
Deep learning

Deep Generative Models

Hamid Beigy

Sharif University of Technology

May 29, 2021

Table of contents

1. Introduction

2. Deep generative models

3. Boltzmann Machine

4. Autoencoder models

5. Autoregressive models

6. Generative Adversarial Networks

7. Variational Autoencoder models

8. Normalizing Flow Models

9. Evaluating deep generative models

10. Summary

11. Reading

1/192

Introduction

Supervised learning

1. In supervised setting, we have a dataset S = {(x1, y1), (x2, y2), . . . , (xm, ym)}.
2. Discriminative models estimate the conditional distribution P(y |x).

I Linear regression, logistic regression, generalized linear models
I Standard Neural Networks, CNN, RNN...
I Decision trees, boosting, random forests, kernel methods, KNN, ...

3. Generative models estimate the joint distribution P(x , y).

I Naive Bayes
I Linear/quadratic discriminant analysis

4. Generating new data requires to model the joint distribution P(x , y).

2/192

Unsupervised learning

1. In unsupervised setting, we have a dataset S = {x1, x2, . . . , xm}.
2. We have no target output, thus nothing to predict nor discriminate.

3. In unsupervised setting, we have different goals:

I Descriptive analysis: detect structure, correlations in the data set using

descriptive/graphical tools or using more involved methods (PCA for example)
I Clustering: create ”homogeneous” groups of observations (usually spending 90% of

the allocated time to properly define “homogeneous”)
I Estimating the distribution of observations: detect suspect data/behaviour, detect

changes in the data set if the data are collected through time
I Generating new data: closely related to the previous point.

3/192

Why Generative Models?

1. We have seen discriminative models

I Given an image x , predict label y
I Estimates P(y |x)

2. Discriminative models have several key limitations

I Can’t model P(x), i.e. the probability of seeing a certain image
I Thus, can’t sample from P(x), i.e. can’t generate new images

3. Generative models (in general) cope with all of the above problems

I Can model P(x)
I Can generate x such as new images

4. Generate new data by sampling from the learned distribution.

5. Evaluate the likelihood of data observed at test time.

6. Find the conditional relationship between variables, eg learning the distribution

p(x2|x1) allows us to build discriminative classification or regression models.

7. Score algorithms by using complexity measures like entropy, mutual information,

and moments of the distribution.

4/192

Generative Models

1. Given training data, generate new samples from same distribution1,

(Goodfellow 2016)

Generative Modeling
• Density estimation

• Sample generation

Training examples Model samples

Figure 1: Some generative models perform density estimation. These models take a
training set of examples drawn from an unknown data-generating distribution pdata

and return an estimate of that distribution. The estimate pmodel can be evaluated for
a particular value of x to obtain an estimate pmodel(x) of the true density pmodel(x).
This figure illustrates the process for a collection of samples of one-dimensional data
and a Gaussian model.

(Goodfellow 2016)

Generative Modeling
• Density estimation

• Sample generation

Training examples Model samples
Figure 2: Some generative models are able to generate samples from the model distri-
bution. In this illustration of the process, we show samples from the ImageNet (Deng
et al., 2009, 2010; Russakovsky et al., 2014) dataset. An ideal generative model would
be able to train on examples as shown on the left and then create more examples from
the same distribution as shown on the right. At present, generative models are not yet
advanced enough to do this correctly for ImageNet, so for demonstration purposes this
figure uses actual ImageNet data to illustrate what an ideal generative model would
produce.

http://www.iangoodfellow.com/slides/2016-12-04-NIPS.key

The video was recorded by the NIPS foundation and should be made avail-
able at a later date.

Generative adversarial networks are an example of generative models. The
term “generative model” is used in many di↵erent ways. In this tutorial, the
term refers to any model that takes a training set, consisting of samples drawn
from a distribution pdata, and learns to represent an estimate of that distribution
somehow. The result is a probability distribution pmodel. In some cases, the
model estimates pmodel explicitly, as shown in figure 1. In other cases, the
model is only able to generate samples from pmodel, as shown in figure 2. Some
models are able to do both. GANs focus primarily on sample generation, though
it is possible to design GANs that can do both.

2

Train from x ∼ pdata(x)

(Goodfellow 2016)

Generative Modeling
• Density estimation

• Sample generation

Training examples Model samples

Figure 1: Some generative models perform density estimation. These models take a
training set of examples drawn from an unknown data-generating distribution pdata

and return an estimate of that distribution. The estimate pmodel can be evaluated for
a particular value of x to obtain an estimate pmodel(x) of the true density pmodel(x).
This figure illustrates the process for a collection of samples of one-dimensional data
and a Gaussian model.

(Goodfellow 2016)

Generative Modeling
• Density estimation

• Sample generation

Training examples Model samples
Figure 2: Some generative models are able to generate samples from the model distri-
bution. In this illustration of the process, we show samples from the ImageNet (Deng
et al., 2009, 2010; Russakovsky et al., 2014) dataset. An ideal generative model would
be able to train on examples as shown on the left and then create more examples from
the same distribution as shown on the right. At present, generative models are not yet
advanced enough to do this correctly for ImageNet, so for demonstration purposes this
figure uses actual ImageNet data to illustrate what an ideal generative model would
produce.

http://www.iangoodfellow.com/slides/2016-12-04-NIPS.key

The video was recorded by the NIPS foundation and should be made avail-
able at a later date.

Generative adversarial networks are an example of generative models. The
term “generative model” is used in many di↵erent ways. In this tutorial, the
term refers to any model that takes a training set, consisting of samples drawn
from a distribution pdata, and learns to represent an estimate of that distribution
somehow. The result is a probability distribution pmodel. In some cases, the
model estimates pmodel explicitly, as shown in figure 1. In other cases, the
model is only able to generate samples from pmodel, as shown in figure 2. Some
models are able to do both. GANs focus primarily on sample generation, though
it is possible to design GANs that can do both.

2

Generate from x ∼ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

2. Several flavors

I Explicit density estimation: explicitly define and solve for pmodel(x)
I Implicit density estimation: learn model that can sample from pmodel(x) w/o

explicitly defining it

1Taken from Fei-Fei Li et al. slides and Tutorial on Generative Adversarial Networks, 2017.
5/192

Generated images

1. The following images were generated from a generative model (Karras et al. 2018).

Published as a conference paper at ICLR 2018

Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

Our contributions allow us to deal with high output resolutions in a robust and efficient fashion.
Figure 5 shows selected 1024 ⇥ 1024 images produced by our network. While megapixel GAN
results have been shown before in another dataset (Marchesi, 2017), our results are vastly more
varied and of higher perceptual quality. Please refer to Appendix F for a larger set of result images
as well as the nearest neighbors found from the training data. The accompanying video shows latent
space interpolations and visualizes the progressive training. The interpolation works so that we first
randomize a latent code for each frame (512 components sampled individually from N (0, 1)), then
blur the latents across time with a Gaussian (� = 45 frames @ 60Hz), and finally normalize each
vector to lie on a hypersphere.

We trained the network on 8 Tesla V100 GPUs for 4 days, after which we no longer observed
qualitative differences between the results of consecutive training iterations. Our implementation
used an adaptive minibatch size depending on the current output resolution so that the available
memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1 shows six
examples of 10242 images produced using our method using LSGAN. Further details of this setup
are given in Appendix B.

8

6/192

Taxonomy of Generative Models

Maximum Likelihood

Explicit density Implicit density

…

Tractable density
-Fully visible belief nets
 -NADE
 -MADE
 -PixelRNN
-Change of variables
models (nonlinear ICA)

Approximate density

Variational
Variational autoencoder

Markov Chain
Boltzmann machine

Markov Chain

Direct

GSN

GAN

Figure 9: Deep generative models that can learn via the principle of maximim likeli-
hood di↵er with respect to how they represent or approximate the likelihood. On the
left branch of this taxonomic tree, models construct an explicit density, pmodel(x;✓),
and thus an explicit likelihood which can be maximized. Among these explicit den-
sity models, the density may be computationally tractable, or it may be intractable,
meaning that to maximize the likelihood it is necessary to make either variatioanl
approximations or Monte Carlo approximations (or both). On the right branch of the
tree, the model does not explicitly represent a probability distribution over the space
where the data lies. Instead, the model provides some way of interacting less directly
with this probability distribution. Typically the indirect means of interacting with the
probability distribution is the ability to draw samples from it. Some of these implicit
models that o↵er the ability to sample from the distribution do so using a Markov
Chain; the model defines a way to stochastically transform an existing sample in order
to obtain another sample from the same distribution. Others are able to generate a
sample in a single step, starting without any input. While the models used for GANs
can sometimes be constructed to define an explicit density, the training algorithm for
GANs makes use only of the model’s ability to generate samples. GANs are thus
trained using the strategy from the rightmost leaf of the tree: using an implicit model
that samples directly from the distribution represented by the model.

12

7/192

Different approaches for building generative models

1. Without using latent variables

I Parametric density estimation
I Non parametric density estimation

2. With using latent variables

I Mixture models
I Deep generative models

8/192

Introduction

Generative models without using latent variables

Parametric density estimation

1. We assume x1, x2, . . . , xm are IID random variables distributed as p(x ; θ), hence

we have

p(x ; θ) = p(x1, x2, . . . , xm; θi) =
m∏

k=1

p(xk ; θ)

2. p(x ; θ) is a function of θ and is known as likelihood function.

3. The maximum likelihood (ML) method estimates θ so that the likelihood function

takes its maximum value, that is,

θ̂ML = argmax
θ

m∏

k=1

p(xk ; θ)

4. To obtain θ̂ML that maximizing the likelihood function, we must have

∂
∏m

k=1 p(xk ; θ)

∂θ
= 0

9/192

Parametric density estimation

1. It is more convenient to work with the logarithm of the likelihood function than

with the likelihood function itself. Hence,

LL(θ) = ln
m∏

k=1

p(xk ; θ) =
m∑

k=1

ln p(xk ; θ)

(Goodfellow 2016)

Maximum Likelihood

BRIEF ARTICLE

THE AUTHOR

✓� = arg max
�

Ex�pdata
log pmodel(x | ✓)

1

Figure 8: The maximum likelihood process consists of taking several samples from the
data generating distribution to form a training set, then pushing up on the probability
the model assigns to those points, in order to maximize the likelihood of the training
data. This illustration shows how di↵erent data points push up on di↵erent parts of
the density function for a Gaussian model applied to 1-D data. The fact that the
density function must sum to 1 means that we cannot simply assign infinite likelihood
to all points; as one point pushes up in one place it inevitably pulls down in other
places. The resulting density function balances out the upward forces from all the
data points in di↵erent locations.

10

θ̂ML = argmax
θ

LL(θ)

10/192

Nonparametric methods for density estimation

1. Parametric forms do not always fit the densities encountered in practice.

2. Most of parametric densities are unimodal, whereas many practical problems have

multi-modal densities.

3. Non-parametric methods can be used with arbitrary distributions without

assumption of knowing the forms of the underlying densities.

4. In nonparametric estimation, we assume that similar inputs have similar outputs.

5. This is a reasonable assumption because the world is smooth and functions,

whether they are densities, discriminants, or regression functions, change slowly.

6. Some approaches for nonparametric density estimation

I Histogram
I Parzen window
I Kernel density estimator
I Nearest neighbors

11/192

Histogram

1. Divide the space into a set of regular intervals of the form

Ij = (x0 + jh, x0 + (j + 1)h], for j ∈ {. . . ,−1, 0, 1, . . .}.

Histogram

Divide the space into a set of regular intervals of the form

Ij = (x0 + jh, x0 + (j + 1)h], for j œ {. . . , ≠1, 0, 1, . . .}.

In each interval, the density is constant and is proportional to the number of observations
falling into this interval.

E. Scornet Deep Learning Fall 2018 12 / 76

2. In each interval, the density is constant and is proportional to the number of

observations falling into this interval.

12/192

Naive estimator

1. Naive estimator, addresses the choice of bin locations, thus the origin is

eliminated.

2. For bin width h, bin denoted by R(x) is interval
[
x − h

2 , x + h
2

)
and the estimate

is

p̂(x) =
|R(x)|
mh

3. The estimator can also be written as

p̂(x) =
1

mh

m∑

k=1

w

(
x − xk

h

)

w is weight function and defined as

w(u) =

{
1 if |u| ≤ 1

2

0 otherwise

174 CHAPTER 16 NONPARAMETRIC ESTIMATION

(a) Region R (b) Parzen window function

FIGURE 16.8
Parzen window method.

appropriately to improve the accuracy of approximation (16.3). In the following
sections, two methods to determine region R based on training samples {xi}ni=1 are
introduced. In Section 16.3, the volume V of region R is fixed, and the number of
training samples k that fall into R is determined from data. On the other hand, in
Section 16.4, k is fixed, and the volume V of region R is determined from data.

16.3 KDE
In this section, the volume V of region R is fixed, and the number of training samples
k that fall into R is determined from data.

16.3.1 PARZEN WINDOW METHOD
As region R, let us consider the hypercube with edge length h centered at x in region
R (Fig. 16.8(a)). Its volume V is given by

V = hd , (16.5)

where d is the dimensionality of the pattern space. The number of training samples
falling into region R is expressed as

k =
nX

i=1

W
✓ x � xi

h

◆
, (16.6)

where W (x) is called the Parzen window function defined for

x = (x(1), . . . , x(d))>

as follows (Fig. 16.8(b)):

W (x) =
8>>>><>>>>:

1 max
i=1, ...,d

|x(i) |  1
2
,

0 otherwise.

h is called the bandwidth of the Parzen window function.

174 CHAPTER 16 NONPARAMETRIC ESTIMATION

(a) Region R (b) Parzen window function

FIGURE 16.8
Parzen window method.

appropriately to improve the accuracy of approximation (16.3). In the following
sections, two methods to determine region R based on training samples {xi}ni=1 are
introduced. In Section 16.3, the volume V of region R is fixed, and the number of
training samples k that fall into R is determined from data. On the other hand, in
Section 16.4, k is fixed, and the volume V of region R is determined from data.

16.3 KDE
In this section, the volume V of region R is fixed, and the number of training samples
k that fall into R is determined from data.

16.3.1 PARZEN WINDOW METHOD
As region R, let us consider the hypercube with edge length h centered at x in region
R (Fig. 16.8(a)). Its volume V is given by

V = hd , (16.5)

where d is the dimensionality of the pattern space. The number of training samples
falling into region R is expressed as

k =
nX

i=1

W
✓ x � xi

h

◆
, (16.6)

where W (x) is called the Parzen window function defined for

x = (x(1), . . . , x(d))>

as follows (Fig. 16.8(b)):

W (x) =
8>>>><>>>>:

1 max
i=1, ...,d

|x(i) |  1
2
,

0 otherwise.

h is called the bandwidth of the Parzen window function.

13/192

Kernel density estimator

1. To get a smooth estimate, a smooth weight function (kernel function) is used.

p̂(x) =
1

mh

m∑

i=1

w

(
x − xi

h

)

w(.) is some kernel function and h is the smoothing parameter.

2. Gaussian kernel function with mean 0 and variance 1 is usually used.

w(u) =
1√
2π

exp

(
−u2

2

)

3. Function w(.) determines shape of influences and h determines window width.

4. The kernel estimator can be generalized to D−dimensional data.

p̂(x) =
1

mhD

m∑

k=1

w

(
x − xk

h

)

w(u) =

(
1√
2π

)D

exp

(
−||u||

2

2

)

5. The total number of data points lying in this window (cube) equals to (drive it.)

k =
m∑

i=1

w

(
x − xi

h

)

14/192

Kernel density estimator 16.3 KDE 175

(a) Each Parzen window function (b) Parzen window estimator

FIGURE 16.9
Example of Parzen window method.

Substituting Eq. (16.5) and Eq. (16.6) into Eq. (16.3) gives the following density
estimator:

DpParzen(x) =
1

nhd

nX

i=1

W
✓ x � xi

h

◆
.

This estimator called the Parzen window method and its numerical behavior are
illustrated in Fig. 16.9. The result resembles that of the histogram method, but
the bin widths are determined adaptively based on the training samples. However,
discontinuity of estimated densities across di↵erent bins still remains in the Parzen
window method.

16.3.2 SMOOTHING WITH KERNELS
The problem of discontinuity can be e↵ectively overcome by KDE, which uses a
smooth kernel function K(x) instead of the Parzen window function:

DpKDE(x) =
1

nhd

nX

i=1

K
✓ x � xi

h

◆
.

Note that the kernel function should satisfy

8x 2 X, K(x) � 0, and
⌅

X
K(x)dx = 1.

The Gaussian kernel is a popular choice as a kernel function:

K(x) = 1

(2⇡) d
2

exp

� x
>x
2

!
,

176 CHAPTER 16 NONPARAMETRIC ESTIMATION

(a) Each Gaussian kernel function (b) Kernel density estimator

FIGURE 16.10
Example of Gaussian KDE. Training samples are the same as those in Fig. 16.9.

where the bandwidth h corresponds to the standard deviation of the Gaussian density
function. An example of Gaussian KDE is illustrated in Fig. 16.10, showing that a
nice smooth density estimator is obtained.

A generalized KDE,

DpKDE(x) =
1

n det(H)
nX

i=1

K
⇣
H�1(x � xi)

⌘
, (16.7)

may also be considered, where H is the d ⇥ d positive definite matrix called
the bandwidth matrix. If K(x) is the Gaussian function, HH> corresponds to the
variance-covariance matrix of the Gaussian density function.

16.3.3 BANDWIDTH SELECTION
The estimator DpKDE(x) obtained by KDE depends on the bandwidth h (Fig. 16.11).
Here, data-driven methods to choose h are introduced.

For generalized KDE (16.7), let us consider a diagonal bandwidth matrix H :

h = diag
⇣
h(1), . . . ,h(d)

⌘
,

where d denotes the dimensionality of input x. When the true probability distribution
is Gaussian, the optimal bandwidth is given asymptotically as follows [90, 93]:

Dh(j) =
4

(d + 2)n

! 1
d+4

�(j),

15/192

k−Nearest neighbor estimator

I A difficulty with KDE is that the parameter h is fixed for all kernels.

I Large value of h may lead to over-smoothing.

I Reducing value of h may lead to noisy estimates.

I The optimal choice of h may be dependent on location within the data space.

16/192

k−Nearest neighbor estimator (cont.)

I Instead of fixing h and determining the value of k from the data, we fix the value

of k and use the data to find an appropriate value of h.

I To do this, we consider a small sphere centered on the point x at which we wish

to estimate the density p(x) and allow the radius of the sphere to grow until it

contains precisely k data points (Why?).

p̂(x) =
k

mV

V is the volume of the resulting sphere.

I Value of k determines the degree of smoothing and there is an optimum choice

for k that is neither too large nor too small.

I Note that: The model produced by k nearest neighborhood is not a true density

model because the integral over all space diverges.

Theorem

It can be shown that both the K-NN and the kernel density estimators converge to

the true probability density in the limit N →∞ provided V shrinks suitably with N ,

and K grows with N (Duda, Hart, and Stork 2001).

17/192

k−Nearest neighbor estimator2.5. Nonparametric Methods 125

Figure 2.26 Illustration of K-nearest-neighbour den-
sity estimation using the same data set
as in Figures 2.25 and 2.24. We see
that the parameter K governs the degree
of smoothing, so that a small value of
K leads to a very noisy density model
(top panel), whereas a large value (bot-
tom panel) smoothes out the bimodal na-
ture of the true distribution (shown by the
green curve) from which the data set was
generated.

K = 1

0 0.5 1
0

5

K = 5

0 0.5 1
0

5

K = 30

0 0.5 1
0

5

density p(x), and we allow the radius of the sphere to grow until it contains precisely
K data points. The estimate of the density p(x) is then given by (2.246) with V set to
the volume of the resulting sphere. This technique is known as K nearest neighbours
and is illustrated in Figure 2.26, for various choices of the parameter K, using the
same data set as used in Figure 2.24 and Figure 2.25. We see that the value of K
now governs the degree of smoothing and that again there is an optimum choice for
K that is neither too large nor too small. Note that the model produced by K nearest
neighbours is not a true density model because the integral over all space diverges.Exercise 2.61

We close this chapter by showing how the K-nearest-neighbour technique for
density estimation can be extended to the problem of classification. To do this, we
apply the K-nearest-neighbour density estimation technique to each class separately
and then make use of Bayes’ theorem. Let us suppose that we have a data set com-
prising Nk points in class Ck with N points in total, so that

∑
k Nk = N . If we

wish to classify a new point x, we draw a sphere centred on x containing precisely
K points irrespective of their class. Suppose this sphere has volume V and contains
Kk points from class Ck. Then (2.246) provides an estimate of the density associated
with each class

p(x|Ck) =
Kk

NkV
. (2.253)

Similarly, the unconditional density is given by

p(x) =
K

NV
(2.254)

while the class priors are given by

p(Ck) =
Nk

N
. (2.255)

We can now combine (2.253), (2.254), and (2.255) using Bayes’ theorem to obtain
the posterior probability of class membership

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
=

Kk

K
. (2.256)

18/192

Introduction

Generative models using latent variables

Mixture models for density estimation

1. An alternative way to model an unknown density function p(x) is via linear

combination of M density functions in the form of

p(x) =
M∑

k=1

πkp(x |k)

where

M∑

k=1

πk = 1

∫

x
p(x |k)dx = 1

2. This modeling implicitly assumes that each point x may be drawn from any M

model distributions with probability πk (for k = 1, 2, . . . ,M).

19/192

Mixture models for density estimation

1. It can be shown that this modeling can approximate closely any continuous density

function for a sufficient number of mixtures M and appropriate model parameters.

2. First, we select a set of density components p(x |k) in the parametric form

p(x |k, θ).

p(x ; θ) =
M∑

k=1

πkp(x |θk)

3. Then, we compute parameters θ1, θ2, . . . , θM and π1, π2, . . . , πM based on training

data.

4. The parameter set is defined as θ = {π1, π2, . . . , πM , θ1, θ2, . . . , θM} and∑
i π1 = 1.

5. In order to find parameters, we use EM algorithm.

20/192

Gaussian Mixture models

Example: Gaussian mixture

Consider two Gaussian distributions

X1 ≥ N (µ1, ‡
2
1), and X2 ≥ N (µ2, ‡

2
2),

and the mixture

X = (1 ≠ �)X1 + �X2,

where � œ {0, 1} with Pr[� = 1] = fi and � and (X1,X2) are independent.
Let „◊ denote the density of a Gaussian random variable parametrized by ◊ = (µ, ‡2).

Exercise: How do we estimate ◊1, ◊2?

E. Scornet Deep Learning Fall 2018 28 / 76

21/192

Deep generative models

Deep generative models

1. We assume that dataset S = {x1, x2, . . . , xm} are samples from distribution p(x).

2. Goal of any generative model is to approximate p(x) given access to the dataset S .

3. If we can learn a good generative model, we can use it for inference.

4. We usually have three fundamental inference queries for evaluating a generative
model.

I Density estimation: Given a point x , what is the probability assigned by the model,

i.e., p(x ; θ)?
I Sampling: How can we generate new data from the model distribution, i.e.,

xnew ∼ p(x ; θ)?
I Unsupervised representation learning: How can we learn meaningful feature

representations for a point x?

