Machine learning theory

PAC-Bayesian Theory

Hamid Beigy

Sharif university of technology

June 15, 2020

Table of contents

- 1. Introduction
- 2. Bayesian methods
- 3. PAC-Bayes theory
- 4. Summary

Introduction

- PAC (Probably Approximately Correct) Learning provides guarantees on the expected error (approximately) of prediction rules that hold with high probability (probably) with respect to representativeness of the observed sample.
- ▶ In PAC approach, we choose hypothesis class *H* as the prior knowledge.
- ► The PAC approach has the advantage that one can prove guarantees for generalization error without assuming the truth of the prior.
- ▶ How to incorporate more complicated prior knowledge.
- ► The Bayesian approach has the advantage of using arbitrary domain knowledge in the form of a Bayesian prior.
- A PAC-Bayesian approach to machine learning attempts to combine the advantages of both PAC and Bayesian approaches.
- ▶ A PAC-Bayesian approach bases the bias of the learning algorithm on an arbitrary prior distribution, thus allowing the incorporation of domain knowledge, and yet provides a guarantee on generalization error that is independent of any truth of the prior.

Bayesian methods

Let the data is drawn from a distribution that comes from some parametric family.

Example (Gaussian distribution)

Let σ be a known fixed parameter. Then, $\mathbb{P}\left[y\mid\mathbf{x};\mathbf{w}\right]=\mathcal{N}\left(\left\langle\mathbf{w},\mathbf{x}\right\rangle,\sigma^{2}\right)=\left\langle\mathbf{w},\mathbf{x}\right\rangle+\mathcal{N}\left(0,\sigma^{2}\right)$ is a parametric family.

▶ Given a sample $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$, we define the likelihood of \mathbf{w} as

$$\mathcal{L}(\mathbf{w}, S) = \log (\mathbb{P}[y_1, \dots, y_m \mid \mathbf{x}_1, \dots, \mathbf{x}_m; \mathbf{w}]) = \sum_{i=1}^m \log (\mathbb{P}[y_i \mid \mathbf{x}_i; \mathbf{w}])$$

▶ The maximum livelihood is the given value of **w** that maximizes $\mathcal{L}(\mathbf{w}, S)$ $\left(\mathbf{w} = \underset{\mathbf{w}'}{\operatorname{argmax}} \mathcal{L}(\mathbf{w}', S)\right)$

Example (Gaussian distribution)

- 1. Let σ be a known fixed parameter. Then, $\mathbb{P}\left[y\mid\mathbf{x};\mathbf{w}\right]=\mathcal{N}\left(\left\langle\mathbf{w},\mathbf{x}\right\rangle,\sigma^{2}\right)=\left\langle\mathbf{w},\mathbf{x}\right\rangle+\mathcal{N}\left(0,\sigma^{2}\right)$ is a parametric family.
- 2. This means that $\mathbb{P}\left[y_i \mid \mathbf{x}_i; \mathbf{w}\right] = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i \langle \mathbf{w}, \mathbf{x} \rangle)^2}{\sigma^2}\right)$ and the likelihood is $\mathcal{L}(\mathbf{w}, S) = -\sum_{i=1}^m \frac{1}{\sigma^2} \frac{(y_i \langle \mathbf{w}, \mathbf{x} \rangle)^2}{\sigma^2} + C$, where C is a normalization factor that does not depend on \mathbf{w} .
- 3. This means that maximum likelihood is equivalent to minimizing square loss.
- 4. We want to maximize $\mathbb{P}[\mathbf{w} \mid \mathbf{x}, y]$.

- ▶ To find $\mathbb{P}[\mathbf{w} \mid \mathbf{x}, y]$, we need to a prior distribution $\mathbb{P}[\mathbf{w}]$.
- ▶ We have $\mathbb{P}[y \mid x, w]$ and $\mathbb{P}[w]$ from Bayes Theorem, hence, we have

$$\mathbb{P}\left[\mathbf{w}\mid\mathbf{x},y\right] = \frac{\mathbb{P}\left[y\mid\mathbf{x},\mathbf{w}\right]\mathbb{P}\left[\mathbf{w}\right]}{\mathbb{P}\left[y\mid\mathbf{x}\right]} \propto \mathbb{P}\left[y\mid\mathbf{x},\mathbf{w}\right]\mathbb{P}\left[\mathbf{w}\right].$$

▶ The maximum a posteriori (MAP) model is

$$\mathbf{w} = \mathop{\mathsf{argmax}}_{\mathbf{w}'} \ \mathbb{P}\left[\mathbf{y} \mid \mathbf{X}, \mathbf{w}'\right] \mathbb{P}\left[\mathbf{w}'\right] = \mathop{\mathsf{argmax}}_{\mathbf{w}'} \mathcal{L}(\mathbf{w}', \mathcal{S}) + \log \mathbb{P}\left[\mathbf{w}'\right]$$

Example (Gaussian distribution (cont.))

