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Introduction



Introduction

1. We assume x1, X2, ..., Xm are |ID random variables are sampled from an unknown
distribution D, where each x; is k-dimensional vector.

2. We require to specify a high-dimensional distribution p(xi, ..., xx) on the data and
possibly some latent variables.
3. The specific form of p will depend on some parameters w.

4. The basic operations will be to

> Structure learning: Specifying the parametric/non-parametric form of p(x, ..., xk).
> Parameter learning: Adjusting p(xi, ..., x) to the data.
> Inference: Computing marginals and modes of p(xi, ..., x).

5. Working with fully flexible joint distributions is intractable!
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Structure learning

1. How the form of density function is specified?

2. We specify the form of density function in such a way that parameter learning and
inference become easier.

3. For example, we can consider the following conditional form.

p(xi, ..., xk) = p(xalx)p(x1]|x3) - . . p(x1|xk)

4. Consider the Naive Bayes classifier. We have p(class, x) = p(class) H}’zl p(x; | class)
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Structure learning

1. Or consider the following forms

P(xts -y k) = p(xixk—1)p(xk—1]xk—2) - . . p(32|x1)

2. We must work with structured or compact distributions.

3. For example, distributions in which the random variables interact directly with only very
few others in simple ways (why?).

4. One solution is to use probabilistic graphical models.
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Some Inference queries

1. Simple queries: computing posterior marginal p(x;|E = e)
2. Conjunctive queries: Computing p(xi, x2|E = e)

3. How do you answer the following query?
p(x1) = ZXZ ZX3 p(x1, x2, X3)

4. How do you answer the query p(x;) when density function has the following form?

p(x1, ..., xk) = p(xa|x2)p(x1|x3) - .. p(x1|xk)
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Bayesian Networks

1. A simple Bayesian network
SPRINKLER

A Commarn St mn
F 04 0.6
T 0.01 0.99

GRASS WET
SPRINKLER RAIN| T F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
T T 0.99 0.01

p(G, S, R) = p(GIS, R)p(S|R)p(R)
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Bayesian Networks

1. How calculate p(x, ..., xx) using Bayesian networks?

2. If a Bayesian network can be factorized, then we can write

p(xa, . x) = [] pxlpa(v))

veV
where pa(v) is the set of parents of v.

3. Cooper proved that exact inference in Bayesian networks is NP-hard.
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Markov networks

1. A Markov network is a set of random variables having a Markov property described by an

undirected graph.

2. Each edge represents dependency.
> A depends on B and D.
> B depends on A and D.
> D depends on A, B, and E.
> E depends on D and C.
» C depends on E.
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Markov networks

1. Consider the following network.

2. We'll assume p is a general undirected model of the following form

ﬁ(Xh -y Xn; W)

p(X1y .-y Xn W) = = Z(lw) 1:[¢k(X{k};W)7

Z(w)

where the ¢y are the factors and Z(w) is the normalization constant and x{k} is a subset
of variables .

3. How do yo compute Z(w) ?
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Limitations of Graphical Models

1. Graphical models are limited in some aspects
> Many compact distributions cannot be represented as a GM.
> The cost of exact inference in GM is exponential in the worst case (using approximate
techniques).
> Because learning requires inference, learning GM will be difficult .
» Some distributions require GM with many layers of hidden variables to be compactly
encoded.
2. An alternative are sum product networks (Poon and Domingos 2011).
> New deep model with many layers of hidden variables.
> Exact inference is tractable (linear in the size of the model).
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Sum Product Networks




Sum Product Networks

1. A SPN is rooted DAG whose leaves are xq,...,x, and Xy, ..., X, with internal sum and
product nodes, where each edge (/,j) emanating from sum node / has a weight w;; > 0.