22/192

Boltzmann Machine

Boltzmann Machine (BM)

1. BMs are fully connected networks of binary units.

2. BM is an undirected symmetric network of binary units that are divided into

visible and hidden units.

Fig. 1. A Boltzmann Machine with 5 visible units (in blue) and 5 hidden
units (in red).

learn complex distributions. However, they have not proven
useful on a practical level. Similar to Hopfield networks,
Boltzmann machines are fully connected networks of binary
units that use the same energy function. However, unlike
Hopfield networks, Boltzmann machines are not memory
driven and try to capture the inner structure and regularities
instead. The power of the binary Boltzmann Machine lies
in the hidden units that allow it to extend the simple linear
interactions to higher-order ones and give it the possibility to
model virtually any probabilistic distribution. The Energy of
the binary Boltzmann Machine is given by:

E(x) = −(
1

2

∑

ij

wijxixj +
∑

i

bixi) (1)

Where x = (x1, x2, . . . , xd) ∈ {0, 1}d, W = (wij)ij is the
weight matrix and B = (b1, x2, . . . , bd) is the bias vector.

The joint probability of the network is given by:

P (x) =
1

Z(b)
exp(−E(x)) (2)

Where Z(b) is the partition function that ensures P (x) ≤ 1.
Boltzmann machines are theoretically capable of learning

any given distribution simply by being shown examples sam-
pled from it. Essentially, the network sets the strengths of
the connections between the units to capture the correlations
that tie them together in order to build a generative network
capable of, among other things, producing new examples of
the same distribution. And since not all the variables (units)
in a Boltzmann machine are directly observed, it gives us a
handle to control the sampling of new examples. Furthermore,
the model can take in an incomplete example and use it to
output the complete version.

Learning in Boltzmann machines is of a Hebbian nature,
meaning to update a weight, we only need information
from the neighboring neurons. This means that learning in

Boltzmann machines is more biologically plausible. Hebbian
learning is one of the oldest learning algorithms. It can be
summarized as “Cells that fire together wire together.” [12]
In practice, neurons choose to either strengthen their link or
weaken it based on how often they agree in their outputs.
If two neurons would more often than not have the same
output, the learning algorithm puts more weight on their link.
Similarly, if they disagree most often, the link between them is
weakened. This learning process is said to be more biologically
plausible because it does not require any backlinks to be
maintained by the network to receive gradient information,
and every weight update relies only on the neighboring units.

2) Restricted Boltzmann Machine: The tractability of the
joint distribution is one of the biggest drawbacks of Boltzmann
machines. Restricted Boltzmann Machines (formally Harmo-
nium) [13] are a special type of Boltzmann machines with two
layers: One visible and one hidden layer, that was designed to
solve this problem. The RBM is a graphical model of binary
units. However, real-valued generalization is straightforward
[14] [15]. The connections in an RBM are undirected and
there are no visible-visible or hidden-hidden connections (fig.
2). Among other things, this bipartite architecture allows us
to have more control over the joint distribution by casting it
into a sum of conditional probabilities. RBMs are a powerful
replacement for fully connected Boltzmann machines when
building a deep architecture because of the independence of
units within the same layer, which allows for more freedom
and flexibility.

Fig. 2. A Restricted Boltzmann Machine with 3 visible units (in blue) and 4
hidden units (in red).

RBMs can be trained using the traditional techniques of
maximum likelihood [16]. Sampling from an RBM can be
done using Gibbs sampling method or any other Markov Chain
Monte Carlo (MCMC) [17] method.

3) Deep Boltzmann Machine: Deep Boltzmann Machine
(DBM) [18] is an undirected deep network of several hidden
layers. In DBMs every unit is connected to every unit from

23/192

Boltzmann Machine (BM)

1. BMs are theoretically capable of learning any given distribution.

2. The network sets the strengths of the connections between the units to capture

the correlations between them to build a generative network capable of producing

new examples of the same distribution.

3. Since all variables in a BM are not directly observed, it gives us a handle to

control the sampling of new examples.

4. The model can take in an incomplete example and use it to output the complete

version.

24/192

Boltzmann Machine (BM)

1. BM is a network with an energy defined for the overall network.

2. For a BM with only observed units, the energy is defined as

E (x) = −
∑

ij

wijxixj −
∑

i=1

bixi

= −x>Wx− b>x

H(x) = −E (x) Alternatively, happiness is used to avoid multiple minus signs.

I x = (x1, x2, . . . , xd) ∈ {0, 1}d is the input vector.
I W = (wij) is the weight matrix
I b = (b1, b2, . . . , bd) ∈ {0, 1}d is the bias vector.

3. The joint probability distribution defined as

pmodel(x) =
exp (−E (x))

Z

Z is Partition function that ensures
∑

x pmodel(x) = 1.

25/192

Boltzmann Machine (BM)

1. BM becomes more powerful when not all the variables are observed.

2. The latent variables can act similarly to hidden units in a MLP.

Fig. 1. A Boltzmann Machine with 5 visible units (in blue) and 5 hidden
units (in red).

learn complex distributions. However, they have not proven
useful on a practical level. Similar to Hopfield networks,
Boltzmann machines are fully connected networks of binary
units that use the same energy function. However, unlike
Hopfield networks, Boltzmann machines are not memory
driven and try to capture the inner structure and regularities
instead. The power of the binary Boltzmann Machine lies
in the hidden units that allow it to extend the simple linear
interactions to higher-order ones and give it the possibility to
model virtually any probabilistic distribution. The Energy of
the binary Boltzmann Machine is given by:

E(x) = −(
1

2

∑

ij

wijxixj +
∑

i

bixi) (1)

Where x = (x1, x2, . . . , xd) ∈ {0, 1}d, W = (wij)ij is the
weight matrix and B = (b1, x2, . . . , bd) is the bias vector.

The joint probability of the network is given by:

P (x) =
1

Z(b)
exp(−E(x)) (2)

Where Z(b) is the partition function that ensures P (x) ≤ 1.
Boltzmann machines are theoretically capable of learning

any given distribution simply by being shown examples sam-
pled from it. Essentially, the network sets the strengths of
the connections between the units to capture the correlations
that tie them together in order to build a generative network
capable of, among other things, producing new examples of
the same distribution. And since not all the variables (units)
in a Boltzmann machine are directly observed, it gives us a
handle to control the sampling of new examples. Furthermore,
the model can take in an incomplete example and use it to
output the complete version.

Learning in Boltzmann machines is of a Hebbian nature,
meaning to update a weight, we only need information
from the neighboring neurons. This means that learning in

Boltzmann machines is more biologically plausible. Hebbian
learning is one of the oldest learning algorithms. It can be
summarized as “Cells that fire together wire together.” [12]
In practice, neurons choose to either strengthen their link or
weaken it based on how often they agree in their outputs.
If two neurons would more often than not have the same
output, the learning algorithm puts more weight on their link.
Similarly, if they disagree most often, the link between them is
weakened. This learning process is said to be more biologically
plausible because it does not require any backlinks to be
maintained by the network to receive gradient information,
and every weight update relies only on the neighboring units.

2) Restricted Boltzmann Machine: The tractability of the
joint distribution is one of the biggest drawbacks of Boltzmann
machines. Restricted Boltzmann Machines (formally Harmo-
nium) [13] are a special type of Boltzmann machines with two
layers: One visible and one hidden layer, that was designed to
solve this problem. The RBM is a graphical model of binary
units. However, real-valued generalization is straightforward
[14] [15]. The connections in an RBM are undirected and
there are no visible-visible or hidden-hidden connections (fig.
2). Among other things, this bipartite architecture allows us
to have more control over the joint distribution by casting it
into a sum of conditional probabilities. RBMs are a powerful
replacement for fully connected Boltzmann machines when
building a deep architecture because of the independence of
units within the same layer, which allows for more freedom
and flexibility.

Fig. 2. A Restricted Boltzmann Machine with 3 visible units (in blue) and 4
hidden units (in red).

RBMs can be trained using the traditional techniques of
maximum likelihood [16]. Sampling from an RBM can be
done using Gibbs sampling method or any other Markov Chain
Monte Carlo (MCMC) [17] method.

3) Deep Boltzmann Machine: Deep Boltzmann Machine
(DBM) [18] is an undirected deep network of several hidden
layers. In DBMs every unit is connected to every unit from

3. By decomposing units into two subsets: visible v and hidden units h, we obtain.

E (v,h) = −v>Rv − v>Wh− h>Sh− b>v − c>h

4. The joint probability distribution defined as

pmodel(v,h) =
exp (−E (v,h))

Z

Z is Partition function that ensures
∑

x pmodel(x) = 1.
26/192

Boltzmann Machine (BM)

Boltzmann Machines

Example:

x1 x2 x3 w12x1x2 w13x1x3 w23x2x3 b2x2 H(x) exp(H(x)) p(x)
-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 1 -1 1 -2 -1 -3 0.050 0.0003
-1 1 -1 1 -1 -2 1 -3 0.368 0.0021
-1 1 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Z = 172.420

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 6 / 24Figure: Roger Grosse

27/192

Boltzmann Machine (BM)

Boltzmann Machines

Marginal probabilities:

p(x1 = 1) =
1

Z
X

x:x1=1

exp(H(x))

=
20.086 + 0.050 + 0.368 + 2.718

172.420

= 0.135

x1 x2 x3 w12x1x2 w13x1x3 w23x2x3 b2x2 H(x) exp(H(x)) p(x)
-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 1 -1 1 -2 -1 -3 0.050 0.0003
-1 1 -1 1 -1 -2 1 -3 0.368 0.0021
-1 1 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Z = 172.420

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 7 / 24Figure: Roger Grosse

28/192

Boltzmann Machine (BM)

Boltzmann Machines

Conditional probabilities:

p(x1 = 1 | x2 = �1) =

P
x:x1=1,x2=�1 exp(H(x))P

x:x2=�1 exp(H(x))

=
20.086 + 0.050

0.368 + 0.050 + 20.086 + 0.050

= 0.980

x1 x2 x3 w12x1x2 w13x1x3 w23x2x3 b2x2 H(x) exp(H(x)) p(x)
-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 1 -1 1 -2 -1 -3 0.050 0.0003
-1 1 -1 1 -1 -2 1 -3 0.368 0.0021
-1 1 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 8 / 24Figure: Roger Grosse

29/192

Boltzmann Machine Learning

1. Learning algorithms for BMs are usually based on maximum likelihood.

2. All BMs have an intractable partition function, so the maximum likelihood

gradient must be approximated.

3. An interesting property of BMs is that the update for a particular wij depends

only on the statistics of xi and xj .

30/192

Boltzmann Machine Learning

1. A BM admits the following likelihood for points x (1), . . . , x (n).

L(x(1), . . . , x(n)) =
n∏

i=1

p(x(i))

2. We will work with the log-likelihood instead of the true likelihood.

logL(x(1), . . . , x(n)) =
n∑

k=1

log
exp (H(x(k))

Z

=
n∑

k=1

log
(

exp (H(x(k))
)
− logZ

=
n∑

k=1

H(x(k))− logZ

3. The aim is to maximize Ex∼pdata

[
L(x)

]

E
x∼pdata

[
L(x)

]
=

n∑

k=1

pdata(x = x(k))L(x(k))

31/192

Boltzmann Machine Learning

1. Now, deriving the gradient with respect to the weights (∇wi,j logL)

∇wi,j

[
n∑

k=1

pdata(x = x(k))H(x(k))− logZ

]
=

n∑

k=1

pdata(x = x(k))∇wi,jH(x(k))

−
n∑

k=1

pdata(x = x(k))∇wi,j logZ

2. The first term equals to

n∑

k=1

pdata(x = x(k))∇wi,jH(x(k)) =
n∑

k=1

pdata(x = x(k))∇wi,j


∑

i 6=j

wi ,jx
(k)
i x

(k)
j

+
∑

i

pdata(x = x(k))bix
(k)
i

]

=
n∑

k=1

pdata(x = x(k))x
(k)
i x

(k)
j

= E
x∼pdata

[xixj]

32/192

Boltzmann Machine (BM)

1. The second term equals to

∇wi,j logZ = ∇wi,j log
∑

x

exp (H(x))

=
1∑

x exp (H(x))
∇wi,j

∑

x

exp (H(x)) =
1

Z
∇wi,j

∑

x

exp (H(x))

=
1

Z

∑

x

exp (H(x))∇wi,jH(x) =
∑

x

exp (H(x))

Z
∇wi,jH(x)

=
∑

x

pmodel(x)∇wi,jH(x)

=
∑

x

pmodel(x)[xixj]

= E
x∼pmodel

[xixj]

33/192

Boltzmann Machine learning

1. By combining the above equations, the gradient w.r.t weights becomes

∇wi,j logL = E
x∼pdata

[xixj]− E
x∼pmodel

[xixj]

2. By combining the above equations, the gradient w.r.t biases becomes

∇bi logL = E
x∼pdata

[xi]− E
x∼pmodel

[xi]

34/192

Generating a sample by Boltzmann Machine

1. In BM, we generate in two steps:

I Pick the hidden states from p(h).
I Pick the visible states from p(v|h).

How a causal model generates data

• In a causal model we generate data in
two sequential steps:
– First pick the hidden states from p(h).
– Then pick the visible states from p(v|h)

• The probability of generating a visible
vector, v, is computed by summing
over all possible hidden states.

This slide has been adopted from Hinton lectures, “Neural Networks for Machine Learning”, coursera, 2015.

2. The probability of generating a visible vector, v, is computed by summing over all

possible hidden states.

p(v) =
∑

h

p(h)p(v|h)

35/192

Gibbs sampling

1. Given an ordered set of variable, x1, . . . , xd , and a starting configuration

x0 = (x0
1 , . . . , x

0
d),

Gibbs sampling uses the following procedure

I Repeat until convergence for t = 1, 2, . . . ,

I Set x← xt−1.
I For each variable xi in the order we fixed:

1) Sample x ′i ∼ p(xi | x−i).

2) Update x← (x1, . . . , x
′
i , . . . , xd).

I Set xt ← x.

We use x−i to denote all variables in x except xi .

2. It is often very easy to performing each sampling step, since we only need to

condition xi on other variables.

3. Note that when we update xi , we immediately use its new value for sampling

other variables xj .

36/192

Gibbs sampling (example)

1. We drive p(xi |x−i) using probability of axioms and discarding bias terms

p(xi = 1|x−i) =
p(xi = 1, x−i)

p(xi = 1, x−i) + p(xi = 0, x−i)

=
exp

[∑
i 6=j wijxj

]

1 + exp
[∑

i 6=j wijxj

]

=
1

1 + exp
[
−∑j 6=i wijxj

]

= σ


∑

j 6=i

wi ,jxj




37/192

Gibbs sampling (example)

1. Let d = 3, we need to define

x ′0 ∼p(x0|x1, x2)

x ′1 ∼p(x1|x ′0, x2)

x ′2 ∼p(x2|x ′0, x ′1)

2. Each dimension is binary, the above 3 models must necessarily return the

probability of observing a 1.

3. Note that when we update xi , we immediately use its new value for sampling

other variables xj .

38/192

Gibbs sampling (example)

1. We drive p(x0|x1, x2) using probability of axioms

p(x0 = 1|x1, x2) =
p(x0 = 1, x1, x2)

p(x1, x2)
=

p(x0 = 1, x1, x2)∑
x0∈{0,1} p(x0, x1, x2)

=
p(x0 = 1, x1, x2)

p(x0 = 0, x1, x2) + p(x0 = 1, x1, x2)

=
1

1 + p(x0=0,x1,x2)
p(x0=1,x1,x2)

=
1

1 + exp (H(x0=0,x1,x2)))
exp (H(x0=1,x1,x2)))

=
1

1 + exp (H(x0 = 0, x1, x2)− H(x0 = 1, x1, x2))

=
1

1 + exp (
∑

i 6=j wijxixj +
∑

i bixi − (
∑

i 6=j wijxixj +
∑

i bixi))

=
1

1 + exp (−∑j 6=i=0 wijxj − bi)

= σ

(∑

j 6=i=0

wi ,jxj + bi

)

39/192

Boltzmann Machine

Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM)

1. The tractability of the joint distribution is one of the biggest drawbacks of BMs.

2. RBMs are a special type of BMs with two layers: One visible and one hidden layer.

Fi
g.

1.
A

B
ol

tz
m

an
n

M
ac

hi
ne

w
ith

5
vi

si
bl

e
un

its
(i

n
bl

ue
)

an
d

5
hi

dd
en

un
its

(i
n

re
d)

.

le
ar

n
co

m
pl

ex
di

st
ri

bu
tio

ns
.

H
ow

ev
er

,
th

ey
ha

ve
no

t
pr

ov
en

us
ef

ul
on

a
pr

ac
tic

al
le

ve
l.

Si
m

ila
r

to
H

op
fie

ld
ne

tw
or

ks
,

B
ol

tz
m

an
n

m
ac

hi
ne

s
ar

e
fu

lly
co

nn
ec

te
d

ne
tw

or
ks

of
bi

na
ry

un
its

th
at

us
e

th
e

sa
m

e
en

er
gy

fu
nc

tio
n.

H
ow

ev
er

,
un

lik
e

H
op

fie
ld

ne
tw

or
ks

,
B

ol
tz

m
an

n
m

ac
hi

ne
s

ar
e

no
t

m
em

or
y

dr
iv

en
an

d
tr

y
to

ca
pt

ur
e

th
e

in
ne

r
st

ru
ct

ur
e

an
d

re
gu

la
ri

tie
s

in
st

ea
d.

T
he

po
w

er
of

th
e

bi
na

ry
B

ol
tz

m
an

n
M

ac
hi

ne
lie

s
in

th
e

hi
dd

en
un

its
th

at
al

lo
w

it
to

ex
te

nd
th

e
si

m
pl

e
lin

ea
r

in
te

ra
ct

io
ns

to
hi

gh
er

-o
rd

er
on

es
an

d
gi

ve
it

th
e

po
ss

ib
ili

ty
to

m
od

el
vi

rt
ua

lly
an

y
pr

ob
ab

ili
st

ic
di

st
ri

bu
tio

n.
T

he
E

ne
rg

y
of

th
e

bi
na

ry
B

ol
tz

m
an

n
M

ac
hi

ne
is

gi
ve

n
by

:

E
(x

)
=
−

(
1 2

∑ ij

w
ij

x
ix

j
+

∑ i

b i
x

i)
(1

)

W
he

re
x

=
(x

1
,x

2
,.

..
,x

d
)
∈

{0
,1

}d
,

W
=

(w
ij

) i
j

is
th

e
w

ei
gh

t
m

at
ri

x
an

d
B

=
(b

1
,x

2
,.

..
,b

d
)

is
th

e
bi

as
ve

ct
or

.
T

he
jo

in
t

pr
ob

ab
ili

ty
of

th
e

ne
tw

or
k

is
gi

ve
n

by
:

P
(x

)
=

1

Z
(b

)
ex

p
(−

E
(x

))
(2

)

W
he

re
Z

(b
)

is
th

e
pa

rt
iti

on
fu

nc
tio

n
th

at
en

su
re

s
P

(x
)
≤

1.
B

ol
tz

m
an

n
m

ac
hi

ne
s

ar
e

th
eo

re
tic

al
ly

ca
pa

bl
e

of
le

ar
ni

ng
an

y
gi

ve
n

di
st

ri
bu

tio
n

si
m

pl
y

by
be

in
g

sh
ow

n
ex

am
pl

es
sa

m
-

pl
ed

fr
om

it.
E

ss
en

tia
lly

,
th

e
ne

tw
or

k
se

ts
th

e
st

re
ng

th
s

of
th

e
co

nn
ec

tio
ns

be
tw

ee
n

th
e

un
its

to
ca

pt
ur

e
th

e
co

rr
el

at
io

ns
th

at
tie

th
em

to
ge

th
er

in
or

de
r

to
bu

ild
a

ge
ne

ra
tiv

e
ne

tw
or

k
ca

pa
bl

e
of

,
am

on
g

ot
he

r
th

in
gs

,
pr

od
uc

in
g

ne
w

ex
am

pl
es

of
th

e
sa

m
e

di
st

ri
bu

tio
n.

A
nd

si
nc

e
no

t
al

l
th

e
va

ri
ab

le
s

(u
ni

ts
)

in
a

B
ol

tz
m

an
n

m
ac

hi
ne

ar
e

di
re

ct
ly

ob
se

rv
ed

,
it

gi
ve

s
us

a
ha

nd
le

to
co

nt
ro

lt
he

sa
m

pl
in

g
of

ne
w

ex
am

pl
es

.F
ur

th
er

m
or

e,
th

e
m

od
el

ca
n

ta
ke

in
an

in
co

m
pl

et
e

ex
am

pl
e

an
d

us
e

it
to

ou
tp

ut
th

e
co

m
pl

et
e

ve
rs

io
n.

L
ea

rn
in

g
in

B
ol

tz
m

an
n

m
ac

hi
ne

s
is

of
a

H
eb

bi
an

na
tu

re
,

m
ea

ni
ng

to
up

da
te

a
w

ei
gh

t,
w

e
on

ly
ne

ed
in

fo
rm

at
io

n
fr

om
th

e
ne

ig
hb

or
in

g
ne

ur
on

s.
T

hi
s

m
ea

ns
th

at
le

ar
ni

ng
in

B
ol

tz
m

an
n

m
ac

hi
ne

s
is

m
or

e
bi

ol
og

ic
al

ly
pl

au
si

bl
e.

H
eb

bi
an

le
ar

ni
ng

is
on

e
of

th
e

ol
de

st
le

ar
ni

ng
al

go
ri

th
m

s.
It

ca
n

be
su

m
m

ar
iz

ed
as

“C
el

ls
th

at
fir

e
to

ge
th

er
w

ir
e

to
ge

th
er

.”
[1

2]
In

pr
ac

tic
e,

ne
ur

on
s

ch
oo

se
to

ei
th

er
st

re
ng

th
en

th
ei

r
lin

k
or

w
ea

ke
n

it
ba

se
d

on
ho

w
of

te
n

th
ey

ag
re

e
in

th
ei

r
ou

tp
ut

s.
If

tw
o

ne
ur

on
s

w
ou

ld
m

or
e

of
te

n
th

an
no

t
ha

ve
th

e
sa

m
e

ou
tp

ut
,t

he
le

ar
ni

ng
al

go
ri

th
m

pu
ts

m
or

e
w

ei
gh

to
n

th
ei

r
lin

k.
Si

m
ila

rl
y,

if
th

ey
di

sa
gr

ee
m

os
to

ft
en

,t
he

lin
k

be
tw

ee
n

th
em

is
w

ea
ke

ne
d.

