt, et al. (2016). "Conditional
Image Generation with PixelCNN Decoders”. In: Advances in Neural Information
Processing Systems.

@ Oord, Adron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016). “Pixel
Recurrent Neural Networks". In: Proceedings of the 33nd International Conference
on Machine Learning.

@ Papamakarios, George, lain Murray, and Theo Pavlakou (2017). “Masked
Autoregressive Flow for Density Estimation”. In: Advances in Neural Information
Processing Systems, pp. 2338-2347.

@ Radford, Alec, Luke Metz, and Soumith Chintala (2016). “Unsupervised
Representation Learning with Deep Convolutional Generative Adversarial Networks" .
In: International Conference on Learning Representations.

[ Rezende, Danilo Jimenez and Shakir Mohamed (2015). “Variational Inference with
Normalizing Flows". In: Proceedings of the 32nd International Conference on
Machine Learning. Vol. 37, pp. 1530-1538. URL:
http://proceedings.mlr.press/v37/rezendel5.html.

191/192


http://proceedings.mlr.press/v37/rezende15.html

References v

[§ Salakhutdinov, Ruslan and Hugo Larochelle (2010). “Efficient Learning of Deep
Boltzmann Machines”. In: Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics (AISTATS). Vol. 9, pp. 693-700.

[§ Salimans, Tim, lan J. Goodfellow, et al. (2016). “Improved Techniques for Training
GANSs". In: Advances in Neural Information Processing Systems, pp. 2226—-2234.

[4 Salimans, Tim, Andrej Karpathy, et al. (2017). “PixelCNN++: Improving the
PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications”. In:
International Conference on Learning Representations, ICLR.

[@ Thanh-Tung, Hoang and Truyen Tran (2020). “Toward a Generalization Metric for
Deep Generative Models”. In: arXiv abs/2011.00754.

@ Uria, Benigno, Marc-Alexandre Coté, et al. (2016). “Neural Autoregressive Distribution
Estimation”. In: Journal of Machine Learning Research 17.205, pp. 1-37.

@ Uria, Benigno, lain Murray, and Hugo Larochelle (2013). "RNADE: The real-valued
neural autoregressive density-estimator”. In: Advances in Neural Information
Processing Systems, pp. 2175-2183.

192/192



Questions?
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