2. The value of a product node is the product of the value of its children.

3. The value of a sum node i is ). cy(;) WijVj, where Ch(j) are the children of node i and v;
is the value of node j

4. The value of a SPN is the value of the root after a bottom up evaluation.

5. Layers of sum and product nodes usually alternate.
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Sum Product Networks (example)

1. An example of SPN

0.69=0.51+0.18

2. What is the output of the above network?
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Probabilistic Inference

SPN represents a joint distribution over a set of random variables. What is value of
p(x1=1,x =0)?
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Marginal Inference

SPN represents a joint distribution over a set of random variables. What is value of p(x; = 1)?

0.69=0.51+0.18
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SPN Semantics

A valid SPN encodes a hierarchical mixture distribution.

0.69=0.51+0.18

» Sum nodes: hidden variables (mixture)

» Product nodes: factorization
(independence)
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Valid SPN

» The scope of a node is the set of variables that appear in the
sub-SPN rooted at the node

» An SPN is decomposable iff no variable appears in more than 0.69=0.51+0.18
one child of a product node.

» An SPN is complete when each sum node has children with
identical scopes.
» An SPN is consistent iff no variable appears negated in one

child of a product node and non-negated in another.

» A consistent and complete SPN is a valid SPN. An SPN is
valid if it always correctly computes the probability of

evidence.
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Building and using an SPN

1. We must specify the structure of SPN (structure Estimation or structure learning).
2. We must find the parameters of SPN (parameter learning).

3. We must answer queries (inference).
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Structure learning

. What is SPN for univariate distribution?

— A univariate distribution is an SPN

. What is SPN for product of disjoint random variables?
— A product of SPNs over disjoint variables is an SPN.
. What is SPN for a mixture model?

o A W N

— A weighted sum of SPNs over the same variables is an SPN.
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Structure learning

1. In a structure learning, one alternates between

> Data Clustering: sum nodes
> Variable partitioning: product nodes

Split variables on
approximate
independence

Cluster similar
instances

Instances

Variables

EE Eﬁf !

HHH

2. Some others use SVD decomposition (Adel, Balduzzi, and Ghodsi 2015).
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SPN learning

1. Initialize the SPN using a dense valid SPN.

2. Learn the SPN weights using gradient descent or EM.

3. Add some penalty to the weights so that they tend to be zero.
4

. Prune edges with zero weights at convergence.

Algorithm 1 LearnSPN
Input: Set D of instances over variables X .
Output: An SPN with learned structure and parameters.
S < GenerateDenseSPN(X)
InitializeWeights(S)
repeat
foralld € D do
UpdateWeights(S, Inference(.S, d))
end for
until convergence
S < PruneZeroWeights(.5)
return S
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Applications




Image completion

1. Main evaluation: Caltech-101

> 101 categories, e.g., faces, cars, elephants
> Each category: 30 — 800 images

2. Each category: Last third for test

3. Test images: Unseen objects
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Language modeling

1. Fixed structure SPN encoding the conditional probability p(w;|w;_1 ..., w;_y) as an Nth

order language model (Cheng et al. 2014).

1’(}43 \\4;,1,...,\43,A,J
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Language modeling

1. Perplexity scores (PPL) of different language models

Model Individual PPL  +KN5
TrainingSetFrequency 528.4

KNS5 [3] 141.2

Log-bilinear model [4] 144.5 115.2
Feedforward neural network [5] 140.2 116.7
Syntactical neural network [8] 131.3 110.0
RNN [6] 124.7 105.7
LDA-augmented RNN [9] 113.7 98.3
SPN-3 104.2 82.0
SPN-4 107.6 82.4

SPN-4° 100.0 80.6
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Other applications

o gk~ w o=

Image completion
Image classification
Activity recognition
Click-through logs
Nucleic acid sequences

Collaborative filtering
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Advantages of SPNs

1. Unlike graphical models, SPNs are tractable over high treewidth models.
2. SPNs are deep architectures with full probabilistic semantics

3. SPNs can incorporate features into an expressive model without requiring approximate

inference.
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Reading




1. Read the survey paper (Paris, Sanchez-Cauce, and Diez 2020).
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