T
hi

s
le

ar
ni

ng
pr

oc
es

s
is

sa
id

to
be

m
or

e
bi

ol
og

ic
al

ly
pl

au
si

bl
e

be
ca

us
e

it
do

es
no

t
re

qu
ir

e
an

y
ba

ck
lin

ks
to

be
m

ai
nt

ai
ne

d
by

th
e

ne
tw

or
k

to
re

ce
iv

e
gr

ad
ie

nt
in

fo
rm

at
io

n,
an

d
ev

er
y

w
ei

gh
t

up
da

te
re

lie
s

on
ly

on
th

e
ne

ig
hb

or
in

g
un

its
.

2)
R

es
tr

ic
te

d
B

ol
tz

m
an

n
M

ac
hi

ne
:

T
he

tr
ac

ta
bi

lit
y

of
th

e
jo

in
td

is
tr

ib
ut

io
n

is
on

e
of

th
e

bi
gg

es
td

ra
w

ba
ck

s
of

B
ol

tz
m

an
n

m
ac

hi
ne

s.
R

es
tr

ic
te

d
B

ol
tz

m
an

n
M

ac
hi

ne
s

(f
or

m
al

ly
H

ar
m

o-
ni

um
)

[1
3]

ar
e

a
sp

ec
ia

lt
yp

e
of

B
ol

tz
m

an
n

m
ac

hi
ne

s
w

ith
tw

o
la

ye
rs

:O
ne

vi
si

bl
e

an
d

on
e

hi
dd

en
la

ye
r,

th
at

w
as

de
si

gn
ed

to
so

lv
e

th
is

pr
ob

le
m

.
T

he
R

B
M

is
a

gr
ap

hi
ca

l
m

od
el

of
bi

na
ry

un
its

.
H

ow
ev

er
,

re
al

-v
al

ue
d

ge
ne

ra
liz

at
io

n
is

st
ra

ig
ht

fo
rw

ar
d

[1
4]

[1
5]

.
T

he
co

nn
ec

tio
ns

in
an

R
B

M
ar

e
un

di
re

ct
ed

an
d

th
er

e
ar

e
no

vi
si

bl
e-

vi
si

bl
e

or
hi

dd
en

-h
id

de
n

co
nn

ec
tio

ns
(fi

g.
2)

.
A

m
on

g
ot

he
r

th
in

gs
,

th
is

bi
pa

rt
ite

ar
ch

ite
ct

ur
e

al
lo

w
s

us
to

ha
ve

m
or

e
co

nt
ro

l
ov

er
th

e
jo

in
t

di
st

ri
bu

tio
n

by
ca

st
in

g
it

in
to

a
su

m
of

co
nd

iti
on

al
pr

ob
ab

ili
tie

s.
R

B
M

s
ar

e
a

po
w

er
fu

l
re

pl
ac

em
en

t
fo

r
fu

lly
co

nn
ec

te
d

B
ol

tz
m

an
n

m
ac

hi
ne

s
w

he
n

bu
ild

in
g

a
de

ep
ar

ch
ite

ct
ur

e
be

ca
us

e
of

th
e

in
de

pe
nd

en
ce

of
un

its
w

ith
in

th
e

sa
m

e
la

ye
r,

w
hi

ch
al

lo
w

s
fo

r
m

or
e

fr
ee

do
m

an
d

fle
xi

bi
lit

y.

Fi
g.

2.
A

R
es

tr
ic

te
d

B
ol

tz
m

an
n

M
ac

hi
ne

w
ith

3
vi

si
bl

e
un

its
(i

n
bl

ue
)

an
d

4
hi

dd
en

un
its

(i
n

re
d)

.

R
B

M
s

ca
n

be
tr

ai
ne

d
us

in
g

th
e

tr
ad

iti
on

al
te

ch
ni

qu
es

of
m

ax
im

um
lik

el
ih

oo
d

[1
6]

.
Sa

m
pl

in
g

fr
om

an
R

B
M

ca
n

be
do

ne
us

in
g

G
ib

bs
sa

m
pl

in
g

m
et

ho
d

or
an

y
ot

he
rM

ar
ko

v
C

ha
in

M
on

te
C

ar
lo

(M
C

M
C

)
[1

7]
m

et
ho

d.
3)

D
ee

p
B

ol
tz

m
an

n
M

ac
hi

ne
:

D
ee

p
B

ol
tz

m
an

n
M

ac
hi

ne
(D

B
M

)
[1

8]
is

an
un

di
re

ct
ed

de
ep

ne
tw

or
k

of
se

ve
ra

l
hi

dd
en

la
ye

rs
.

In
D

B
M

s
ev

er
y

un
it

is
co

nn
ec

te
d

to
ev

er
y

un
it

fr
om

3. The connections in an RBM are undirected and the graph is a bipartite graph.

4. By the Markov property, p(h|v) and p(v|h) both factorize (Show later).

p(h|v) =
∏

i

p(hi |v)

p(v|h) =
∏

j

p(vj |h)

5. There is no need for variational Bayes and Gibbs sampling can be implemented

efficiently by alternating between hidden and visible levels, known as block Gibbs

sampling.

6. The marginal distributions p(v) and p(h) do not factorize (Show it).
40/192

Restricted Boltzmann Machine (RBM)

1. This bipartite architecture allows us to have more control over the joint

distribution.

2. RBMs are a powerful replacement for fully connected BMs when building a deep

architecture because of the independence of units within the same layer, which

allows for more freedom and flexibility.

3. The latent variables can act similarly to hidden units in a MLP.

4. RBMs can be trained using the techniques of maximum likelihood.

5. Sampling from an RBM can be done using Gibbs sampling method or any other

Markov Chain Monte Carlo (MCMC) method.

41/192

Restricted Boltzmann Machine (RBM)

1. Hidden units are conditionally independent given the visible units and vice versa.

p(vi = 1|h) = σ


∑

j

wijhj + bi




p(hj = 1|v) = σ

(∑

i

wijvi + cj

)

2. Given visible v, we can sample each h independently.

3. Given hidden h, we can sample each vj independently.

42/192

Restricted Boltzmann Machine (RBM)

1. The energy of the joint state {v,h} is defined as follows:

E (v , h; θ) = −v>Wh− b>v − a>h

where θ = {W,b, a} are the model parameters. Wij represents the symmetric

interaction term between visible variable i and hidden variable j , and bi and aj are

bias terms.

2. The joint distribution equals to

p(v,h; θ) =
1

Z (θ)
exp (−E (v,h; θ))

Z (θ) =
∑

v

∑

h

exp (−E (v,h; θ))

43/192

Restricted Boltzmann Machine (RBM)

1. The model assigns the following probability to a visible vector v

p(v; θ) =
∑

h

exp (−E (v,h; θ))

2. The hidden variables can be explicitly marginalized out

p(v; θ) =
1

Z (θ)

∑

h

exp (−E (v,h; θ))

=
1

Z (θ)

∑

h

exp
(

v>Wh + b>v + a>h
)

=
1

Z (θ)
exp(b>v)

F∏

j=1

∑

hj∈{0,1}
exp

(
ajhj +

∑

i

Wijvihj

)

=
1

Z (θ)
exp(b>v)

F∏

j=1

(
1 + exp

(
aj +

∑

i

Wijvi

))

44/192

Restricted Boltzmann Machine (RBM)

1. Bipartite graph structure of RBM has the following property.

2. Conditionals p(h|v) and p(v|h) are factorized and easy computed.

p(h|v) =
p(h, v)

p(v)
=

1

p(v)

1

Z
exp

(
b>v + c>h + v>Wh

)

=
1

Z ′
exp

(
c>h + v>Wh

)

=
1

Z ′
exp


∑

j

cjhj +
∑

j

v>W:jhj




=
1

Z ′
∏

j

exp
(
cjhj + v>W:jhj

)

3. Normalizing the distributions over individual binary h

p(hj = 1|v) =
p̃(hj = 1|v)

p̃(hj = 0|v) + p̃(hj = 1|v)

=
exp

(
cj + v>W:j

)

exp (0) + exp (cj + v>W:j)
= σ

(
cj + v>W:j

)

4. Similarly

p(vi = 1|h) = σ (ci + Wi :h) 45/192

Restricted Boltzmann Machine Training (Contrastive Divergence)

1. Step 1:Take input vector to the visible node

2. Step 2:Update the weights of all hidden nodes in parallel given the current states

of the units in the other layer.

3. Step 3: Reconstruct the input vector with the same weights used for hidden

nodes. Even though we use the same weights, the reconstructed input will be

different as multiple hidden nodes contribute the reconstructed input.

4. Step 4: Compare the input to the reconstructed input based on KL divergence.

5. Step 5: Reconstruct the input vector again and keep repeating for all the input

data and for multiple epochs. This is repeated until the system is in equilibrium

distribution.

46/192

Boltzmann Machine

Deep Boltzmann Machine

Deep Boltzmann Machine (DBM)

1. DBM is an undirected deep network of several hidden layers (Salakhutdinov and

Larochelle 2010).

2. Every unit is connected to every unit from the adjacent layers.

3. There are no connections between units of the same layer.

the adjacent layers. Similar to RBMs, there are no connections
between units of the same layer (fig. 3). DBMs can also be
viewed as a group of RBMs stacked together (fig. 4).

Fig. 3. A Deep Boltzmann Machine with 1 visible layer (in blue) and 3
hidden layers (in red).

Fig. 4. The same DBM from fig. 3 decomposed into 3 RBMs. Every two
consecutive layers, when taken together, will form an RBM.

Training of DBMs is often done in two stages: a pre-
training stage where every RBM is trained independently and
a fine tuning stage where the network is trained at once using
backpropagation. [19]

4) Deep Belief Networks: Deep belief networks are another
deep architectures consisting of many hidden layers that
revolutionized the deep learning scene when they were first
introduced in 2006. [20]. Similar to DBMs, DBNs do not have
connections within the same layer. The difference between the
two is that in DBN only the top two layers have directed
connections pointing towards the visible layer, the rest all
have undirected connections (fig. 5). The most widely used
method to train a DBN is a greedy layer-wise fast algorithm
introduced by Hinton et al. [21]. Similar to the algorithm
described above for training DBMs, this algorithm consists
of two stages: an initialization (fast) stage where every layer

is trained independently, and a fine tuning (slow) stage where
the network as a whole is trained using a variation of the
wake-sleep algorithm [22].

Fig. 5. A Deep Belief Network with a similar architecture to The DBM in
fig. 3. In DBNs, all connections are undirected except for the top two layers.

Sampling from a DBN is done by first running multiple
steps of Gibbs sampling on the two hidden layers with directed
connections. We then use the sampled latent variables to draw
samples from the visible units by running a step of ancestral
sampling through the network.

B. Autoencoders
An autoencoder is a neural network trained for the purpose

of recreating its input as the output. It is a feedforward non-
recurrent network of which the aim is to continually reduce
the dimensionality to a smaller hidden layer often called the
code representative of the input. In a similar but mirroring
process, the network then recreates the same input structure
from the code layer. The first part is called the encoder and
the second decoder (fig. 6).

The goal of an autoencoder is not to perfectly copy the input
to the output. Therefore, we must prevent it from learning a
trivial identity function which comes easily if the autoencoder
is not properly “restrained”. The aim is for our model to
pick up the underlying patterns and characteristics of the data
distribution to be able to generate new never seen before
examples of the same distribution as the examples provided
during the training phase. Formally, an autoencoder can be
written in a deterministic way (although, it is not usually the
case) as a composition of two functions:

x = fd(h) where h = fe(x)

Where fe is the encoder, fd is the decoder, x is the input
variable and h is the code.
Since an autoencoder is a particular case of neural networks,
it can be trained using the standard techniques for training
feedforward neural networks, such as mini batch gradient
descent and back-propagation.

47/192

Deep Boltzmann Machine (DBM)

1. DBMs can also be viewed as a group of RBMs stacked together.

the adjacent layers. Similar to RBMs, there are no connections
between units of the same layer (fig. 3). DBMs can also be
viewed as a group of RBMs stacked together (fig. 4).

Fig. 3. A Deep Boltzmann Machine with 1 visible layer (in blue) and 3
hidden layers (in red).

Fig. 4. The same DBM from fig. 3 decomposed into 3 RBMs. Every two
consecutive layers, when taken together, will form an RBM.

Training of DBMs is often done in two stages: a pre-
training stage where every RBM is trained independently and
a fine tuning stage where the network is trained at once using
backpropagation. [19]

4) Deep Belief Networks: Deep belief networks are another
deep architectures consisting of many hidden layers that
revolutionized the deep learning scene when they were first
introduced in 2006. [20]. Similar to DBMs, DBNs do not have
connections within the same layer. The difference between the
two is that in DBN only the top two layers have directed
connections pointing towards the visible layer, the rest all
have undirected connections (fig. 5). The most widely used
method to train a DBN is a greedy layer-wise fast algorithm
introduced by Hinton et al. [21]. Similar to the algorithm
described above for training DBMs, this algorithm consists
of two stages: an initialization (fast) stage where every layer

is trained independently, and a fine tuning (slow) stage where
the network as a whole is trained using a variation of the
wake-sleep algorithm [22].

Fig. 5. A Deep Belief Network with a similar architecture to The DBM in
fig. 3. In DBNs, all connections are undirected except for the top two layers.

Sampling from a DBN is done by first running multiple
steps of Gibbs sampling on the two hidden layers with directed
connections. We then use the sampled latent variables to draw
samples from the visible units by running a step of ancestral
sampling through the network.

B. Autoencoders
An autoencoder is a neural network trained for the purpose

of recreating its input as the output. It is a feedforward non-
recurrent network of which the aim is to continually reduce
the dimensionality to a smaller hidden layer often called the
code representative of the input. In a similar but mirroring
process, the network then recreates the same input structure
from the code layer. The first part is called the encoder and
the second decoder (fig. 6).

The goal of an autoencoder is not to perfectly copy the input
to the output. Therefore, we must prevent it from learning a
trivial identity function which comes easily if the autoencoder
is not properly “restrained”. The aim is for our model to
pick up the underlying patterns and characteristics of the data
distribution to be able to generate new never seen before
examples of the same distribution as the examples provided
during the training phase. Formally, an autoencoder can be
written in a deterministic way (although, it is not usually the
case) as a composition of two functions:

x = fd(h) where h = fe(x)

Where fe is the encoder, fd is the decoder, x is the input
variable and h is the code.
Since an autoencoder is a particular case of neural networks,
it can be trained using the standard techniques for training
feedforward neural networks, such as mini batch gradient
descent and back-propagation.

the adjacent layers. Similar to RBMs, there are no connections
between units of the same layer (fig. 3). DBMs can also be
viewed as a group of RBMs stacked together (fig. 4).

Fig. 3. A Deep Boltzmann Machine with 1 visible layer (in blue) and 3
hidden layers (in red).

Fig. 4. The same DBM from fig. 3 decomposed into 3 RBMs. Every two
consecutive layers, when taken together, will form an RBM.

Training of DBMs is often done in two stages: a pre-
training stage where every RBM is trained independently and
a fine tuning stage where the network is trained at once using
backpropagation. [19]

4) Deep Belief Networks: Deep belief networks are another
deep architectures consisting of many hidden layers that
revolutionized the deep learning scene when they were first
introduced in 2006. [20]. Similar to DBMs, DBNs do not have
connections within the same layer. The difference between the
two is that in DBN only the top two layers have directed
connections pointing towards the visible layer, the rest all
have undirected connections (fig. 5). The most widely used
method to train a DBN is a greedy layer-wise fast algorithm
introduced by Hinton et al. [21]. Similar to the algorithm
described above for training DBMs, this algorithm consists
of two stages: an initialization (fast) stage where every layer

is trained independently, and a fine tuning (slow) stage where
the network as a whole is trained using a variation of the
wake-sleep algorithm [22].

Fig. 5. A Deep Belief Network with a similar architecture to The DBM in
fig. 3. In DBNs, all connections are undirected except for the top two layers.

Sampling from a DBN is done by first running multiple
steps of Gibbs sampling on the two hidden layers with directed
connections. We then use the sampled latent variables to draw
samples from the visible units by running a step of ancestral
sampling through the network.

B. Autoencoders
An autoencoder is a neural network trained for the purpose

of recreating its input as the output. It is a feedforward non-
recurrent network of which the aim is to continually reduce
the dimensionality to a smaller hidden layer often called the
code representative of the input. In a similar but mirroring
process, the network then recreates the same input structure
from the code layer. The first part is called the encoder and
the second decoder (fig. 6).

The goal of an autoencoder is not to perfectly copy the input
to the output. Therefore, we must prevent it from learning a
trivial identity function which comes easily if the autoencoder
is not properly “restrained”. The aim is for our model to
pick up the underlying patterns and characteristics of the data
distribution to be able to generate new never seen before
examples of the same distribution as the examples provided
during the training phase. Formally, an autoencoder can be
written in a deterministic way (although, it is not usually the
case) as a composition of two functions:

x = fd(h) where h = fe(x)

Where fe is the encoder, fd is the decoder, x is the input
variable and h is the code.
Since an autoencoder is a particular case of neural networks,
it can be trained using the standard techniques for training
feedforward neural networks, such as mini batch gradient
descent and back-propagation.

2. Training of DBMs is often done in two stages:

I A pre-training stage where every RBM is trained independently.
I a fine tuning stage where the network is trained at once using backpropagation.

48/192

Deep Boltzmann Machine (DBM)

1. Considering two architectures for MNIST dataset.

 453

Deep Boltzmann Machines

500 units

1000 units

500 units

500 units

1000 units

28 x 28
pixel
image

28 x 28
pixel
image

2-layer BM 3-layer BM Training Samples

Figure 4: Left: Two deep Boltzmann machines used in experiments. Right: Random samples from the training set, and samples gen-
erated from the two deep Boltzmann machines by running the Gibbs sampler for 100,000 steps. The images shown are the probabilities
of the binary visible units given the binary states of the hidden units.

h

output

h

W W

vq(h |v)

W
1

2

2

2

2 1T T

Figure 3: After learning, DBM is used to initialize a multilayer
neural network. The marginals of approximate posterior q(h2

j =
1|v) are used as additional inputs. The network is fine-tuned by
backpropagation.

3.3 Discriminative Fine-tuning of DBM’s
After learning, the stochastic activities of the binary fea-
tures in each layer can be replaced by deterministic, real-
valued probabilities, and a deep Boltzmann machine can be
used to initialize a deterministic multilayer neural network
in the following way. For each input vector v, the mean-
field inference is used to obtain an approximate posterior
distribution q(h|v). The marginals q(h2

j = 1|v) of this
approximate posterior, together with the data, are used to
create an “augmented” input for this deep multilayer neu-
ral network as shown in Fig. 3. Standard backpropagation
can then be used to discriminatively fine-tune the model.

The unusual representation of the input is a by-product of
converting a DBM into a deterministic neural network. In
general, the gradient-based fine-tuning may choose to ig-
nore q(h2|v), i.e. drive the first-layer connections W2 to
zero, which will result in a standard neural network net.
Conversely, the network may choose to ignore the input by
driving the first-layer W1 to zero. In all of our experi-
ments, however, the network uses the entire augmented in-
put for making predictions.

4 Experimental Results
In our experiments we used the MNIST and NORB
datasets. To speed-up learning, we subdivided datasets into

mini-batches, each containing 100 cases, and updated the
weights after each mini-batch. The number of fantasy par-
ticles used for tracking the model’s statistics was also set to
1002. For the stochastic approximation algorithm, we al-
ways used 5 Gibbs updates of the fantasy particles. The ini-
tial learning rate was set 0.005 and was gradually decreased
to 0. For discriminative fine-tuning of DBM’s we used
the method of conjugate gradients on larger mini-batches
of 5000 with three line searches performed for each mini-
batch in each epoch.

4.1 MNIST
The MNIST digit dataset contains 60,000 training and
10,000 test images of ten handwritten digits (0 to 9), with
28×28 pixels. In our first experiment, we trained two deep
Boltzmann machines: one with two hidden layers (500 and
1000 hidden units), and the other with three hidden lay-
ers (500, 500, and 1000 hidden units), as shown in Fig. 4.
To estimate the model’s partition function we used 20,000
βk spaced uniformly from 0 to 1.0. Table 1 shows that
the estimates of the lower bound on the average test log-
probability were−84.62 and−85.18 for the 2- and 3-layer
BM’s respectively. This result is slightly better compared
to the lower bound of−85.97, achieved by a two-layer deep
belief network (Salakhutdinov and Murray, 2008).

Observe that the two DBM’s, that contain over 0.9 and
1.15 million parameters, do not appear to suffer much from
overfitting. The difference between the estimates of the
training and test log-probabilities was about 1 nat. Fig. 4
shows samples generated from the two DBM’s by ran-
domly initializing all binary states and running the Gibbs
sampler for 100,000 steps. Certainly, all samples look
like the real handwritten digits. We also note that without
greedy pretraining, we could not successfully learn good
DBM models of MNIST digits.

2It may seem that 100 particles is not nearly enough to rep-
resent the model’s distribution which may be highly multimodal.
However, experience has shown that the fantasy particles move
around rapidly because the learning algorithm increases the en-
ergy at the location of each fantasy particle.

2. The results using Gibbs sampling.

 453

Deep Boltzmann Machines

500 units

1000 units

500 units

500 units

1000 units

28 x 28
pixel
image

28 x 28
pixel
image

2-layer BM 3-layer BM Training Samples

Figure 4: Left: Two deep Boltzmann machines used in experiments. Right: Random samples from the training set, and samples gen-
erated from the two deep Boltzmann machines by running the Gibbs sampler for 100,000 steps. The images shown are the probabilities
of the binary visible units given the binary states of the hidden units.

h

output

h

W W

vq(h |v)

W
1

2

2

2

2 1T T

Figure 3: After learning, DBM is used to initialize a multilayer
neural network. The marginals of approximate posterior q(h2

j =
1|v) are used as additional inputs. The network is fine-tuned by
backpropagation.

3.3 Discriminative Fine-tuning of DBM’s
After learning, the stochastic activities of the binary fea-
tures in each layer can be replaced by deterministic, real-
valued probabilities, and a deep Boltzmann machine can be
used to initialize a deterministic multilayer neural network
in the following way. For each input vector v, the mean-
field inference is used to obtain an approximate posterior
distribution q(h|v). The marginals q(h2

j = 1|v) of this
approximate posterior, together with the data, are used to
create an “augmented” input for this deep multilayer neu-
ral network as shown in Fig. 3. Standard backpropagation
can then be used to discriminatively fine-tune the model.

The unusual representation of the input is a by-product of
converting a DBM into a deterministic neural network. In
general, the gradient-based fine-tuning may choose to ig-
nore q(h2|v), i.e. drive the first-layer connections W2 to
zero, which will result in a standard neural network net.
Conversely, the network may choose to ignore the input by
driving the first-layer W1 to zero. In all of our experi-
ments, however, the network uses the entire augmented in-
put for making predictions.

4 Experimental Results
In our experiments we used the MNIST and NORB
datasets. To speed-up learning, we subdivided datasets into

mini-batches, each containing 100 cases, and updated the
weights after each mini-batch. The number of fantasy par-
ticles used for tracking the model’s statistics was also set to
1002. For the stochastic approximation algorithm, we al-
ways used 5 Gibbs updates of the fantasy particles. The ini-
tial learning rate was set 0.005 and was gradually decreased
to 0. For discriminative fine-tuning of DBM’s we used
the method of conjugate gradients on larger mini-batches
of 5000 with three line searches performed for each mini-
batch in each epoch.

4.1 MNIST
The MNIST digit dataset contains 60,000 training and
10,000 test images of ten handwritten digits (0 to 9), with
28×28 pixels. In our first experiment, we trained two deep
Boltzmann machines: one with two hidden layers (500 and
1000 hidden units), and the other with three hidden lay-
ers (500, 500, and 1000 hidden units), as shown in Fig. 4.
To estimate the model’s partition function we used 20,000
βk spaced uniformly from 0 to 1.0. Table 1 shows that
the estimates of the lower bound on the average test log-
probability were−84.62 and−85.18 for the 2- and 3-layer
BM’s respectively. This result is slightly better compared
to the lower bound of−85.97, achieved by a two-layer deep
belief network (Salakhutdinov and Murray, 2008).

Observe that the two DBM’s, that contain over 0.9 and
1.15 million parameters, do not appear to suffer much from
overfitting. The difference between the estimates of the
training and test log-probabilities was about 1 nat. Fig. 4
shows samples generated from the two DBM’s by ran-
domly initializing all binary states and running the Gibbs
sampler for 100,000 steps. Certainly, all samples look
like the real handwritten digits. We also note that without
greedy pretraining, we could not successfully learn good
DBM models of MNIST digits.

2It may seem that 100 particles is not nearly enough to rep-
resent the model’s distribution which may be highly multimodal.
However, experience has shown that the fantasy particles move
around rapidly because the learning algorithm increases the en-
ergy at the location of each fantasy particle.

49/192

Deep Boltzmann Machine (DBM)

1. Considering the following architecture for NORB dataset.

 454

R. Salakhutdinov and G. Hinton

4000 units

4000 units

4000 units

Preprocessed
transformation

Stereo pair

Gaussian visible units
(raw pixel data)

Deep Boltzmann Machine Training Samples Generated Samples

Figure 5: Left: The architecture of deep Boltzmann machine used for NORB. Right: Random samples from the training set, and
samples generated from the deep Boltzmann machines by running the Gibbs sampler for 10,000 steps.

Table 1: Results of estimating partition functions of BMmodels,
along with the estimates of lower bound on the average training
and test log-probabilities. For all BM’s we used 20,000 interme-
diate distributions. Results were averaged over 100 AIS runs.

Estimates Avg. log-prob.

ln Ẑ ln (Ẑ ± σ̂) Test Train

2-layer BM 356.18 356.06, 356.29 −84.62 −83.61
3-layer BM 456.57 456.34, 456.75 −85.10 −84.49

To estimate how loose the variational bound is, we ran-
domly sampled 100 test cases, 10 of each class, and ran
AIS to estimate the true test log-probability3 for the 2-layer
Boltzmann machine. The estimate of the variational bound
was -83.35 per test case, whereas the estimate of the true
test log-probability was -82.86. The difference of about
0.5 nats shows that the bound is rather tight.

For a simple comparison we also trained several mix-
ture of Bernoullis models with 10, 100, and 500 compo-
nents. The corresponding average test log-probabilities
were −168.95, −142.63, and −137.64. Compared to
DBM’s, a mixture of Bernoullis performs very badly. The
difference of over 50 nats per test case is striking.

Finally, after discriminative fine-tuning, the 2-layer BM
achieves an error rate of 0.95% on the full MNIST test
set. This is, to our knowledge, the best published result
on the permutation-invariant version of the MNIST task.
The 3-layer BM gives a slightly worse error rate of 1.01%.
This is compared to 1.4% achieved by SVM’s (Decoste and
Schölkopf, 2002), 1.6% achieved by randomly initialized
backprop, and 1.2% achieved by the deep belief network,
described in Hinton et al. (2006).

3Note that computationally, this is equivalent to estimating
100 partition functions.

4.2 NORB
Results on MNIST show that DBM’s can significantly out-
perform many other models on the well-studied but rela-
tively simple task of handwritten digit recognition. In this
section we present results on NORB, which is consider-
ably more difficult dataset than MNIST. NORB (LeCun
et al., 2004) contains images of 50 different 3D toy ob-
jects with 10 objects in each of five generic classes: cars,
trucks, planes, animals, and humans. Each object is cap-
tured from different viewpoints and under various lighting
conditions. The training set contains 24,300 stereo image
pairs of 25 objects, 5 per class, while the test set contains
24,300 stereo pairs of the remaining, different 25 objects.
The goal is to classify each previously unseen object into
its generic class. From the training data, 4,300 were set
aside for validation.

Each image has 96×96 pixels with integer greyscale values
in the range [0,255]. To speed-up experiments, we reduced
the dimensionality of each image from 9216 down to 4488
by using larger pixels around the edge of the image4. A ran-
dom sample from the training data used in our experiments
is shown in Fig. 5.

To model raw pixel data, we use an RBM with Gaussian
visible and binary hidden units. Gaussian-binary RBM’s
have been previously successfully applied for modeling
greyscale images, such as images of faces (Hinton and
Salakhutdinov, 2006). However, learning an RBM with
Gaussian units can be slow, particularly when the input di-
mensionality is quite large. In this paper we follow the
approach of (Nair and Hinton, 2008) by first learning a
Gaussian-binary RBM and then treating the the activities
of its hidden layer as “preprocessed” data. Effectively, the
learned low-level RBM acts as a preprocessor that converts

4The resulting dimensionality of each training vector, repre-
senting a stereo pair, was 2×4488 = 8976.

2. The results using Gibbs sampling.

 454

R. Salakhutdinov and G. Hinton

4000 units

4000 units

4000 units

Preprocessed
transformation

Stereo pair

Gaussian visible units
(raw pixel data)

Deep Boltzmann Machine Training Samples Generated Samples

Figure 5: Left: The architecture of deep Boltzmann machine used for NORB. Right: Random samples from the training set, and
samples generated from the deep Boltzmann machines by running the Gibbs sampler for 10,000 steps.

Table 1: Results of estimating partition functions of BMmodels,
along with the estimates of lower bound on the average training
and test log-probabilities. For all BM’s we used 20,000 interme-
diate distributions. Results were averaged over 100 AIS runs.

Estimates Avg. log-prob.

ln Ẑ ln (Ẑ ± σ̂) Test Train

2-layer BM 356.18 356.06, 356.29 −84.62 −83.61
3-layer BM 456.57 456.34, 456.75 −85.10 −84.49

To estimate how loose the variational bound is, we ran-
domly sampled 100 test cases, 10 of each class, and ran
AIS to estimate the true test log-probability3 for the 2-layer
Boltzmann machine. The estimate of the variational bound
was -83.35 per test case, whereas the estimate of the true
test log-probability was -82.86. The difference of about
0.5 nats shows that the bound is rather tight.

For a simple comparison we also trained several mix-
ture of Bernoullis models with 10, 100, and 500 compo-
nents. The corresponding average test log-probabilities
were −168.95, −142.63, and −137.64. Compared to
DBM’s, a mixture of Bernoullis performs very badly. The
difference of over 50 nats per test case is striking.

Finally, after discriminative fine-tuning, the 2-layer BM
achieves an error rate of 0.95% on the full MNIST test
set. This is, to our knowledge, the best published result
on the permutation-invariant version of the MNIST task.
The 3-layer BM gives a slightly worse error rate of 1.01%.
This is compared to 1.4% achieved by SVM’s (Decoste and
Schölkopf, 2002), 1.6% achieved by randomly initialized
backprop, and 1.2% achieved by the deep belief network,
described in Hinton et al. (2006).

3Note that computationally, this is equivalent to estimating
100 partition functions.

4.2 NORB
Results on MNIST show that DBM’s can significantly out-
perform many other models on the well-studied but rela-
tively simple task of handwritten digit recognition. In this
section we present results on NORB, which is consider-
ably more difficult dataset than MNIST. NORB (LeCun
et al., 2004) contains images of 50 different 3D toy ob-
jects with 10 objects in each of five generic classes: cars,
trucks, planes, animals, and humans. Each object is cap-
tured from different viewpoints and under various lighting
conditions. The training set contains 24,300 stereo image
pairs of 25 objects, 5 per class, while the test set contains
24,300 stereo pairs of the remaining, different 25 objects.
The goal is to classify each previously unseen object into
its generic class. From the training data, 4,300 were set
aside for validation.

Each image has 96×96 pixels with integer greyscale values
in the range [0,255]. To speed-up experiments, we reduced
the dimensionality of each image from 9216 down to 4488
by using larger pixels around the edge of the image4. A ran-
dom sample from the training data used in our experiments
is shown in Fig. 5.

To model raw pixel data, we use an RBM with Gaussian
visible and binary hidden units. Gaussian-binary RBM’s
have been previously successfully applied for modeling
greyscale images, such as images of faces (Hinton and
Salakhutdinov, 2006). However, learning an RBM with
Gaussian units can be slow, particularly when the input di-
mensionality is quite large. In this paper we follow the
approach of (Nair and Hinton, 2008) by first learning a
Gaussian-binary RBM and then treating the the activities
of its hidden layer as “preprocessed” data. Effectively, the
learned low-level RBM acts as a preprocessor that converts

4The resulting dimensionality of each training vector, repre-
senting a stereo pair, was 2×4488 = 8976.

50/192

Boltzmann Machine

Deep Belief Networks

Deep Belief Networks (DBN)

1. DBN is a hybrid PGM involving both directed and undirected connections.

2. Deep belief networks consisting of many hidden layers.

3. Connections between top two layers are undirected

4. Connections between all other layers is directed, pointing towards data.

the adjacent layers. Similar to RBMs, there are no connections
between units of the same layer (fig. 3). DBMs can also be
viewed as a group of RBMs stacked together (fig. 4).

Fig. 3. A Deep Boltzmann Machine with 1 visible layer (in blue) and 3
hidden layers (in red).

Fig. 4. The same DBM from fig. 3 decomposed into 3 RBMs. Every two
consecutive layers, when taken together, will form an RBM.

Training of DBMs is often done in two stages: a pre-
training stage where every RBM is trained independently and
a fine tuning stage where the network is trained at once using
backpropagation. [19]

4) Deep Belief Networks: Deep belief networks are another
deep architectures consisting of many hidden layers that
revolutionized the deep learning scene when they were first
introduced in 2006. [20]. Similar to DBMs, DBNs do not have
connections within the same layer. The difference between the
two is that in DBN only the top two layers have directed
connections pointing towards the visible layer, the rest all
have undirected connections (fig. 5). The most widely used
method to train a DBN is a greedy layer-wise fast algorithm
introduced by Hinton et al. [21]. Similar to the algorithm
described above for training DBMs, this algorithm consists
of two stages: an initialization (fast) stage where every layer

is trained independently, and a fine tuning (slow) stage where
the network as a whole is trained using a variation of the
wake-sleep algorithm [22].

Fig. 5. A Deep Belief Network with a similar architecture to The DBM in
fig. 3. In DBNs, all connections are undirected except for the top two layers.

Sampling from a DBN is done by first running multiple
steps of Gibbs sampling on the two hidden layers with directed
connections. We then use the sampled latent variables to draw
samples from the visible units by running a step of ancestral
sampling through the network.

B. Autoencoders
An autoencoder is a neural network trained for the purpose

of recreating its input as the output. It is a feedforward non-
recurrent network of which the aim is to continually reduce
the dimensionality to a smaller hidden layer often called the
code representative of the input. In a similar but mirroring
process, the network then recreates the same input structure
from the code layer. The first part is called the encoder and
the second decoder (fig. 6).

The goal of an autoencoder is not to perfectly copy the input
to the output. Therefore, we must prevent it from learning a
trivial identity function which comes easily if the autoencoder
is not properly “restrained”. The aim is for our model to
pick up the underlying patterns and characteristics of the data
distribution to be able to generate new never seen before
examples of the same distribution as the examples provided
during the training phase. Formally, an autoencoder can be
written in a deterministic way (although, it is not usually the
case) as a composition of two functions:

x = fd(h) where h = fe(x)

Where fe is the encoder, fd is the decoder, x is the input
variable and h is the code.
Since an autoencoder is a particular case of neural networks,
it can be trained using the standard techniques for training
feedforward neural networks, such as mini batch gradient
descent and back-propagation.

p(v,h(1),h(2), . . . ,h(k)) = p(v|h(1))p(h(1)|h(2)) . . . p(h(k−2)|h(k−1))p(h(k−1),h(k))

5. p(h(k−1),h(k)) (the marginal distribution over the top two layers) is an RBM.

51/192

Deep Belief Networks (distribution represented by DBN)

1. A DBN with k hidden layers has k weight matrices W(1), . . . ,W(k).

2. It contains k + 1 bias vectors b(0), . . . ,b(1), where b(0) is bias vector for visible

layer.

3. Probability distribution represented by DBN is

p(h(k−1),h(k)) ∝ exp
[
b(k)>h(k−1) + b(k−1)>h(k) + h(k−1)>W(k)h(k)

]

p(h
(j)
i = 1|h(j+1)) = σ

(
b

(j)
i + W

(j+1)
:i h(j+1)

)

p(vi = 1|h(1)) = σ
(
b

(0)
i + W

(1)
:i h(1)

)

4. For generating a sample from a DBN, do

I Use several Gibbs sampling steps from top two hidden layers.
I Use a single pass of ancestral sampling through rest of model.

52/192

Deep Belief Networks Training

1. Deep belief networks training

53/192

Autoencoder models

Autoencoder

1. An autoencoder consists of 3 components: encoder, code and decoder.

2. The encoder compresses the input and produces the code, the decoder then

reconstructs the input only using this code.

54/192

Autoencoder

1. Autoencoders are simple neural networks that their output is their input.

2. Their goal is to learn how to reconstruct the input-data.

55/192

How train an Autoencoder

1. We don’t use labels but the Autoencoder is trained in supervised manner.

Generative models Autoencoders

Train such that features can be used

to reconstruct original data

Doesn’t use labels!

56/192

Probabilistic model of Autoencoders

1. The Autoencoder has the following probabilistic model.

(Goodfellow 2016)

CHAPTER 14. AUTOENCODERS

Typically, the output variables are treated as being conditionally independent
given h so that this probability distribution is inexpensive to evaluate, but some
techniques such as mixture density outputs allow tractable modeling of outputs
with correlations.

xx rr

hh

pencoder(h | x) pdecoder(x | h)

Figure 14.2: The structure of a stochastic autoencoder, in which both the encoder and the
decoder are not simple functions but instead involve some noise injection, meaning that
their output can be seen as sampled from a distribution, pencoder(h | x) for the encoder
and pdecoder(x | h) for the decoder.

To make a more radical departure from the feedforward networks we have seen
previously, we can also generalize the notion of an encoding function f(x) to
an encoding distribution pencoder(h | x), as illustrated in figure 14.2.

Any latent variable model pmodel(h, x) defines a stochastic encoder

pencoder(h | x) = pmodel(h | x) (14.12)

and a stochastic decoder

pdecoder(x | h) = pmodel(x | h). (14.13)

In general, the encoder and decoder distributions are not necessarily conditional
distributions compatible with a unique joint distribution pmodel(x, h). Alain et al.
(2015) showed that training the encoder and decoder as a denoising autoencoder
will tend to make them compatible asymptotically (with enough capacity and
examples).

14.5 Denoising Autoencoders

The denoising autoencoder (DAE) is an autoencoder that receives a corrupted
data point as input and is trained to predict the original, uncorrupted data point
as its output.

The DAE training procedure is illustrated in figure 14.3. We introduce a
corruption process C(x̃ | x) which represents a conditional distribution over

510

Structure of an autoencoder

57/192

Autoencoders for generation

1. Can we generate new sample from an auto encoder?

2. Suppose training data is generated from latent representation z .

3. x is an input sample, z is latent factors used to generate x .

Features capture factors of
variation in training data.

Can we generate new images

from an auto encoder?

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Generative models Autoencoders

Autoencoders for generation

Intuition: x is an image, z is latent factors

used to generate x: attributes, orientation, etc.

4. How generate a new sample?

I Sample from some prior p(z).
I Obtain p(x |z).

58/192

Autoencoders for generation

1. A sample generated from an Autoencoder.

(Goodfellow 2017)

Mean Squared Error Can Ignore Small but Task-Relevant Features

CHAPTER 15. REPRESENTATION LEARNING

Input Reconstruction

Figure 15.5: An autoencoder trained with mean squared error for a robotics task has
failed to reconstruct a ping pong ball. The existence of the ping pong ball and all its
spatial coordinates are important underlying causal factors that generate the image and
are relevant to the robotics task. Unfortunately, the autoencoder has limited capacity,
and the training with mean squared error did not identify the ping pong ball as being
salient enough to encode. Images graciously provided by Chelsea Finn.

of a robotics task in which an autoencoder has failed to learn to encode a small
ping pong ball. This same robot is capable of successfully interacting with larger
objects, such as baseballs, which are more salient according to mean squared error.

Other definitions of salience are possible. For example, if a group of pixels
follows a highly recognizable pattern, even if that pattern does not involve extreme
brightness or darkness, then that pattern could be considered extremely salient.
One way to implement such a definition of salience is to use a recently developed
approach called generative adversarial networks (Goodfellow et al., 2014c).
In this approach, a generative model is trained to fool a feedforward classifier. The
feedforward classifier attempts to recognize all samples from the generative model
as being fake and all samples from the training set as being real. In this framework,
any structured pattern that the feedforward network can recognize is highly salient.
The generative adversarial network is described in more detail in section 20.10.4.
For the purposes of the present discussion, it is sufficient to understand that the
networks learn how to determine what is salient. Lotter et al. (2015) showed that
models trained to generate images of human heads will often neglect to generate
the ears when trained with mean squared error, but will successfully generate
the ears when trained with the adversarial framework. Because the ears are not
extremely bright or dark compared to the surrounding skin, they are not especially
salient according to mean squared error loss, but their highly recognizable shape

542

The ping pong ball vanishes because it is not large enough
to significantly affect the mean squared error

Generative models Autoencoders

Autoencoders for generation

2. MSE can ignore small but task-relevant features.

3. The ping pong ball vanishes because it is not large enough to significantly affect

the MSE.

4. Unfortunately, the autoencoder has limited capacity, and the training with MSE

did not identify the relevant features.

5. We want to sample from complex, high-dimensional training distribution. No

direct way to do this! How do it?
59/192

Autoregressive models

Autoregressive models

1. We assume we are given access to a dataset S = {x1, x2, . . . , xm} of n-dimensional

points x .

2. For simplicity, we assume points are binary, i.e., x ∈ {0, 1}n.

3. Using chain rule, we can factorize the joint distribution as

p(x) = p(x1, x2, . . . , xn) =
n∏

i=1

p(xi |x1, x2, . . . , xi−1) =
n∏

i=1

p(xi |x<i)

where x<i = [x1, x2, . . . , xi−1] denotes the vector of random variables with index

less than i .

4. The chain rule factorization can be expressed graphically as a Bayesian network.

60/192

Autoregressive models

1. The autoregressive constraint is a way to model sequential data.

2. The factorization contains n factors and some of these factors contain many

parameters (O(2n) in total).

3. It is infeasible to learn such an exponential number of parameters.

4. AR models use (deep) neural network to parameterize these factors p(xi |x<i).

5. We assume the conditional distributions p(xi |x<i) to correspond to a Bernoulli

random variable and learn a function that maps the proceeding random variables

x1, x2, . . . , xi−1 to the mean of this distribution as

pθi (xi |x<i = Bern(fi (x1, x2, . . . , xi−1))

where θi denotes the set of parameters used to specify the mean function

fi : {0, 1}i−1 7→ [0, 1].

6. The number of parameters of an autoregressive generative model equals to∑n
i=1|θi |.

7. Tractable exact likelihood computations.

8. No complex integral over latent variables in likelihood

9. Slow sequential sampling process.

10. Cannot rely on latent variables to couple pixels.
61/192

Autoregressive models

1. The nth output should only be connected to the previous n − 1 inputs.

2. For example, when computing p(x4|x3, x2, x1) the only inputs that we should

consider are x1, x2, x3 because these are the only variables given to us while

computing the conditional probability.

6/24

x1 x2 x3 x4

p(x
1
)

p(x
2
|x1

)

p(x
3
|x1

, x2
)

p(x
4
|x1

, x2
, x3

)

V3

W.,<k

x1 x2 x3 x4

p(x
1
)

p(x
2
|x1

)

p(x
3
|x1

, x2
)

p(x
4
|x1

, x2
, x3

)

V3

W.,<k

At the output layer we want to predict
n conditional probability distributions (each
corresponding to one of the factors in our joint
distribution)

At the input layer we are given the n input
variables

Now the catch is that the nth output should
only be connected to the previous n-1 inputs

In particular, when we are computing
p(x3|x2, x1) the only inputs that we should
consider are x1, x2 because these are the only
variables given to us while computing the
conditional

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

62/192

Autoregressive models

1. In the simplest case, we can specify the function as a linear combination of the

input elements followed by a sigmoid non-linearity (to restrict the output to lie

between 0 and 1).

2. This gives us the formulation of a fully-visible sigmoid belief network (FVSBN).

fi (x1, x2, . . . , xi−1) = σ


ai0 +

i−1∑

j=1

aijxj




where σ is sigmoid function and θi = {ai0, . . . , aii−1}.
3. At the output layer we want to predict n conditional probability distributions.

4. At the input layer we are given the n input variables.

Fully Visible Sigmoid Belief Network (FVSBN)

The conditional variables Xi | X1, · · · , Xi�1 are Bernoulli with parameters

x̂i = p(Xi = 1|x1, · · · , xi�1;↵
i) = p(Xi = 1|x<i ;↵

i) = �(↵i
0 +

i�1X

j=1

↵i
jxj)

How to evaluate p(x1, · · · , x784)? Multiply all the conditionals (factors)
In the above example:

p(X1 = 0, X2 = 1, X3 = 1, X4 = 0) = (1 � x̂1) ⇥ x̂2 ⇥ x̂3 ⇥ (1 � x̂4)

= (1 � x̂1) ⇥ x̂2(X1 = 0) ⇥ x̂3(X1 = 0, X2 = 1) ⇥ (1 � x̂4(X1 = 0, X2 = 1, X3 = 1))

How to sample from p(x1, · · · , x784)?
1 Sample x1 ⇠ p(x1) (np.random.choice([1,0],p=[x̂1, 1 � x̂1]))
2 Sample x2 ⇠ p(x2 | x1 = x1)
3 Sample x3 ⇠ p(x3 | x1 = x1, x2 = x2) · · ·

How many parameters? 1 + 2 + 3 + · · · + n ⇡ n2/2
Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 3 7 / 31

5. The conditional variables xi |x1, . . . , xi−1 are Bernoulli with parameters

x̂i = p(xi = 1|x1, . . . , xi−1; θi) = σ


ai0 +

i−1∑

j=1

aijxj




63/192

Autoregressive models

1. How to evaluate p(x1, . . . , x900)?

2. Multiply all the conditionals factors.

3. How to sample from p(x1, . . . , x900)?

I Sample x̄1 ∼ p(x1).
I Sample x̄2 ∼ p(x2|x1 = x̄1).
I Sample x̄3 ∼ p(x3|x1 = x̄1, x2 = x̄2).

4. How many parameters? 1 + 2 + 3 + . . .+ n ≈ n2

2

Fully Visible Sigmoid Belief Network (FVSBN)

The conditional variables Xi | X1, · · · , Xi�1 are Bernoulli with parameters

x̂i = p(Xi = 1|x1, · · · , xi�1;↵
i) = p(Xi = 1|x<i ;↵

i) = �(↵i
0 +

i�1X

j=1

↵i
jxj)

How to evaluate p(x1, · · · , x784)? Multiply all the conditionals (factors)
In the above example:

p(X1 = 0, X2 = 1, X3 = 1, X4 = 0) = (1 � x̂1) ⇥ x̂2 ⇥ x̂3 ⇥ (1 � x̂4)

= (1 � x̂1) ⇥ x̂2(X1 = 0) ⇥ x̂3(X1 = 0, X2 = 1) ⇥ (1 � x̂4(X1 = 0, X2 = 1, X3 = 1))

How to sample from p(x1, · · · , x784)?
1 Sample x1 ⇠ p(x1) (np.random.choice([1,0],p=[x̂1, 1 � x̂1]))
2 Sample x2 ⇠ p(x2 | x1 = x1)
3 Sample x3 ⇠ p(x3 | x1 = x1, x2 = x2) · · ·

How many parameters? 1 + 2 + 3 + · · · + n ⇡ n2/2
Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 3 7 / 31

5. This model is called Fully Visible Sigmoid Belief Network (FVSBN).

64/192

FVSBN results (Gan et al. 2015)

1. Left: Training (Caltech 101 Silhouettes) Right: Samples from the model

FVSBN Results

Training data on the left (Caltech 101 Silhouettes). Samples from the
model on the right.
Figure from Learning Deep Sigmoid Belief Networks with Data
Augmentation, 2015.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 3 8 / 31

65/192

Autoregressive models

Neural Autoregressive Density Estimator

Neural Autoregressive Density Estimator

1. To increase the expressiveness of an autoregressive generative model, we can use

more flexible parameterizations for the mean function such as MLP instead of

logistic regression.

2. For example, consider the case of a neural network with 1 hidden layer.

3. The mean function for variable i can be expressed as

hi = σ(Aix<i + ci)

fi (x1, x2, . . . , xi−1) = σ
(
aihi + bi

)

where hi ∈ Rd is hidden layer activations of MLP.

4. Hence, we have the following architecture

66/192

Neural Autoregressive Density Estimator

1. To improve model, use a neural network with one hidden layer instead of logistic

regression.

hi = σ(Aix<i + ci)

x̂i = p(xi = 1|x1, . . . , xi−1;θi) = σ(α(i)hi + bi)

θi = {Ai , ci ,α
(i), bi}

2. hi ∈ Rd denotes the hidden layer activations for the MLP.

3. θi = {Ai ∈ Rd×(i−1), ci ∈ Rd ,α(i) ∈ Rd , bi ∈ R} are the set of parameters.

4. The total number of parameters in this model is dominated by the matrices Ai

and given by O(n2d).

67/192

Neural Autoregressive Density Estimator

1. The Neural Autoregressive Density Estimator (NADE) provides an alternate

MLP-based parameterization that is more statistically and computationally

efficient than the given approach (Larochelle and Murray 2011).

2. In NADE, parameters are shared across the functions used for evaluating the

conditionals.

3. The hidden layer activations are specified as

hi = σ(W.,<ix<i + c)

x̂i = p(xi = 1|x1, . . . , xi−1;θi) = σ(α(i)hi + bi)

4. θ = {W ∈ Rd×n, c ∈ Rd , {α(i) ∈ Rd}ni=1, {bi ∈ R}ni=1} is the full set of

parameters.

5. The weight matrix W and the bias vector c are shared across the conditionals.

68/192

Neural Autoregressive Density Estimator

1. Sharing parameters has two benefits:

I The total number of parameters gets reduced from O(n2d) to O(nd).
I The hidden unit activations can be evaluated in O(nd) time via the following

recursive strategy:

hi = σ(ai)

ai+1 = ai + W [., i]xi

with the base case given by a1 = c.

2. Training of NADE is done by minimizing the average negative log-likelihood of the

parameters given the training set:

− 1

T

T∑

i=1

log p(xi)

69/192

Neural Autoregressive Density Estimator Results

1. Samples from NADE trained on a binary version of MNIST.

 36

The Neural Autoregressive Distribution Estimator

Figure 2: (Left): samples from NADE trained on a binary version of mnist. (Middle): probabilities from
which each pixel was sampled. (Right): visualization of some of the rows of W. This figure is better seen on a
computer screen.

set it to 0, to obtain:

0 =
@KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

@⌧k(i)

0 = �ck �Wk,·µ(i) + log

✓
⌧k(i)

1� ⌧k(i)

◆

⌧k(i)

1� ⌧k(i)
= exp(ck + Wk,·µ(i))

⌧k(i) =
exp(ck + Wk,·µ(i))

1 + exp(ck + Wk,·µ(i))

⌧k(i) = sigm

0
@ck +

X

j�i

Wkjµj(i) +
X

j<i

Wkjvj

1
A

where in the last step we have replaced the ma-
trix/vector multiplication Wk,·µ(i) by its explicit sum-
mation form and have used the fact that µj(i) = vj for
j < i.

Similarly, we set the derivative with respect to µj(i)
for j � i to 0 and obtain:

0 =
@KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

@µj(i)

0 = �bj � ⌧(i)>W·,j + log

✓
µj(i)

1� µj(i)

◆

µj(i)

1� µj(i)
= exp(bj + ⌧(i)>W·,j)

µj(i) =
exp(bj + ⌧(i)>W·,j)

1 + exp(bj + ⌧(i)>W·,j)

µj(i) = sigm

bj +

X

k

Wkj⌧k(i)

!

We then recover the mean-field updates of Equa-
tions 7 and 8.

References

Bengio, Y., & Bengio, S. (2000). Modeling high-
dimensional discrete data with multi-layer neural
networks. Advances in Neural Information Process-
ing Systems 12 (NIPS’99) (pp. 400–406). MIT Press.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H.
(2007). Greedy layer-wise training of deep networks.
Advances in Neural Information Processing Systems
19 (NIPS’06) (pp. 153–160). MIT Press.

Chen, X. R., Krishnaiah, P. R., & Liang, W. W. (1989).
Estimation of multivariate binary density using or-

thogonal functions. Journal of Multivariate Analysis,
31, 178–186.

Freund, Y., & Haussler, D. (1992). A fast and exact
learning rule for a restricted class of Boltzmann ma-
chines. Advances in Neural Information Processing
Systems 4 (NIPS’91) (pp. 912–919). Denver, CO:
Morgan Kaufmann, San Mateo.

Frey, B. J. (1998). Graphical models for machine learn-
ing and digital communication. MIT Press.

Frey, B. J., Hinton, G. E., & Dayan, P. (1996). Does the
wake-sleep algorithm learn good density estimators?
Advances in Neural Information Processing Systems
8 (NIPS’95) (pp. 661–670). MIT Press, Cambridge,

MA.

Hinton, G. E. (2002). Training products of experts by

minimizing contrastive divergence. Neural Computa-
tion, 14, 1771–1800.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A
fast learning algorithm for deep belief nets. Neural
Computation, 18, 1527–1554.

Larochelle, H., & Bengio, Y. (2008). Classification using
discriminative restricted Boltzmann machines. Pro-
ceedings of the 25th Annual International Conference

70/192

Deep NADE

1. The input to the network (DeepNADE) is the concatenation of the masked data

and the mask itself (Uria, Côté, et al. 2016).

2. This allows the network to identify cases when input data is truly zero from cases

when input data is zero because of the mask.

3. NADE also explored other autoencoder architectures such as convolutional neural

networks

4. DeepNade with two hidden layers

71/192

Real-Valued NADE

1. The RNADE algorithm extends NADE to learn generative models over real-valued

data (Uria, Murray, and Larochelle 2013).

2. For real-valued variables, the conditionals are modeled via a continuous

distribution such as mixture of K Gaussian.

3. Instead of learning a mean function, we know learn the means µi ,1, µi ,2, . . . , µi ,K ,

variances σi ,1, σi ,2, . . . , σi ,K , and probability of sampling from each mixture

πi ,1, πi ,K , . . . , πi ,K of the K Gaussian for every conditional.

p(xi |x<i) =
K∑

j=1

πijN (µij , σ
2
ij)

72/192

Real-Valued NADE

1. Output of the network are parameters

of a mixture model for p(xk |x<k)

2. Means are µi ,k = bµii ,k + αµi
i ,khi

3. Standard deviations are

σi ,k = exp
(
bσii ,k + ασi

i ,khi

)

4. Mixing weights are

πi ,k = softmax
(
bπii ,k + απi

i ,khi

)

5. Please study DocNADE.

REAL-VALUED NADE
(Uria, Murray, Larochelle)

13

x1 x2 x3 x4

h hh(1) h
(4)(3)(2)

bx1 bx2 bx3 bx4

• RNADE: models real-valued observations by
‣ outputting the parameters 

of a mixture model for  

Means

Std. deviations

Mixing weights

p(xk|x<k)

�ik = exp(b�i

k + V�i

k,·h
(k))

µik = bµi

k + Vµi

k,·h
(k)

⇡ik = softmax(b⇡i

k + V⇡i

k,·h
(k))

73/192

Autoregressive models vs. Autoencoders

1. Considering the following models.

Autoregressive models vs. autoencoders

On the surface, FVSBN and NADE look similar to an autoencoder:

an encoder e(·). E.g., e(x) = �(W 2(W 1x + b1) + b2)

a decoder such that d(e(x)) ⇡ x . E.g., d(h) = �(Vh + c).

Loss function
Binary r.v.: min

W 1,W 2,b1,b2,V ,c

X

x2D

X

i

�xi log x̂i � (1 � xi) log(1 � x̂i)

Continuous r.v.: min
W 1,W 2,b1,b2,V ,c

X

x2D

X

i

(xi � x̂i)
2

e and d are constrained so that we don’t learn identity mappings. Hope that
e(x) is a meaningful, compressed representation of x (feature learning)

A vanilla autoencoder is not a generative model: it does not define a
distribution over x we can sample from to generate new data points.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 3 15 / 31

2. FVSBN and NADE look similar to an autoencoder.

3. An encoder computing hidden.

4. A decoder computing densities.

5. A loss function, which is likelihood.

74/192

Autoregressive Autoencoders

1. An autoencoder is not a generative model: it does not define a distribution over x

for sampling new data points.

A
utoregressive

auto
enco

ders

O
n

th
e

su
rface,

F
V

S
B

N
an

d
N

A
D

E
lo

ok
sim

ilar
to

an
a
u
to

en
co

d
er.

C
an

w
e

get
a

gen
erative

m
o
d
el

from
an

au
to

en
co

d
er?

W
e

n
eed

to
m

ake
su

re
it

corresp
on

d
s

to
a

valid
B

ayesian
N

etw
ork

(D
A
G

stru
ctu

re),
i.e.,

w
e

n
eed

an
ord

erin
g.

If
th

e
ord

erin
g

is
1,2

,3,
th

en
:

x̂
1

can
n
ot

d
ep

en
d

on
an

y
in

p
u
t

x
.

T
h
en

at
gen

eration
tim

e
w
e

d
on

’t
n
eed

an
y

in
p
u
t

to
get

started
x̂
2

can
on

ly
d
ep

en
d

on
x
1

···
B

o
n
u
s:

w
e

can
u
se

a
sin

gle
n
eu

ral
n
etw

ork
(w

ith
n

ou
tp

u
ts)

to
pro

d
u
ce

all
th

e
p
aram

eters.
In

con
trast,

N
A

D
E

req
u
ires

n
p
asses.

M
u
ch

m
ore

e�
cien

t
on

m
o
d
ern

h
ard

w
are.

S
tefa

n
o

E
rm

o
n
,
A

d
itya

G
ro

ver
(A

I
L
a
b
)

D
eep

G
en

era
tive

M
o
d
els

L
ectu

re
3

1
6

/
3
1

2. Can we get a generative model from an autoencoder?

3. We need to make sure it corresponds to a valid Bayesian Network, i.e., we need an
ordering. If the ordering is 1, 2, 3, then

I x̂1 cannot depend on any input x .
I x̂2 can only depend on x1.

4. We can use a single neural network to produce all the parameters.

75/192

Masked Autoencoder for Distribution Estimation (MADE)

1. MADE is an autoencoder that preserves autoregressive property (Germain et al.

2015).

76/192

Masked Autoencoder for Distribution Estimation (MADE)

1. MADE is a specially designed architecture to enforce the autoregressive property

in the autoencoder efficiently.

2. MADE removes the contribution of certain hidden units by using mask matrices

so that each input dimension is reconstructed only from previous dimensions in a

given ordering in a single pass.

3. In a multilayer fully-connected neural network, say, we have L hidden layers with

weight matrices W1, . . . ,WL and an output layer with weight matrix V . The

output x̂ has dimensions x̂i = p(xi |x1:i−1)

4. Without any mask, we have

h0 = x

hl = activationl(Wlhl−1 + bl)

x̂ = σ(VhL + c)

77/192

Masked Autoencoder for Distribution Estimation (MADE)

1. Without any mask, we have

h0 = x

hl = activationl(Wlhl−1 + bl)

x̂ = σ(VhL + c)

2. To zero out some connections between layers, we can simply element-wise

multiply every weight matrix by a binary mask matrix.

hl = activationl((Wl�MWl
)hl−1 + bl)

x̂ = σ((V�MV)hL + c)

3. Mask matrix is constructed by a labeling process.

78/192

Masked Autoencoder for Distribution Estimation (MADE)

22/24

x1 x2 x3 x4

x̂1 x̂2 x̂3 x̂4

W1

W2

V

Masks

= MV

= MW2

= MW1

x1 x2 x3 x4

1 2 3 4

1 2 1 2 3

1 1 2 1 3

1 2 3 4

p(
x 1

)

p(
x 2

|x 1
)

p(
x 3

|x 1
, x

2
)

p(
x 4

|x 1
, x

2
, x

3
)

For example we can apply the following mask at layer 2

2
66664

W 2
11 W 2

12 W 2
13 W 2

14 W 2
15

W 2
21 W 2

22 W 2
23 W 2

24 W 2
25

W 2
31 W 2

32 W 2
33 W 2

34 W 2
35

W 2
41 W 2

42 W 2
43 W 2

44 W 2
45

W 2
51 W 2

52 W 2
53 W 2

54 W 2
55

3
77775
�

2
66664

1 0 1 0 0
1 0 1 0 0
1 1 1 1 0
1 0 1 0 0
1 1 1 1 1

3
77775

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

22/24

x1 x2 x3 x4

x̂1 x̂2 x̂3 x̂4

W1

W2

V

Masks

= MV

= MW2

= MW1

x1 x2 x3 x4

1 2 3 4

1 2 1 2 3

1 1 2 1 3

1 2 3 4

p(
x 1

)

p(
x 2

|x 1
)

p(
x 3

|x 1
, x

2
)

p(
x 4

|x 1
, x

2
, x

3
)

For example we can apply the following mask at layer 2

2
66664

W 2
11 W 2

12 W 2
13 W 2

14 W 2
15

W 2
21 W 2

22 W 2
23 W 2

24 W 2
25

W 2
31 W 2

32 W 2
33 W 2

34 W 2
35

W 2
41 W 2

42 W 2
43 W 2

44 W 2
45

W 2
51 W 2

52 W 2
53 W 2

54 W 2
55

3
77775
�

2
66664

1 0 1 0 0
1 0 1 0 0
1 1 1 1 0
1 0 1 0 0
1 1 1 1 1

3
77775

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

20/24

x1 x2 x3 x4

x̂1 x̂2 x̂3 x̂4

W1

W2

V

Masks

= MV

= MW2

= MW1

x1 x2 x3 x4

1 2 3 41 2 3 41 2 3 4

1 2 1 2 31 2 1 2

1 1 2 1 32

1 2 3 4

p(
x 1

)

p(
x 2

|x 1
)

p(
x 3

|x 1
, x

2
)

p(
x 4

|x 1
, x

2
, x

3
)

Let us see what this means
For the first hidden layer this
numbering is clear - it simply
indicates the number of ordered
inputs to which this node will be
connected
Let us now focus on the highlighted
node in the second layer which has
the number 2
This node is only allowed to depend
on inputs x1 and x2 (since it is
numbered 2)
This means that it should be only
connected to those nodes in the
previous hidden layer which have seen
only x1 and x2

In other words it should only have
connections from those nodes, which
have been assigned a number  2

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22
21/24

x1 x2 x3 x4

x̂1 x̂2 x̂3 x̂4

W1

W2

V

Masks

= MV

= MW2

= MW1

x1 x2 x3 x4

1 2 3 4

1 2 1 2 3

1 1 2 11 1 2 1 3

1 2 3 4

p(
x 1

)

p(
x 2

|x 1
)

p(
x 3

|x 1
, x

2
)

p(
x 4

|x 1
, x

2
, x

3
)

Now consider the node labeled 3 in
the output layer
This node is only allowed to see
inputs x1 and x2 because it predicts
p(x3|x2, x1) (and hence the given
variables should only be x1 and x2)
By the same argument that we made
on the previous slide, this means that
it should be only connected to those
nodes in the previous hidden layer
which have seen only x1 and x2

We can implement this by taking
the weight matrices W 1, W 2 and V
and applying an appropriate mask
to them so that the disallowed
connections are dropped

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

79/192

Masked Autoencoder for Distribution Estimation (MADE)

1. The results of MADE on MNIST.

RESULTS
• Binarize MNIST

63

MADE: Masked Autoencoder for Distribution Estimation

Table 4. Negative log-likelihood test results of different models on multiple datasets. The best result as well as any other result with an
overlapping confidence interval is shown in bold. Note that since the variance of DARN was not available, we considered it to be zero.

Model Adult Connect4 DNA Mushrooms NIPS-0-12 OCR-letters RCV1 Web

MoBernoullis 20.44 23.41 98.19 14.46 290.02 40.56 47.59 30.16
RBM 16.26 22.66 96.74 15.15 277.37 43.05 48.88 29.38
FVSBN 13.17 12.39 83.64 10.27 276.88 39.30 49.84 29.35
NADE (fixed order) 13.19 11.99 84.81 9.81 273.08 27.22 46.66 28.39
EoNADE 1hl (16 ord.) 13.19 12.58 82.31 9.69 272.39 27.32 46.12 27.87
DARN 13.19 11.91 81.04 9.55 274.68 ⇡28.17 ⇡46.10 ⇡28.83

MADE 13.12 11.90 83.63 9.68 280.25 28.34 47.10 28.53
MADE mask sampling 13.13 11.90 79.66 9.69 277.28 30.04 46.74 28.25

Figure 3. Left: Samples from a 2 hidden layer MADE. Right: Nearest neighbour in binarized MNIST.

Table 6. Negative log-likelihood test results of different models on
the binarized MNIST dataset.

Model � log p

RBM (500 h, 25 CD steps) ⇡ 86.34

In
tr

ac
ta

bl
e

DBM 2hl ⇡ 84.62
DBN 2hl ⇡ 84.55
DARN nh=500 ⇡ 84.71
DARN nh=500, adaNoise ⇡ 84.13

MoBernoullis K=10 168.95

Tr
ac

ta
bl

e

MoBernoullis K=500 137.64
NADE 1hl (fixed order) 88.33
EoNADE 1hl (128 orderings) 87.71
EoNADE 2hl (128 orderings) 85.10

MADE 1hl (1 mask) 88.40
MADE 2hl (1 mask) 89.59
MADE 1hl (32 masks) 88.04
MADE 2hl (32 masks) 86.64

7. Conclusion
We proposed MADE, a simple modification of autoencoders
allowing them to be used as distribution estimators. MADE
demonstrates that it is possible to get direct, cheap estimates
of high-dimensional joint probabilities, from a single pass
through an autoencoder. Like standard autoencoders, our ex-
tension is easy to vectorize and implement on GPUs. MADE
can evaluate high-dimensional probably distributions with
better scaling than before, while maintaining state-of-the-art
statistical performance.

Acknowledgments
We thank Marc-Alexandre Côté for helping to implement
NADE in Theano and the whole Theano (Bastien et al.,
2012; Bergstra et al., 2010) team of contributors. We also
thank NSERC, Calcul Québec and Compute Canada.

MADE: Masked Autoencoder for Distribution Estimation

Table 4. Negative log-likelihood test results of different models on multiple datasets. The best result as well as any other result with an
overlapping confidence interval is shown in bold. Note that since the variance of DARN was not available, we considered it to be zero.

Model Adult Connect4 DNA Mushrooms NIPS-0-12 OCR-letters RCV1 Web

MoBernoullis 20.44 23.41 98.19 14.46 290.02 40.56 47.59 30.16
RBM 16.26 22.66 96.74 15.15 277.37 43.05 48.88 29.38
FVSBN 13.17 12.39 83.64 10.27 276.88 39.30 49.84 29.35
NADE (fixed order) 13.19 11.99 84.81 9.81 273.08 27.22 46.66 28.39
EoNADE 1hl (16 ord.) 13.19 12.58 82.31 9.69 272.39 27.32 46.12 27.87
DARN 13.19 11.91 81.04 9.55 274.68 ⇡28.17 ⇡46.10 ⇡28.83

MADE 13.12 11.90 83.63 9.68 280.25 28.34 47.10 28.53
MADE mask sampling 13.13 11.90 79.66 9.69 277.28 30.04 46.74 28.25

Figure 3. Left: Samples from a 2 hidden layer MADE. Right: Nearest neighbour in binarized MNIST.

Table 6. Negative log-likelihood test results of different models on
the binarized MNIST dataset.

Model � log p

RBM (500 h, 25 CD steps) ⇡ 86.34

In
tr

ac
ta

bl
e

DBM 2hl ⇡ 84.62
DBN 2hl ⇡ 84.55
DARN nh=500 ⇡ 84.71
DARN nh=500, adaNoise ⇡ 84.13

MoBernoullis K=10 168.95

Tr
ac

ta
bl

e

MoBernoullis K=500 137.64
NADE 1hl (fixed order) 88.33
EoNADE 1hl (128 orderings) 87.71
EoNADE 2hl (128 orderings) 85.10

MADE 1hl (1 mask) 88.40
MADE 2hl (1 mask) 89.59
MADE 1hl (32 masks) 88.04
MADE 2hl (32 masks) 86.64

7. Conclusion
We proposed MADE, a simple modification of autoencoders
allowing them to be used as distribution estimators. MADE
demonstrates that it is possible to get direct, cheap estimates
of high-dimensional joint probabilities, from a single pass
through an autoencoder. Like standard autoencoders, our ex-
tension is easy to vectorize and implement on GPUs. MADE
can evaluate high-dimensional probably distributions with
better scaling than before, while maintaining state-of-the-art
statistical performance.

Acknowledgments
We thank Marc-Alexandre Côté for helping to implement
NADE in Theano and the whole Theano (Bastien et al.,
2012; Bergstra et al., 2010) team of contributors. We also
thank NSERC, Calcul Québec and Compute Canada.

80/192

Masked Autoencoder for Structured Distribution Estimation (MASDE)

1. We know the structure (Markov random field) of the data (Khajenezhad, Madani,

and Beigy 2021).

2. In structured distributions, the graph structure of the variables declares their

conditional dependencies.

3. Therefore, having a graph structure, each of the chain rule conditional terms

might be presentable by a conditional probability on a smaller set of variables.

4. In other words, for each i , we can assume that there is a subset

Bi ⊆ {1, . . . , i − 1} such that p(xi |x<i) = p(xi |xBi
).

5. We call Bi as Looking-back Markov blanket of the i-th dimension. Then

p(x1, . . . , xd) = P(x1)p(x2|xB2) . . .P(xd |xBd
)

6. Use an auoencoder that has the above autoregressive property.

7. Mask matrix is constructed by a labeling process.

81/192

Masked Autoencoder for Structured Distribution Estimation (MASDE)

1. MASDE needs a smaller training set in comparison with its counterparts.IEE
E P

ro
of

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Results of MADE, MASDE, and MAGSDE on the 4× 4 grid data set, using a fixed (grid-based) order of dimensions (left), ten uniformly random
permutations of dimensions (middle) and ten random selections among the 16 possible grid-based orders (right).

Fig. 3. Results of MADE, MASDE, and MASDE with random subsets
instead of the looking-back Markov blankets, on the sparse 20 dimensional
data set, using a fixed order of dimensions (left) and ten uniformly random
permutations of dimensions (right).

performance of MASDE and MAGSDE does not have a con-587

siderable change by increasing the number of hidden layers,588

but MADE has improved and also has become more robust589

Fig. 4. Results of MADE, MASDE, and MAGSDE with ten random
selections among the 16 possible grid-based dimension orders, on the 4× 4
grid data set with four (left) and six (right) hidden layers.

to the changes in the size of the hidden layers, despite that 590

the number of its parameters has been increased (comparing 591

the right column of Fig. 2 with Fig. 4). It shows that the 592

82/192

PixelRNN

1. PixelRNN is a deep generative model for images (Oord, Kalchbrenner, and

Kavukcuoglu 2016).

2. Dependency on previous pixels modeled using an RNN (LSTM).

83/192

PixelCNN

1. The main drawback of PixelRNN is that training is very slow.

2. PixelCNN uses standard convolutional layers to capture a bounded receptive field

and compute features for all pixel positions at once (Oord, Kalchbrenner,

Espeholt, et al. 2016).

3. In PixelCNN, pooling layers are not used.

4. Masks are adopted in the convolutions to restrict the model from violating the

conditional dependence.

5. Please also PixelCNN++ (Salimans, Karpathy, et al. 2017).
84/192

PixelCNN

PixelCNN

…
n

n

softm
ax

layer

image Conv-1 Conv-2 Conv-15

85/192

PixelCNN

1. The training set (CIFAR-10 (left)) and the samples generated by the PixelCNN

(right).
Pixel Recurrent Neural Networks

Figure 7. Samples from models trained on CIFAR-10 (left) and ImageNet 32x32 (right) images. In general we can see that the models
capture local spatial dependencies relatively well. The ImageNet model seems to be better at capturing more global structures than the
CIFAR-10 model. The ImageNet model was larger and trained on much more data, which explains the qualitative difference in samples.

layers: 1 2 3 6 9 12

NLL: 3.30 3.20 3.17 3.09 3.08 3.06

Table 3. Effect of the number of layers on the negative log likeli-
hood evaluated on the CIFAR-10 validation set (bits/dim).

5.5. MNIST

Although the goal of our work was to model natural images
on a large scale, we also tried our model on the binary ver-
sion (Salakhutdinov & Murray, 2008) of MNIST (LeCun
et al., 1998) as it is a good sanity check and there is a lot
of previous art on this dataset to compare with. In Table 4
we report the performance of the Diagonal BiLSTM model
and that of previous published results. To our knowledge
this is the best reported result on MNIST so far.

5.6. CIFAR-10

Next we test our models on the CIFAR-10 dataset
(Krizhevsky, 2009). Table 5 lists the results of our mod-
els and that of previously published approaches. All our
results were obtained without data augmentation. For the
proposed networks, the Diagonal BiLSTM has the best
performance, followed by the Row LSTM and the Pixel-
CNN. This coincides with the size of the respective recep-
tive fields: the Diagonal BiLSTM has a global view, the
Row LSTM has a partially occluded view and the Pixel-
CNN sees the fewest pixels in the context. This suggests
that effectively capturing a large receptive field is impor-
tant. Figure 7 (left) shows CIFAR-10 samples generated

Model NLL Test

DBM 2hl [1]: ⇡ 84.62
DBN 2hl [2]: ⇡ 84.55
NADE [3]: 88.33
EoNADE 2hl (128 orderings) [3]: 85.10
EoNADE-5 2hl (128 orderings) [4]: 84.68
DLGM [5]: ⇡ 86.60
DLGM 8 leapfrog steps [6]: ⇡ 85.51
DARN 1hl [7]: ⇡ 84.13
MADE 2hl (32 masks) [8]: 86.64
DRAW [9]:  80.97

PixelCNN: 81.30
Row LSTM: 80.54
Diagonal BiLSTM (1 layer, h = 32): 80.75
Diagonal BiLSTM (7 layers, h = 16): 79.20

Table 4. Test set performance of different models on MNIST
in nats (negative log-likelihood). Prior results taken from [1]
(Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov,
2009), [3] (Uria et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende
et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014),
[8] (Germain et al., 2015), [9] (Gregor et al., 2015).

from the Diagonal BiLSTM.

5.7. ImageNet

Although to our knowledge the are no published results on
the ILSVRC ImageNet dataset (Russakovsky et al., 2015)
that we can compare our models with, we give our Ima-

86/192

WaveNet

1. WaveNet is very similar to PixelCNN but applied to 1-D audio signals (Oord,

Dieleman, et al. 2016).

2. WaveNet consists of a stack of causal convolution which is a convolution

operation designed to respect the ordering.

3. Causal convolutions are a type of convolution used for temporal data which

ensures the model cannot violate the ordering in which we model the data: the

prediction p(xt+1|x1, . . . , xt).

4. The causal convolution in WaveNet is simply to shift the output by a number of

timestamps to the future so that the output is aligned with the last input element.

87/192

WaveNet

88/192

WaveNet

1. One big drawback of convolution layer is a very limited size of receptive field.

2. WaveNet therefore adopts dilated convolution, where the kernel is applied to an

evenly-distributed subset of samples in a much larger receptive field of the input.

89/192

Generative Adversarial Networks

Generative Adversarial Networks

1. Generative adversarial networks (GANs) are relatively new (I. J. Goodfellow et al.

2014).

2. GANs are a new way to build generative models P(x).

3. Generative adversarial networks

I Generative: Learns a generative model.
I Adversarial: Trained in an adversarial setting
I Networks: Use Deep Neural Networks

90/192

Generative adversarial networks

1. Which one is Computer generated?

(Goodfellow 2016)

Single Image Super-Resolution

(Ledig et al 2016)
2. How do we generate a fake image?

3. Can we generate a fake image from a random number?

91/192

GAN results

1. Results obtained from GAN (Radford, Metz, and Chintala 2016).
Results

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

92/192

GAN results

1. Results obtained from GAN (Radford, Metz, and Chintala 2016).
Results

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

93/192

GAN Architecture

1. GAN has the following architecture

2. Z (input to generator) is some random noise (Gaussian/Uniform).

3. Z can be thought as the latent representation of the image.

94/192

Generating an Image

1. Opposite of convolutional neural nets.

Generating an Image

• Opposite of convolutional neural nets

• How to train it?

𝑥₂

2. Deconvolution layer or transposed convolutional layer is pad the original input

(blue entries) with zeroes (white entries) (Dumoulin and Visin 2016).

Figure 4.1: The transpose of convolving a 3⇥ 3 kernel over a 4⇥ 4 input using
unit strides (i.e., i = 4, k = 3, s = 1 and p = 0). It is equivalent to convolving
a 3⇥ 3 kernel over a 2⇥ 2 input padded with a 2⇥ 2 border of zeros using unit
strides (i.e., i0 = 2, k0 = k, s0 = 1 and p0 = 2).

Figure 4.2: The transpose of convolving a 4⇥4 kernel over a 5⇥5 input padded
with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5, k = 4, s = 1 and
p = 2). It is equivalent to convolving a 4 ⇥ 4 kernel over a 6 ⇥ 6 input padded
with a 1 ⇥ 1 border of zeros using unit strides (i.e., i0 = 6, k0 = k, s0 = 1 and
p0 = 1).

Figure 4.3: The transpose of convolving a 3⇥ 3 kernel over a 5⇥ 5 input using
half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1). It is
equivalent to convolving a 3 ⇥ 3 kernel over a 5 ⇥ 5 input using half padding
and unit strides (i.e., i0 = 5, k0 = k, s0 = 1 and p0 = 1).

22

95/192

Generating an Image

1. How to train it?

Implicit Generative Models

advocate/penalize samples within the blue/white region.

4 / 20

96/192

Generator

1. The generator tries to learn P(x |z).

2. Inputs are directly sampled from Q(z).

3. Problem: No true data x is provided when training the generator

4. Instead of a traditional loss function, gradient is provided by a discriminator

(another network)

97/192

Discriminator

1. The discriminator attempts to tell the difference between real and fake images.

2. It tries to learn P(y |x), where y is the label (real or generated) and x is the real

or generated data.

3. Trained using standard cross entropy loss to assign the correct label (although this

has changed in recent GANs).

4. Generator weights are frozen while training discriminator; inputs are generated

data and real data, targets are 0 and 1

5. From generator’s point-of-view, discriminator is a black-box loss function

98/192

GAN Architecture

1. Let x be a sample (fake or real).

2. Let D(x) be the probability that x came from real data rather than pg .

3. For a fake sample G (z), the discriminator is expected to output a probability,

D(G (z)), close to zero by maximizing Ez∼pz (z)[log(1− D(G (z)))].

4. For real data, the discriminator is expected to output a probability x , close to one

by maximizing Ex∼pdata(x)[logD(x)].

5. The generator is trained to increase the chances of D producing a high probability

for a fake example, thus to minimize Ez∼pz (z)[log(1− D(G (z)))].

6. When combining both aspects together, D and G are playing a minimax game in

which we should optimize the following loss function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1− D(G (z)))]

= Ex∼pdata(x)[logD(x)] + Ex∼pg (x)[log(1− D(x)]

7. Ex∼pdata(x)[logD(x)] has no impact on G during gradient descent updates.

99/192

Min-Max Game

1. Loss function is

V (G ,D) =

∫

x
pr (x) log(D(x))dx +

∫

z
pz(z) log(1− D(G (z)))dz

=

∫

x

(
pr (x) log(D(x)) + pg (x) log(1− D(x))

)
dx

2. The full two-player game can be summarily described by the below.

min
G

max
D

V (D,G)

100/192

Training GAN

1. It is important to understand that both the generator and discriminator are trying

to learn moving targets. Both networks are trained simultaneously.

2. The discriminator needs to update based on how well the generator is doing.

3. The generator is constantly updating to improve performance on the discriminator.

4. These two need to be balanced correctly to achieve stable learning instead of

chaos.

101/192

Training GAN

Discriminator	
updates

Generator	
updates

102/192

Training GAN

1. How GAN is trained?

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x)

. (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2
.

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . , x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r✓d

1

m

mX

i=1

h
log D

⇣
x(i)

⌘
+ log

⇣
1 � D

⇣
G
⇣
z(i)
⌘⌘⌘i

.

end for
• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

r✓g

1

m

mX

i=1

log
⇣
1 � D

⇣
G
⇣
z(i)
⌘⌘⌘

.

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4

2. discriminative distribution D(x), real data pdata, generative distribution pg .

(a) An adversarial pair near convergence: pg is similar to pdata and D is a

partially accurate classifier.

(b) In inner loop of algorithm, D is trained to discriminate samples from data,

converging to D∗(x).

(c) After an update to G , gradient of D has guided G (z) to flow to regions that

are more likely to be classified as data.

(d) After several steps of training, if G and D have enough capacity, they will

reach a point at which both cannot improve because pg = pdata.
103/192

GAN Results

1. Visualization of samples from the model.

2. Rightmost column shows the nearest training example of the neighboring sample.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

1. A conditional generative model p(x | c) can be obtained by adding c as input to both G and D.
2. Learned approximate inference can be performed by training an auxiliary network to predict z

given x. This is similar to the inference net trained by the wake-sleep algorithm [15] but with
the advantage that the inference net may be trained for a fixed generator net after the generator
net has finished training.

3. One can approximately model all conditionals p(xS | x 6S) where S is a subset of the indices
of x by training a family of conditional models that share parameters. Essentially, one can use
adversarial nets to implement a stochastic extension of the deterministic MP-DBM [10].

4. Semi-supervised learning: features from the discriminator or inference net could improve perfor-
mance of classifiers when limited labeled data is available.

5. Efficiency improvements: training could be accelerated greatly by devising better methods for
coordinating G and D or determining better distributions to sample z from during training.

This paper has demonstrated the viability of the adversarial modeling framework, suggesting that
these research directions could prove useful.

7

104/192

GAN Results

1. Digits obtained by linearly interpolating between coordinates in z space of the full

model.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

1. A conditional generative model p(x | c) can be obtained by adding c as input to both G and D.
2. Learned approximate inference can be performed by training an auxiliary network to predict z

given x. This is similar to the inference net trained by the wake-sleep algorithm [15] but with
the advantage that the inference net may be trained for a fixed generator net after the generator
net has finished training.

3. One can approximately model all conditionals p(xS | x 6S) where S is a subset of the indices
of x by training a family of conditional models that share parameters. Essentially, one can use
adversarial nets to implement a stochastic extension of the deterministic MP-DBM [10].

4. Semi-supervised learning: features from the discriminator or inference net could improve perfor-
mance of classifiers when limited labeled data is available.

5. Efficiency improvements: training could be accelerated greatly by devising better methods for
coordinating G and D or determining better distributions to sample z from during training.

This paper has demonstrated the viability of the adversarial modeling framework, suggesting that
these research directions could prove useful.

7

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

1. A conditional generative model p(x | c) can be obtained by adding c as input to both G and D.
2. Learned approximate inference can be performed by training an auxiliary network to predict z

given x. This is similar to the inference net trained by the wake-sleep algorithm [15] but with
the advantage that the inference net may be trained for a fixed generator net after the generator
net has finished training.

3. One can approximately model all conditionals p(xS | x 6S) where S is a subset of the indices
of x by training a family of conditional models that share parameters. Essentially, one can use
adversarial nets to implement a stochastic extension of the deterministic MP-DBM [10].

4. Semi-supervised learning: features from the discriminator or inference net could improve perfor-
mance of classifiers when limited labeled data is available.

5. Efficiency improvements: training could be accelerated greatly by devising better methods for
coordinating G and D or determining better distributions to sample z from during training.

This paper has demonstrated the viability of the adversarial modeling framework, suggesting that
these research directions could prove useful.

7

105/192

Optimality of GAN

Theorem (Optimality of GAN)

For G fixed, the optimal discriminator D is

D∗(x) =
pdata(x)

pdata(x) + pg (x)

Theorem (Convergence of training algorithm of GAN)

If G and D have enough capacity, and at each step of training Algorithm, the

discriminator is allowed to reach its optimum given G, and pg is updated so as to

improve the criterion V (D,G), then, pg converges to pdata

106/192

What is the global optimal?

1. When both G and D are at their optimal values, we have pg = pdata and

D∗(x) = 1
2 , and the loss function becomes:

V (G ,D∗) =

∫

x

(
pdata(x) log(D∗(x)) + pg (x) log(1− D∗(x))

)
dx

= log
1

2

∫

x
pdata(x)dx + log

1

2

∫

x
pg (x)dx

= −2 log 2

107/192

What does the loss function represent?

1. KL divergence measures how one probability distribution p diverges from a second

probability distribution q

DKL(p‖q) =

∫

x
p(x) log

p(x)

q(x)
dx

2. KL divergence is asymmetric.

3. In cases where p(x) is close to zero, but q(x) is significantly non-zero, the q’s

effect is disregarded.

4. Jensen–Shannon Divergence is a measure of similarity between two probability

distributions, bounded by [0, 1].

DJS(p‖q) =
1

2
DKL

(
p‖p + q

2

)
+

1

2
DKL

(
q‖p + q

2

)

5. JS divergence is symmetric and more smooth.

108/192

What does the loss function represent?

1. JS divergence between pdata and pg can be computed as:

DJS(pdata‖pg) =
1

2
DKL

(
pdata||

pdata + pg
2

)
+

1

2
DKL

(
pg ||

pdata + pg
2

)

=
1

2

(
log 2 +

∫

x
pdata(x) log

pdata(x)

pdata + pg (x)
dx

)

+
1

2

(
log 2 +

∫

x
pg (x) log

pg (x)

pdata + pg (x)
dx

)

=
1

2

(
log 4 + V (G ,D∗)

)

2. Thus

V (G ,D∗) = 2DJS(pdata|pg)− 2 log 2

3. The best G ∗ that replicates the real data distribution leads to the minimum

V (G ∗,D∗) = −2 log 2, which is aligned to the optimal solution.

109/192

Problems in GANs

1. Hard to achieve Nash equilibrium (Salimans, I. J. Goodfellow, et al. 2016).

2. Low dimensional supports: When the intrinsic dimension is low, then training

GAN will be instable (Arjovsky and Leon Bottou 2017).

3. Vanishing gradient: When the discriminator is perfect, loss function is zero and

there is not any training.

4. Mode collapse: During the training, the generator may collapse to a setting where

it always produces same outputs.

5. Lack of a proper evaluation metric

110/192

Improved GAN Training i

1. Feature Matching: This suggests to optimize the discriminator to inspect

whether the generator’s output matches expected statistics of the real samples.

New objective function

‖Ex∼pdata f (x)− Ez∼pz (z)f (G (z))‖2
2

where f (x) can be any computation of statistics of features, such as mean or

median.

2. Mini-batch Discrimination: Instead of processing each point independently, the

discriminator is able to digest the relationship between training data points in one

batch.

3. Historical Averaging: This adds a term penalizes the training speed when

parameters are changing too dramatically in time.

4. One-sided Label Smoothing: When feeding the discriminator, instead of

providing 1 and 0 labels, use soften values such as 0.9 and 0.1

111/192

Improved GAN Training ii

5. Virtual Batch Normalization: Each data sample is normalized based on a fixed

batch (reference batch) of data rather than within its minibatch. The reference

batch is chosen once at the beginning and stays the same through the training.

6. Adding Noises:

7. Use Better Metric of Distribution Similarity: The JS divergence fails to provide a

meaningful value when two distributions are disjoint. Wasserstein metric is

introduced.

112/192

Generative Adversarial Networks

Wasserstein GAN

Wasserstein GAN (WGAN)

1. Wasserstein Distance is a measure of the distance between two probability

distributions.

2. When dealing with the continuous probability domain, the distance becomes

W (pdata, pg) = inf
γ∼Π(pdata,pg)

E(x ,y)∼γ [‖x − y‖]

where Π(pdata, pg) s the set of all possible joint probability distributions between

pdata and pg .

3. It is intractable to exhaust all the possible joint distributions in Π(pdata, pg) to

compute infγ∼Π(pdata,pg), the following metric is used.

W (pdata, pg) =
1

K
sup
‖f ‖L≤K

Ex∼pdata [f (x)]− Ex∼pg [f (x)]

where ‖f ‖L ≤ K means that f is K -Lipschitz.

4. what are their meaning and their difference?

113/192

Wasserstein GAN (WGAN)

1. In WGAN, discriminator network instead of producing the probability of generating

real data, the network produces a scaler score (Arjovsky and Leon Bottou 2017).

2. This score can be interpreted as how real the input images are.

3. In reinforcement learning, we call it the value function which measures how good

a input is.

4. We rename the discriminator to critic to reflect its new role.

5. The loss function for WGAN is

V (pdata, pg) = W (pdata, pg) = max
w∈W

Ex∼pdata [fw (x)]− Ez∼pdata(z)[fw (gθ(z))]

f comes from a family of K -Lipschitz continuous functions {fw}w∈W
parameterized by w .

6. The discriminator model is used for learning w to find a good fw and the loss

function is configured as measuring the Wasserstein distance between pdata and

pg .

114/192

Wasserstein GAN (WGAN)

1. WGAN architecture is (Arjovsky, Chintala, and Léon Bottou 2017).

115/192

Generative Adversarial Networks

Conditional GAN

Conditional GAN

1. In GAN, we have two neural nets: the generator G (z) and the discriminator D(x).

2. Now, as we want to condition those networks with some vector y .

3. The easiest way to do it is to feed y into both networks (Mirza and Osindero

2014).

4. Hence, generator and discriminator are now G (z , y) and D(x , y), respectively.

5. We can see it with a probabilistic point of view. G (z , y) is modeling the

distribution of our data, given z and y , that is, the data is generated with this

scheme xG ∼ G (x |z , y)

6. Likewise for the discriminator, now it tries to find discriminating label for x and

xG , that are modeled with d ∼ D(d |x , y).

116/192

Conditional GAN

1. Hence, we could see that both D and G is jointly conditioned to two variables z

or x and y .

2. Now, the objective function is given by:

min
G

max
D

V (D,G) = E
x∼pdata(x)

[logD(x , y)]

+ E
z∼pz (z)

[log(1− D(G (z , y), y))]

3. If we compare the above loss to GAN loss, the difference only lies in the additional

parameter y in both D and G .

117/192

Conditional GAN architecture

1. The architecture of CGAN is

118/192

Conditional GAN results

1. The following figure shows some of the generated samples.

2. Each row is conditioned on one label and each column is a different generated

sample.

Model MNIST
DBN [1] 138 ± 2

Stacked CAE [1] 121 ± 1.6
Deep GSN [2] 214 ± 1.1

Adversarial nets 225 ± 2
Conditional adversarial nets 132 ± 1.8

Table 1: Parzen window-based log-likelihood estimates for MNIST. We followed the same procedure as [8]
for computing these values.

The discriminator maps x to a maxout [6] layer with 240 units and 5 pieces, and y to a maxout layer
with 50 units and 5 pieces. Both of the hidden layers mapped to a joint maxout layer with 240 units
and 4 pieces before being fed to the sigmoid layer. (The precise architecture of the discriminator
is not critical as long as it has sufficient power; we have found that maxout units are typically well
suited to the task.)

The model was trained using stochastic gradient decent with mini-batches of size 100 and ini-
tial learning rate of 0.1 which was exponentially decreased down to .000001 with decay factor of
1.00004. Also momentum was used with initial value of .5 which was increased up to 0.7. Dropout
[9] with probability of 0.5 was applied to both the generator and discriminator. And best estimate of
log-likelihood on the validation set was used as stopping point.

Table 1 shows Gaussian Parzen window log-likelihood estimate for the MNIST dataset test data.
1000 samples were drawn from each 10 class and a Gaussian Parzen window was fitted to these
samples. We then estimate the log-likelihood of the test set using the Parzen window distribution.
(See [8] for more details of how this estimate is constructed.)

The conditional adversarial net results that we present are comparable with some other network
based, but are outperformed by several other approaches – including non-conditional adversarial
nets. We present these results more as a proof-of-concept than as demonstration of efficacy, and
believe that with further exploration of hyper-parameter space and architecture that the conditional
model should match or exceed the non-conditional results.

Fig 2 shows some of the generated samples. Each row is conditioned on one label and each column
is a different generated sample.

Figure 2: Generated MNIST digits, each row conditioned on one label

4.2 Multimodal

Photo sites such as Flickr are a rich source of labeled data in the form of images and their associated
user-generated metadata (UGM) — in particular user-tags.

4

119/192

Generative Adversarial Networks

Deep Convolutional GAN

Deep Convolutional Generative Adversarial Networks

1. DCGAN maps from random noise to an image matrix.

2. It uses convolutional Layers in the generator network to produce better

results (Radford, Metz, and Chintala 2016).

3. Combine CNN and GAN for unsupervised learning.

4. Learns a hierarchy of feature representations

Deep Convolutional GANs (DCGAN)

Alec Radford, Luke Metz, Soumith Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016

● Combine CNN and GAN for unsupervised learning
● Learns a hierarchy of feature representations
● Previous attempts to scale up GANs using CNNs unsuccessful

95. Replace any pooling layers with strided convolutions.

6. Use batch-normalization in both the generator and the discriminator.

7. Remove fully connected hidden layers for deeper architectures.

8. Use ReLU activation in generator for all layers except for the output, which uses

Tanh.

9. Use LeakyReLU activation in the discriminator for all layers.
120/192

DCGAN results

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32 ⇥ 32 min-resized center crops. No data augmentation was applied to the images.

5

121/192

DCGAN results

Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework

10

122/192

DCGAN results

Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework

10

123/192

DCGAN results

Under review as a conference paper at ICLR 2016

Figure 8: A ”turn” vector was created from four averaged samples of faces looking left vs looking
right. By adding interpolations along this axis to random samples we were able to reliably transform
their pose.

to other domains such as video (for frame prediction) and audio (pre-trained features for speech
synthesis) should be very interesting. Further investigations into the properties of the learnt latent
space would be interesting as well.

ACKNOWLEDGMENTS

We are fortunate and thankful for all the advice and guidance we have received during this work,
especially that of Ian Goodfellow, Tobias Springenberg, Arthur Szlam and Durk Kingma. Addition-
ally we’d like to thank all of the folks at indico for providing support, resources, and conversations,
especially the two other members of the indico research team, Dan Kuster and Nathan Lintz. Finally,
we’d like to thank Nvidia for donating a Titan-X GPU used in this work.

REFERENCES

Bergstra, James and Bengio, Yoshua. Random search for hyper-parameter optimization. JMLR,
2012.

Coates, Adam and Ng, Andrew. Selecting receptive fields in deep networks. NIPS, 2011.

Coates, Adam and Ng, Andrew Y. Learning feature representations with k-means. In Neural Net-
works: Tricks of the Trade, pp. 561–580. Springer, 2012.

Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai, and Fei-Fei, Li. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248–255. IEEE, 2009.

Denton, Emily, Chintala, Soumith, Szlam, Arthur, and Fergus, Rob. Deep generative image models
using a laplacian pyramid of adversarial networks. arXiv preprint arXiv:1506.05751, 2015.

Dosovitskiy, Alexey, Springenberg, Jost Tobias, and Brox, Thomas. Learning to generate chairs
with convolutional neural networks. arXiv preprint arXiv:1411.5928, 2014.

11

124/192

Variational Autoencoder models

Variational Autoencoder models

1. An ideal autoencoder will learn descriptive attributes of input to describe an

observation in some compressed representation.

125/192

Variational Autoencoder models

1. However, we may prefer to represent each latent attribute as a range of possible

values.

126/192

Variational Autoencoder models

1. For any sampling of the latent distributions, we’re expecting our decoder model to

be able to accurately reconstruct the input.

127/192

Latent Variable Models2

1. Lots of variability in images x due to gender, eye color, hair color, pose, etc.

2. However, unless images are annotated, these factors of variation are not explicitly

available (latent).

Latent Variable Models: Motivation

1 Lots of variability in images x due to gender, eye color, hair color,
pose, etc. However, unless images are annotated, these factors of
variation are not explicitly available (latent).

2 Idea: explicitly model these factors using latent variables z

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 4 / 28

3. Idea: explicitly model these factors using latent variables z .

2
Some slides of this lecture are from S. Ermon and A. Grover slides.

128/192

Latent Variable Models

1. Consider an image x , and some of its latent factors such as gender, eye color, hair

color, pose, etc.

Latent Variable Models: Motivation

1 Only shaded variables x are observed in the data (pixel values)
2 Latent variables z correspond to high level features

If z chosen properly, p(x|z) could be much simpler than p(x)
If we had trained this model, then we could identify features via
p(z | x), e.g., p(EyeColor = Blue|x)

3 Challenge: Very di�cult to specify these conditionals by hand

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 5 / 28

2. Only shaded variables x are observed in the data (pixel values).

3. Latent variables z correspond to high level features.

I If z chosen properly, p(x |z) could be much simpler than p(x).
I If we trained this model, then we could identify features via p(z |x).

4. Challenge: Very difficult to specify these conditionals by hand.

129/192

Latent Variable Models

1. Consider an observed variable x , and latent variable z .

Variational Autoencoder Marginal Likelihood

A mixture of an infinite number of Gaussians:
1 z ⇠ N (0, I)
2 p(x | z) = N (µ✓(z),⌃✓(z)) where µ✓,⌃✓ are neural networks
3 Z are unobserved at train time (also called hidden or latent)
4 Suppose we have a model for the joint distribution. What is the

probability p(X = x̄; ✓) of observing a training data point x̄?
Z

z
p(X = x̄,Z = z; ✓)dz =

Z

z
p(x̄, z; ✓)dz

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 16 / 28

2. Instead of modelling p(x) directly, we use an unobserved latent variable z and

define p(x |z) for the data.

3. We can use prior distribution p(z) over the z and

p(x , z) = p(x | z)p(z).

4. Generative process for the observed data x .

z ∼ p(z)

x ∼ p(x | z).

130/192

Latent Variable Models

1. Given a set of observed random variables x = {x1, x2, · · · , xn} and a set of latent

random variables z = {z1, z2, · · · , zm}, we need to compute the posterior p(z |x).

2. Using Bayes’ theorem, we have

p(z |x) =
p(x , z)

p(x)

=
p(x |z)p(z)

p(x)

3. p(x) is the marginal density which is also called evidence.

p(x) =

∫

z
p(x , z)dz

4. For most of the models, computing p(x) is intractable. Hence computing p(z |x)

is also intractable.

131/192

Variational Inference

1. Since directly computing p(z |x) is intractable, we have to do some approximate

inference.

2. Variational inference considers a family of parametric distributions that

approximates p(z |x).Variational inference

p.z j x/

KL.q.zI ��/ jjp.z j x//

�init

��q.zI �/

Ñ VI solves inference with optimization.
(Contrast this with MCMC.)

Ñ Posit a variational family of distributions over the latent variables,

q(z;⌫)

Ñ Fit the variational parameters ⌫ to be close (in KL) to the exact posterior.

v = θ is parameter of q.

132/192

Variational Inference: Optimization Goal

1. Variational inference leverages optimization to find the best distribution q(z ; θ).

2. In variational inference, we specify a family of distributions Q over the latent

random variables.

3. Each q(z) ∈ Q is a candidate approximation to the posterior.

4. Our goal is to find the best candidate that has the smallest KL divergence to the

posterior we want to compute.

5. Mathematically, the optimization goal is

q∗(z) = argminq(z)∈QKL
(
q(z)||p(z |x)

)

where q∗(·) is the best approximation to the posterior in distribution family Q.

133/192

Variational Inference: Kullback-Leibler Divergence

1. To measure the difference between two probability distributions over the same

variable x , Kullback-Leibler divergence is used.

2. The KL divergence between two distributions p and q with discrete support is

defined as

KL(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

3. The KL divergence has the following properties

I KL(p‖q) ≥ 0 for all p, q.
I KL(p‖q) = 0 if and only if q = p

4. KL divergence is not symmetric, i.e.

KL(q‖p) 6= KL(p‖q)

134/192

Variational Inference

1. The KL divergence between two distributions p and q with discrete support is

defined as

KL(p‖q) =
∑

x

p(x) log
p(x)

q(x)
= Ep log

p(x)

q(x)
.

2. It is hard to compute KL(p‖q), because taking expectation wrt p is assumed to

be intractable.

3. An alternative is the reverse KL divergence, which is

KL(q‖p) =
∑

x

q(x) log
q(x)

p(x)
= Eq log

q(x)

p(x)
.

4. The main advantage is that computing expectation wrt q is tractable, by choosing

a suitable form of q.

5. The above equation is still not tractable because p(x) = p(x |S) is intractable,

where S is the given dataset.

135/192

Variational Inference

1. We’ll assume that p is a general undirected model of the following form

p(x1, . . . , xn; θ) =
p̄(x1, . . . , xn; θ)

Z (θ)
=

1

Z (θ)

∏

k

φk(xk ; θ),

where the φk are the factors and Z (θ) is the normalization constant.

2. Given this formulation, optimizing KL(q‖p) directly is not possible because of the

potentially intractable normalization constant Z (θ).

3. Evaluating KL(q‖p) is not possible, because we need to evaluate p.

4. Instead, we work with the following objective (the same form as the KL

divergence), but only involves the unnormalized probability p̄(x) =
∏

k φk(xk ; θ).

136/192

Variational Inference

1. We use the following objective function

J(q) =
∑

x

q(x) log
q(x)

p̄(x)
.

2. This function is not only tractable, it also has the following important property

J(q) =
∑

x

q(x) log
q(x)

p̄(x)

=
∑

x

q(x) log
q(x)

p(x)
− logZ (θ)

= KL(q‖p)− logZ (θ)

3. Since KL(q‖p) ≥ 0, we get by rearranging terms that

logZ (θ) = KL(q‖p)− J(q) ≥ −J(q).

137/192

Variational Inference

1. Thus, −J(q) is a lower bound on the logZ (θ).

2. Because of this property, −J(q) is called variational lower bound or evidence

lower bound (ELBO).

3. ELBO it often written in the form

logZ (θ) ≥ Eq(x)[log p̄(x)− log q(x)].

4. The difference between logZ (θ) and −J(q) is KL(q‖p).

5. Thus, by maximizing ELBO, we are minimizing KL(q‖p).

138/192

Variational Autoencoder models

1. The idea of VAE is actually less similar to all the autoencoder models, but deeply

rooted in graphical models (Kingma and Welling 2014).

2. Instead of mapping the input into a fixed vector, we want to map it into a

distribution (in practice, a Gaussian distribution) over encodings.

3. The decoder will then sample an encoding from that probability distribution, and

try to reconstruct the original input.

4. This forces the decoder to produce reasonable outputs over a range of different

encodings.

5. Since a Gaussian distribution can be parametrized by its mean vector and

covariance matrix, we have the encoder output a mean vector µ and a covariance

matrix Σ (restricted to a diagonal matrix for simplicity).

139/192

Variational Autoencoder models

1. The VAE has the following architecture.

140/192

Variational Autoencoder models (Sampling)

1. We can generate through VAE as

13 - 14: Variational autoencoders Prof. J.C. Kao, UCLA

Conceptual diagram of the VAE

Below is a conceptual diagram of the VAE that we will arrive at. However, we
put it here to give you a high-level intuition to start:

x

µ�(x) ⌃�(x)q(z|x):

NN NN

Sample

z

p(x|z):

NN NN

µ✓(z) ⌃✓(z)

Sample

x^

141/192

Variational Autoencoder models

1. The VAE introduces a loss other than the reconstruction loss: the KL divergence

between the distribution produced by the encoder and a unit Gaussian distribution.

2. We maximize the ELBO.

3. Optimize both networks jointly with SGD.

142/192

Reparameterization Trick

1. Autoencoders are simple to train since you simply have to backpropagate the

reconstruction loss across the weights of the network.

2. VAEs are not as simple to optimize though.

3. The key problem is that the sampling operation is not differentiable.

4. This means we cannot propagate the gradients from the reconstruction error to

the encoder.

5. Normally we would have to resort to more complicated optimization techniques

like REINFORCE.

143/192

Reparameterization Trick

1. We are able to resolve this problem through the reparameterization trick.

2. The idea behind this trick is to isolate the sampling from the parameter

estimation (mean and variance).

3. First, we sample ε from a unit Gaussian distribution.

4. We can make the sample to adhere to a Gaussian distribution with mean µ and

covariance matrix Σ by transforming it.

144/192

Variational Autoencoder models (Sampling)

1. We can generate through Reparametrized VAE as

13 - 34: Variational autoencoders Prof. J.C. Kao, UCLA

Updated computational graph to calculate the ELBO

With the reparametrization trick, we can now backpropagate to calculate the
gradient with respect to all parameters.

x

µ�(x) ⌃�(x)q(z|x):

NN NN
Sample

z

p(x|z):

NN NN

µ✓(z) ⌃✓(z)

z ⇠ N (0, I)

+ +

p

145/192

Variational Autoencoder models (results)

1. The comparison between VAE and GAN.

VAE compared to GAN

• VAE does not su↵er from GAN training instability

• GANs typically have higher sample quality than VAE

• VAE defines likelihood p(x) for all data x,

can e.g. be used for loss-less compression

Figure from [Hou et al., 2017], models trained on CelebA dataset

47/66

146/192

Normalizing Flow Models

Jacobian Matrix and Determinant

1. Given a function of mapping a n-dimensional input vector x to a m-dimensional

output vector, f : Rn 7→ Rm, the Jacobian matrix, J, is

J =




∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...

∂fm
∂x1

. . . ∂fm
∂xn




2. The determinant of a n × n matrix M is

det (M) = det







a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann







=
∑

j1j2...jn

(−1)τ(j1j2...jn)a1j1a2j2 . . . anjn

τ(.) indicates the signature of a permutation.3

3Most slides of this section are adopted from https:

//lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
147/192

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Change of Variable Theorem

1. Given a random variable z and its known probability density function z ∼ π(z),

we would like to construct a new random variable using a one-one mapping

function x = f (z).

2. The function f is invertible, so z = f −1(x).

3. The question is how to infer the unknown probability density function of the new

variable, p(x)?

∫

x
p(x)dx =

∫

z
π(z)dz = 1 Definition of probability distribution.

p(x) = π(z)

∣∣∣∣
dz

dx

∣∣∣∣ = π(f −1(x))

∣∣∣∣
df −1

dx

∣∣∣∣ = π(f −1(x))|(f −1)′(x)|

4. By definition, the integral
∫
z π(z)dz is the sum of an infinite number of rectangles

of infinitesimal width ∆z .

5. The height of such a rectangle at position z is the value of the density function

π(z).

148/192

Change of Variable Theorem

1. When we substitute the variable, z = f −1(x) yields ∆z
∆x = (f −1(x))′ and

∆z = (f −1(x))′∆x .

2. Here |(f −1(x))′| indicates the ratio between the area of rectangles defined in two

different coordinate of variables z and x , respectively.

3. The multivariable version has a similar format:

z ∼ π(z), x = f (z), z = f −1(x)

p(x) = π(z)

∣∣∣∣det

(
dz

dx

)∣∣∣∣

= π(f −1(x))

∣∣∣∣det

(
df −1

dx

)∣∣∣∣

where det
(
∂f
∂z

)
is the Jacobian determinant of the function f .

149/192

Change of Variable Theorem (example)

1. Consider a random variable Z that is uniformly distributed over the unit cube

z ∈ [0, 1]3.

2. We can scale Z by a factor of 2 to get a new random variable X ,

x = f (z) = Az =

∣∣∣∣∣∣∣

2 0 0

0 2 0

0 0 2

∣∣∣∣∣∣∣
z

where X is uniform over a cube with side length 2.

150/192

Change of Variable Theorem (example)

1. How is the density p(x) related to π(z)?

2. Since every distribution sums to 1 and the unit cube has volume VZ = 1.

π(z)VZ = 1

3. and π(z) = 1 for all z in the unit cube.

4. The volume of the larger cube is easy to compute: VX = 23 = 8.

5. The total probability mass must be conserved, so we can solve for the density of

X .

p(x) =
π(z)VZ

VX
=

1

8
.

6. The new density is equal to the original density multiplied by the ratio of the

volumes.

151/192

Change of Variable Theorem (example)

1. The change of variables formula allows us to tractably compute normalized

probability densities when we apply an invertible transformation f .

p(x) = π(z)

∣∣∣∣det

(
∂f −1(x)

∂x

)∣∣∣∣ = π(z)

∣∣∣∣det

(
∂f (z)

∂z

)∣∣∣∣
−1

2. The invertible function is just multiplication by a scaling matrix, so the

determinant of the Jacobian matrix is easy to compute:

det

(
∂f (z)

∂z

)
= det (A) = 8.

152/192

What is Normalizing Flows?

1. Density estimation has several important applications in many machine learning

problems.

2. In deep learning models, the embedded probability distribution is expected to be

simple enough to calculate the derivative easily and efficiently.

3. This is why Gaussian distribution is often used in latent variable generative

models.

4. Normalizing Flow (NF) models are used for better and more powerful distribution

approximation (Rezende and Mohamed 2015).

5. A normalizing flow transforms a simple distribution into a complex one by

applying a sequence of invertible transformation functions.

153/192

Normalizing Flows

1. Normalizing flow transforms a simple distribution into a complex one by applying

a sequence of invertible transformation functions (Rezende and Mohamed 2015).

154/192

Normalizing Flows

1. From the previous slide, we have

zi−1 ∼ pi−1(zi−1)

zi = fi (zi−1), thus zi−1 = f −1
i (zi)

pi (zi) = pi−1(f −1
i (zi))

∣∣∣∣∣det

(
df −1

i

dzi

)∣∣∣∣∣

2. Repeating above, we can do inference using base distribution.

pi (zi) = pi−1(zi−1)(f −1
i (zi))

= pi−1(zi−1)

∣∣∣∣det

((dfi
dzi−1

)−1
)∣∣∣∣According to the inverse func theorem.

= pi−1(zi−1)

∣∣∣∣det

(
dfi

dzi−1

)∣∣∣∣
−1

Using property of Jacobians of invertible func.

log pi (zi) = log pi−1(zi−1)− log

∣∣∣∣det

(
dfi

dzi−1

)∣∣∣∣

155/192

Normalizing Flows

1. Given chain of pdfs, we can expand the equation of the output x step by step

until tracing back to the initial distribution z0.

x = zK = fK ◦ fK−1 ◦ · · · ◦ f1(z0)

log p(x) = log πK (zK) = log πK−1(zK−1)− log

∣∣∣∣det

(
dfK

dzK−1

)∣∣∣∣

= log πK−2(zK−2)− log

∣∣∣∣det

(
dfK−1

dzK−2

)∣∣∣∣

− log

∣∣∣∣det

(
dfK

dzK−1

)∣∣∣∣

= . . .

= log π0(z0)−
K∑

i=1

log

∣∣∣∣det

(
dfi

dzi−1

)∣∣∣∣

156/192

Normalizing Flows

1. The path traversed by the random variables zi = fi (zi−1) is the flow.

2. The full chain formed by the successive distributions πi is called a normalizing

flow.

3. For computation of equation, a transformation function fi should satisfy two
properties:

I It is easily invertible.
I Its Jacobian determinant is easy to compute.

157/192

Normalizing Flows (loss function)

1. With normalizing flows, the exact log-likelihood of input data log p(x) becomes

tractable.

2. The training criterion of flow-based generative model is simply the negative

log-likelihood (NLL) over the training dataset S .

L(S) = − 1

|S |
∑

x∈S
log p(x)

158/192

Real-valued Non-Volume Preserving (RealNVP)

1. The RealNVP model implements a normalizing flow by stacking a sequence of

invertible bijective transformation functions (Dinh, Sohl-Dickstein, and S. Bengio

2017).

2. In each bijection f : x 7→ y, the input dimensions are split into two parts:

I The first d dimensions stay same (x1);
I The second part, d + 1 to D dimensions (x2) transformed using

y1:d = x1:d

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d)

where s(.) and t(.) are scale and translation functions and both map Rd 7→ RD−d .

The � operation is the element-wise product.

159/192

Real-valued Non-Volume Preserving (RealNVP)

1. This network has

I Stack many invertible coupling layers.
I Each has simple inverse and determinant

N
o
n
-vo

lu
m

e
P
reservin

g
tra

n
sfo

rm
a
tio

n
s

(N
V

P
)

[D
in

h
et

a
l.,

2
0
1
7
]

•
S
tack

m
an

y
in

vertib
le

“cou
p
lin

g
layers”

•
E
ach

h
as

sim
p
le

in
verse

an
d

d
eterm

in
an

t

1.
P
artition

variab
les

in
grou

p
s
x

=
(x

1 ,x
2).

F
or

exam
p
le,

h
alf

of
p
ixels

in
on

e
grou

p

2.
K

eep
grou

p
x

1
u
n
ch

an
ged

3.
L
et

x
1

tran
sform

x
2

via
tran

slation
an

d
scalin

g

y
1

=
x

1

y
2

=
t
(x

1)
+

x
2 �

exp
(s(x

1))

5
1
/
6
6

160/192

Real-valued Non-Volume Preserving (RealNVP)

1. This transformation satisfy two properties of flow transformations.

I It is easily invertible.

{
y1:d = x1:d

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d)

⇔
{

x1:d = y1:d

xd+1:D = (yd+1:D − t(y1:d))� exp(−s(y1:d))

I Its Jacobian determinant is easy to compute. The Jacobian is a lower triangular

matrix.

J =

[
Id 0d×(D−d)

∂yd+1:D

∂x1:d
diag(exp(s(x1:d)))

]

Hence, the determinant is simply the product of terms on the diagonal.

det (J) =
D−d∏

j=1

exp(s(x1:d))j = exp(
D−d∑

j=1

s(x1:d)j)

161/192

Real-valued Non-Volume Preserving (RealNVP)

1. The inverse transformation

Properties: E�cient inversion

• Inverse transformation

x1 = y1 (25)

x2 = (y2 � t (x1)) � exp (�s(x1)) (26)

• No need to invert s(·) and t(·)
• Can use complex non-invertible functions, e.g. deep CNN

52/66

162/192

Real-valued Non-Volume Preserving (RealNVP)

Published as a conference paper at ICLR 2017

Data space X Latent space Z

Inference
x ⇠ p̂X

z = f (x)
)

Generation
z ⇠ pZ

x = f�1 (z)
(

Figure 1: Real NVP learns an invertible, stable, mapping between a data distribution p̂X and a latent
distribution pZ (typically a Gaussian). Here we show a mapping that has been learned on a toy
2-d dataset. The function f (x) maps samples x from the data distribution in the upper left into
approximate samples z from the latent distribution, in the upper right. This corresponds to exact
inference of the latent state given the data. The inverse function, f�1 (z), maps samples z from the
latent distribution in the lower right into approximate samples x from the data distribution in the
lower left. This corresponds to exact generation of samples from the model. The transformation of
grid lines in X and Z space is additionally illustrated for both f (x) and f�1 (z).

remains undetermined, often resulting in generation of highly correlated samples. Furthermore, these
approximations can often hinder their performance [7].

Directed graphical models are instead defined in terms of an ancestral sampling procedure, which is
appealing both for its conceptual and computational simplicity. They lack, however, the conditional
independence structure of undirected models, making exact and approximate posterior inference
on latent variables cumbersome [56]. Recent advances in stochastic variational inference [27]
and amortized inference [13, 43, 35, 49], allowed efficient approximate inference and learning of
deep directed graphical models by maximizing a variational lower bound on the log-likelihood [45].
In particular, the variational autoencoder algorithm [35, 49] simultaneously learns a generative
network, that maps gaussian latent variables z to samples x, and a matched approximate inference
network that maps samples x to a semantically meaningful latent representation z, by exploiting the
reparametrization trick [68]. Its success in leveraging recent advances in backpropagation [51, 39] in
deep neural networks resulted in its adoption for several applications ranging from speech synthesis
[12] to language modeling [8]. Still, the approximation in the inference process limits its ability
to learn high dimensional deep representations, motivating recent work in improving approximate
inference [42, 48, 55, 63, 10, 59, 34].

Such approximations can be avoided altogether by abstaining from using latent variables. Auto-
regressive models [18, 6, 37, 20] can implement this strategy while typically retaining a great deal of
flexibility. This class of algorithms tractably models the joint distribution by decomposing it into a
product of conditionals using the probability chain rule according to a fixed ordering over dimensions,
simplifying log-likelihood evaluation and sampling. Recent work in this line of research has taken
advantage of recent advances in recurrent networks [51], in particular long-short term memory [26],
and residual networks [25, 24] in order to learn state-of-the-art generative image models [61, 46] and
language models [32]. The ordering of the dimensions, although often arbitrary, can be critical to the
training of the model [66]. The sequential nature of this model limits its computational efficiency. For
example, its sampling procedure is sequential and non-parallelizable, which can become cumbersome
in applications like speech and music synthesis, or real-time rendering.. Additionally, there is no
natural latent representation associated with autoregressive models, and they have not yet been shown
to be useful for semi-supervised learning.

2

163/192

Real-valued Non-Volume Preserving (RealNVP)

Published as a conference paper at ICLR 2017

Dataset PixelRNN [46] Real NVP Conv DRAW [22] IAF-VAE [34]
CIFAR-10 3.00 3.49 < 3.59 < 3.28

Imagenet (32 ⇥ 32) 3.86 (3.83) 4.28 (4.26) < 4.40 (4.35)
Imagenet (64 ⇥ 64) 3.63 (3.57) 3.98 (3.75) < 4.10 (4.04)
LSUN (bedroom) 2.72 (2.70)

LSUN (tower) 2.81 (2.78)
LSUN (church outdoor) 3.08 (2.94)

CelebA 3.02 (2.97)

Table 1: Bits/dim results for CIFAR-10, Imagenet, LSUN datasets and CelebA. Test results for
CIFAR-10 and validation results for Imagenet, LSUN and CelebA (with training results in parenthesis
for reference).

Figure 5: On the left column, examples from the dataset. On the right column, samples from the
model trained on the dataset. The datasets shown in this figure are in order: CIFAR-10, Imagenet
(32 ⇥ 32), Imagenet (64 ⇥ 64), CelebA, LSUN (bedroom).

4.2 Results

We show in Table 1 that the number of bits per dimension, while not improving over the Pixel RNN
[46] baseline, is competitive with other generative methods. As we notice that our performance
increases with the number of parameters, larger models are likely to further improve performance.
For CelebA and LSUN, the bits per dimension for the validation set was decreasing throughout
training, so little overfitting is expected.

We show in Figure 5 samples generated from the model with training examples from the dataset
for comparison. As mentioned in [62, 22], maximum likelihood is a principle that values diversity

8

Dataset samples from model

164/192

Non-linear Independent Component Estimation (NICE)

1. The NICE model is a predecessor of Real NVP (Dinh, Krueger, and Y. Bengio

2015).

2. The transformation in NICE is the affine coupling layer without the scale term,

known as additive coupling layer.



y1:d = x1:d

yd+1:D = xd+1:D + m(x1:d)
⇔





x1:d = y1:d

xd+1:D = yd+1:D −m(y1:d)

3. m is an arbitrarily complex function, in this case a ReLU MLP.

4. Additive layers have unit Jacobian determinant, and their composition will

necessarily have unit Jacobian determinant too.

5. NICE includes a diagonal scaling matrix S as the top layer.

6. Final layer of NICE applies a rescaling transformation xi = sizi and inverse

mapping zi = xi
si

.

7. Jacobian of forward mapping:

J = diag(S)

det (J) =
∏

i

si .

165/192

Samples generated by NICE

Samples generated via NICE

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 6 / 20

166/192

Glow model

1. The Glow model extends NICE and RealNVP, and simplifies the architecture by

replacing the reverse permutation operation on the channel ordering with

invertible 1× 1 convolutions (Kingma and Dhariwal 2018).

2. There are three substeps in one step of flow in Glow.

I Activation normalization (short for actnorm):

Activation normalization

I Actnorm layer performs an affine transformation of the activations using a scale and bias

parameter per channel.

I These parameters are initialized such that the post-actnorm activations per-channel have zero

mean and unit variance.

I After initialization, the scale and bias are treated as regular trainable parameters that are

independent of the data.

I Invertible 1× 1 convolution: Instead of fixed ordering, 1× 1 convolution is used.
I Affine coupling layer (Same as in RealNVP)

167/192

Glow model

1. Latent factors

Example: GLOW

�  Generative Flow with Invertible 1x1 Convolutions !
 https://blog.openai.com/glow/ !

48!

Age! Hair
Color!

Smile! Beard!

Image!

z1! zk!

x!

Latent factors of variation !

Kingma, Dhariwal, 2018

168/192

Glow model

Example: GLOW

49!

Increase Age!

Decrease Age!

Input!

https://blog.openai.com/glow/!
!

Add Beard !Smile!

Remove Beard !

Input!

169/192

Glow Results

Glow: Generative Flow
with Invertible 1⇥1 Convolutions

Diederik P. Kingma*†, Prafulla Dhariwal⇤
*OpenAI

†Google AI

Abstract

Flow-based generative models (Dinh et al., 2014) are conceptually attractive due to
tractability of the exact log-likelihood, tractability of exact latent-variable inference,
and parallelizability of both training and synthesis. In this paper we propose Glow,
a simple type of generative flow using an invertible 1⇥ 1 convolution. Using our
method we demonstrate a significant improvement in log-likelihood on standard
benchmarks. Perhaps most strikingly, we demonstrate that a flow-based generative
model optimized towards the plain log-likelihood objective is capable of efficient
realistic-looking synthesis and manipulation of large images. The code for our
model is available at https://github.com/openai/glow.

1 Introduction

Two major unsolved problems in the field of machine learning are (1) data-efficiency: the ability to
learn from few datapoints, like humans; and (2) generalization: robustness to changes of the task or
its context. AI systems, for example, often do not work at all when given inputs that are different

⇤Equal contribution.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Figure 1: Synthetic celebrities sampled from our model; see Section 3 for architecture and method,
and Section 5 for more results.

Synthetic celebrities sampled from Glow model

170/192

Glow Results

Figure 4: Random samples from the model, with temperature 0.7.

Figure 5: Linear interpolation in latent space between real images.

between the latents to obtain samples. The results in Figure 5 show that the image manifold of the
generator distribution is smooth and almost all intermediate samples look like realistic faces.

Semantic Manipulation. We now consider modifying attributes of an image. To do so, we use the
labels in the CelebA dataset. Each image has a binary label corresponding to presence or absence of
attributes like smiling, blond hair, young, etc. This gives us 30000 binary labels for each attribute.
We then calculate the average latent vector zpos for images with the attribute and zneg for images
without, and then use the difference (zpos � zneg) as a direction for manipulating. Note that this is a
relatively small amount of supervision, and is done after the model is trained (no labels were used
while training), making it extremely easy to do for a variety of different target attributes. The results
are shown in Figure 6 (appendix).

Effect of temperature and model depth. Figure 8 (appendix) shows how the sample quality and
diversity varies with temperature. The highest temperatures have noisy images, possibly due to
overestimating the entropy of the data distribution; we choose a temperature of 0.7 as a sweet spot
for diversity and quality of samples. Figure 9 (appendix) shows how model depth affects the ability
of the model to learn long-range dependencies.

7 Conclusion

We propose a new type of generative flow and demonstrate improved quantitative performance in
terms of log-likelihood on standard image modeling benchmarks. In addition, we demonstrate that
when trained on high-resolution faces, our model is able to synthesize realistic images.

References
Deco, G. and Brauer, W. (1995). Higher order statistical decorrelation without information loss.

Advances in Neural Information Processing Systems, pages 247–254.

3For 128⇥ 128 and 96⇥ 96 versions, we centre cropped the original image, and downsampled. For 64⇥ 64
version, we took random crops from the 96⇥ 96 downsampled image as done in Dinh et al. (2016)

8

Random samples from the Glow model.

See also https://openai.com/blog/glow/.

171/192

https://openai.com/blog/glow/

Autoregressive Flows

1. In autoregressive models, the probability of observing xi is conditioned on

x1, . . . , xi−1 and the product of these conditional probabilities gives us the

probability of observing the full sequence:

p(x) =
D∏

i=1

p(xi |x1, . . . , xi−1) =
D∏

i=1

p(xi |x1:i−1)

2. If a flow transformation in a normalizing flow is framed as an autoregressive

model, the model is an autoregressive flow.

172/192

Masked Autoregressive Flow (MAF)

1. MAF is a type of normalizing flows, where the transformation layer is built as an

autoregressive neural network (Papamakarios, Murray, and Pavlakou 2017).

173/192

Masked Autoregressive Flow

1. Given two random variables z ∼ π(z) and x ∼ p(x), and the probability density

function π(z) is known, MAF aims to learn p(x).

2. MAF generates each xi , conditioned on the past dimensions x1:i−1.

I Data generation, producing a new x.

xi = zi expαi + µi

where

p(xi |x1:i−1) = N
(
xi |µi , (expαi)

2
)

µi = fµi (x1:i−1)

αi = fαi (x1:i−1)

zi ∼ N (0, 1)

I Density estimation, given a known x.

p(x) =
D∏

i=1

p(xi |x1:i−1)

174/192

Inverse autoregressive flow (IAF)

1. IAF models the conditional probability of the target variable as an autoregressive

model too, but with a reversed flow (for efficient sampling process) (Kingma,

Salimans, and Welling 2016).

2. In IAF, the nonlinear shift/scale statistics are computed using the previous noise

variates z1:i−1, instead of the data samples:

xi = zi expαi + µi

µi = fµi (z1:i−1)

αi = fαi (z1:i−1) 175/192

Inverse autoregressive flow

1. The reverse transformation in MAF is

zi =
xi − µi (x1:i−1)

σi (x1:i−1)
= −µi (x1:i−1)

σi (x1:i−1)
+ xi �

1

σi (x1:i−1)

2. If we consider

x̃ = z, p̃(.) = π(.), x̃ ∼ p̃(x̃)

z̃ = x, π̃(.) = p(.), z̃ ∼ π̃(z̃)

µ̃i (z̃1:i−1) = µ̃i (x1:i−1) = −µi (x1:i−1)

σi (x1:i−1)

σ̃(z̃1:i−1) = σ̃(x1:i−1) =
1

σi (x1:i−1)

3. Then, x̃i ∼ p(x̃i |z̃1:i) = z̃i � σ̃i (z̃1:i−1) + µ̃i (z̃1:i−1), where z̃ ∼ π̃(z̃)

4. IAF intends to estimate the probability density function of x̃ given that π̃(z̃) is

already known.

176/192

Evaluating deep generative models

Introduction

1. Evaluation of generative models is tricky

2. The key questions is about underlying task of the generative model.

I Density estimation
I Sampling / generation
I Latent representation learning
I More than one task.

3. How do we evaluate generative models?

Example (Evaluating density estimation)

When the given model has tractable likelihood, the evaluation is straightforward.

I Split dataset into train, validation, and test sets.

I Evaluate gradients based on the train set.

I Tune hyper-parameters based on the validation set.

I Evaluate generalization by measuring likelihoods on the test set.

177/192

Introduction

1. We have a dataset that sampled from pdata and generated samples from pg .

2. Evaluating deep generative models (DGM) is hard because

I the distributions of interest are often high dimensional,
I the likelihood functions are not always available or easily computable.

3. A common way to evaluate a DGM is to measure how close pdata is to pg .

4. Since sample complexity of traditional measure such as KL divergence or

Wasserstein distance is exponential in the dimensionality of the distribution, they

cannot be used for real world distributions.

5. The reduced sample complexity comes at the cost of reduced discriminative power.

6. These metrics cannot tell the difference between a model that memorizes the

training data and a model that generalizes.

178/192

Introduction

1. Some generative models such as VAE and GAN have intractable likelihoods.

2. For example, in VAE we can compare the evidence lower bounds (ELBO) to

log-likelihoods.

3. For general case, kernel density estimates only via samples can be used.

4. Consider the following generated images, which of them is better?

(Goodfellow 2016)

Single Image Super-Resolution

(Ledig et al 2016)
179/192

Human evaluations

1. One intuitive metric of performance can be obtained by having human annotators

judge the visual quality of samples.

2. This process can be automated using Amazon Mechanical Turk (Salimans,

I. J. Goodfellow, et al. 2016).

3. The task is to ask annotators to distinguish between generated data and real

data.

4. For MNIST dataset and GAN model, annotators were able to distinguish samples

in 52.4% of cases (2000 votes total), where 50% would be obtained by random

guessing.

5. For CIFAR-10 dataset and GAN model, annotators were able to distinguish

samples in 78.7% of cases.

6. A downside of using human annotators is that the metric varies depending on the

setup of the task and the motivation of the annotators.

7. Also, results change drastically when we give annotators feedback about their

mistakes.

8. By learning from such feedback, annotators are better able to point out the flaws

in generated images, giving a more pessimistic quality assessment.
180/192

Inception score

1. The inception score takes a list of images and returns a single number, the score.

2. The score is a measure of how realistic the output of a generative model (GAN) is.
3. The score measures two things simultaneously:

I The images have variety.
I Each image distinctly looks like something.

4. If both things are true, the score will be high; otherwise, the score will be low.

5. The lower bound of this score is zero and the upper bound is ∞.

6. The inception score takes its name from the Inception classifier, an image

classification network from Google.

7. Classifier takes an image, and returns probability distribution of labels for image.

181/192

Inception score

1. If image contains just one well-formed thing, then output of classifier is a narrow

distribution.

2. If image is a jumble, or contains multiple things, it’s closer to the uniform

distribution of many similar height bars.

3. The next step is combine the label probability distributions for many of generated

images (50,000 images).

4. By summing the label distributions of our images, a new label distribution

(marginal distribution) will be obtained.

5. The marginal distribution tells the variety in the generator’s output:

6. The final step is to combine these two different things into one single score.
182/192

Inception score

1. The final step is to combine these two different things into one single score.

2. By comparing label distribution with marginal label distribution for images, a

score will be obtained that shows how much those two distributions differ.

3. The more they differ, the higher a score we want to give, and this is the inception

score.

4. To produce the inception score, the KL divergence between label distribution and
marginal label distribution is used.

I Construct an estimator of the Inception Score from samples x(i) by constructing an

empirical marginal class distribution,

p̂(y) =
1

m

m∑

i=1

p(y | x(i))

I Then an approximation to the expected KLdivergence is computed by

IS(G) ≈ exp

(
1

m

m∑

i=1

DKL(p(y | x(i)) || p̂(y))

)

183/192

Evaluation metrics

1. Several metrics have been proposed for evaluation of generative

models (Thanh-Tung and Tran 2020).

2. Divergence based evaluation metrics

I Inception score
I Fréchet inception distance
I Neural net divergence

3. Precision-Recall based evaluation metrics

I k-means based Precision-Recall
I k-NN based Precision-Recall

4. Other evaluation metrics

I Metrics for class-conditional models
I Topological/Geometrical approaches
I Non-parametric approaches

184/192

Summary

Learning deep latent variable models

1. Marginal distribution on x obtained by integrating out z

p(z) = N (z ; 0, I)

pθ(x) =

∫

z
p(z)p(x |fθ(z))

2. Problem: Evaluation of pθ(x) intractable due to integral involving flexible

non-linear deep net fθ(z).

3. Solutions: by different unsupervised deep learning paradigms

I Avoid integral: Generative adversarial networks (GAN)
I Approximate integral: Variational autoencoders (VAE)
I Tractable integral: constrain fθ(z) to invertible flow. Please read (Kobyzev, Prince,

and Brubaker 2020).
I Avoid latent variables: autoregressive models

185/192

Different generative models using latent variables

186/192

Reading

Readings

1. Chapter 10 of Deep Learning Book4

4Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press.
187/192

References i

Arjovsky, Martin and Leon Bottou (2017). “Towards Principled Methods for Training

Generative Adversarial Networks”. In: International Conference on Learning

Representations.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). “Wasserstein GAN”. In:

ArXiv.

Dinh, Laurent, David Krueger, and Yoshua Bengio (2015). “NICE: Non-linear

Independent Components Estimation”. In: International Conference on Learning

Representations.

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2017). “Density estimation

using Real NVP”. In: International Conference on Learning Representations.

Duda, Richard O., Peter E. Hart, and David G. Stork (2001). Pattern classification,

2nd Edition. Wiley.

Dumoulin, Vincent and Francesco Visin (2016). “A guide to convolution arithmetic for

deep learning”. In: ArXiv. eprint: 1603.07285.

188/192

1603.07285

References ii

Gan, Zhe et al. (2015). “Learning Deep Sigmoid Belief Networks with Data

Augmentation”. In: Proceedings of the Eighteenth International Conference on

Artificial Intelligence and Statistics, AISTATS.

Germain, Mathieu et al. (2015). “MADE: Masked Autoencoder for Distribution

Estimation”. In: Proceedings of the 32nd International Conference on Machine

Learning.

Goodfellow, Ian J. et al. (2014). “Generative Adversarial Nets”. In: Advances in Neural

Information Processing Systems, pp. 2672–2680.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT

Press.

Karras, Tero et al. (2018). “Progressive Growing of GANs for Improved Quality,

Stability, and Variation”. In: International Conference on Learning Representations.

Khajenezhad, Ahmad, Hatef Madani, and Hamid Beigy (2021). “Masked Autoencoder

for Distribution Estimation on Small Structured Data Sets”. In: IEEE Transactions

on Neural Networks and Learning Systems.

189/192

References iii

Kingma, Diederik P. and Prafulla Dhariwal (2018). “Glow: Generative Flow with

Invertible 1x1 Convolutions”. In: Advances in Neural Information Processing

Systems, pp. 10236–10245.

Kingma, Diederik P., Tim Salimans, and Max Welling (2016). “Improving Variational

Inference with Inverse Autoregressive Flow”. In:

Kingma, Diederik P. and Max Welling (2014). “Auto-Encoding Variational Bayes”. In:

Proc. of the 2nd Int. Conf. on Learning Representations.

Kobyzev, Ivan, Simon J.D. Prince, and Marcus A. Brubaker (2020). “Normalizing

Flows: An Introduction and Review of Current Methods”. In: IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI).

Larochelle, Hugo and Iain Murray (2011). “The Neural Autoregressive Distribution

Estimator”. In: Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics, AISTATS.

Mirza, Mehdi and Simon Osindero (2014). “Conditional Generative Adversarial Nets”.

In: arXiv.

Oord, Aäron van den, Sander Dieleman, et al. (2016). “WaveNet: A Generative Model

for Raw Audio”. In: The 9th ISCA Speech Synthesis Workshop.

190/192

References iv

Oord, Aäron van den, Nal Kalchbrenner, Lasse Espeholt, et al. (2016). “Conditional

Image Generation with PixelCNN Decoders”. In: Advances in Neural Information

Processing Systems.

Oord, Aäron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016). “Pixel

Recurrent Neural Networks”. In: Proceedings of the 33nd International Conference

on Machine Learning.

Papamakarios, George, Iain Murray, and Theo Pavlakou (2017). “Masked

Autoregressive Flow for Density Estimation”. In: Advances in Neural Information

Processing Systems, pp. 2338–2347.

Radford, Alec, Luke Metz, and Soumith Chintala (2016). “Unsupervised

Representation Learning with Deep Convolutional Generative Adversarial Networks”.

In: International Conference on Learning Representations.

Rezende, Danilo Jimenez and Shakir Mohamed (2015). “Variational Inference with

Normalizing Flows”. In: Proceedings of the 32nd International Conference on

Machine Learning. Vol. 37, pp. 1530–1538. url:

http://proceedings.mlr.press/v37/rezende15.html.

191/192

http://proceedings.mlr.press/v37/rezende15.html

References v

Salakhutdinov, Ruslan and Hugo Larochelle (2010). “Efficient Learning of Deep

Boltzmann Machines”. In: Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics (AISTATS). Vol. 9, pp. 693–700.

Salimans, Tim, Ian J. Goodfellow, et al. (2016). “Improved Techniques for Training

GANs”. In: Advances in Neural Information Processing Systems, pp. 2226–2234.

Salimans, Tim, Andrej Karpathy, et al. (2017). “PixelCNN++: Improving the

PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications”. In:

International Conference on Learning Representations, ICLR.

Thanh-Tung, Hoang and Truyen Tran (2020). “Toward a Generalization Metric for

Deep Generative Models”. In: arXiv abs/2011.00754.

Uria, Benigno, Marc-Alexandre Côté, et al. (2016). “Neural Autoregressive Distribution

Estimation”. In: Journal of Machine Learning Research 17.205, pp. 1–37.

Uria, Benigno, Iain Murray, and Hugo Larochelle (2013). “RNADE: The real-valued

neural autoregressive density-estimator”. In: Advances in Neural Information

Processing Systems, pp. 2175–2183.

192/192

Questions?

192/192

	Introduction
	Generative models without using latent variables
	Generative models using latent variables

	Deep generative models
	Boltzmann Machine
	Restricted Boltzmann Machine
	Deep Boltzmann Machine
	Deep Belief Networks

	Autoencoder models
	Autoregressive models
	Neural Autoregressive Density Estimator

	Generative Adversarial Networks
	Wasserstein GAN
	Conditional GAN
	Deep Convolutional GAN

	Variational Autoencoder models
	Normalizing Flow Models
	Evaluating deep generative models
	Summary
	Reading