- 1. Let $\mathbb{P}[\mathbf{w}] = \mathcal{N}(\mathbf{0}, \sigma_{\mathbf{w}}^2 \mathbf{I})$ be prior distribution on \mathbf{w} .
- 2. Now, we have

$$\mathbf{w} = \underset{\mathbf{w}'}{\operatorname{argmax}} - \sum_{i=1}^{m} \frac{1}{\sigma^{2}} \frac{(y_{i} - \langle \mathbf{w}', \mathbf{x} \rangle)^{2}}{\sigma^{2}} - \frac{1}{\sigma^{2}} \|\mathbf{w}'\|_{2}^{2}$$

$$= \underset{\mathbf{w}'}{\operatorname{argmin}} \sum_{i=1}^{m} \frac{1}{\sigma^{2}} \frac{(y_{i} - \langle \mathbf{w}', \mathbf{x} \rangle)^{2}}{\sigma^{2}} + \frac{1}{\sigma^{2}} \|\mathbf{w}'\|_{2}^{2}$$

- 3. This is equivalent to doing regularized ERM with L_2 regularization.
- 4. If we use Laplacian distribution instead of Gaussian, we will get L_1 regularization.

- ▶ MAP picks the best model, given our model and data.
- ▶ Why do we have to pick one model?
- ▶ We have seen that the optimal classifier can be calculated given $\mathbb{P}[y \mid x]$.
- ▶ The Bayesian approach does exactly that, so we get

$$\mathbb{P}\left[y\mid \mathbf{x},S\right] = \int_{\mathbf{w}} \mathbb{P}\left[y\mid \mathbf{x},\mathbf{w}\right] \mathbb{P}\left[\mathbf{w}\mid S\right] d\,\mathbb{P}\left[\mathbf{w}\right]$$

In some cases (such as Guassian), this as an analytic solution, but most of the time there isn't any.

PAC-Bayes theory

- ▶ In agnostic PAC learning, this prior is defined as selecting the hypothesis class H.
- ▶ In SRM learning, this prior is defined as the weights assigned to different hypothesis class H_n .
- ▶ In MDL, this prior is defined as the description length of hypothesis h.
- In the above models, the output of the learning algorithm is a single hypothesis h, i.e h = A(S).
- ▶ In PAC-Bayes, algorithms return a distribution Q on H.

Example (Loss of posterior)

Let Q be a distribution on H, \mathcal{D} a distribution on $\mathcal{X} \times \mathcal{Y}$ and S a finite sample. Define

$$\mathsf{R}(Q) = \underset{h \sim Q}{\mathbb{E}} \left[\mathsf{R}(h) \right] = \underset{h \sim Q}{\mathbb{E}} \left[\underset{z \sim \mathcal{D}}{\mathbb{E}} \left[\ell(h, z) \right] \right]$$

$$\hat{\mathbf{R}}(Q) = \underset{h \sim Q}{\mathbb{E}} \left[\hat{\mathbf{R}}(h) \right] = \underset{h \sim Q}{\mathbb{E}} \left[\frac{1}{m} \sum_{i=1}^{m} \ell(h, z) \right]$$

- ▶ The learning algorithm is
 - 1. Define prior distribution P on H.
 - 2. Get sample $S \sim \mathcal{D}^m$.
 - 3. Define/find posterior distribution Q on H.

▶ We can turn a posterior into a learning algorithm.

Definition (Gibbs classifier)

Let Q be a distribution on H. The Gibbs classifier is the following randomized hypothesis

- 1. Pick $h \in H$ according to Q(h).
- 2. Observe x.
- 3. Return h(x).
- ▶ It is straightforward to show that the expected loss Gibbs classifier equals to R(Q).

Example

- 1. Let $H = \{h_1, \ldots, h_k\}$.
- 2. Let P be a uniform distribution over H.
- 3. Let Q be defined as

$$Q(h) = \left\{ egin{array}{ll} 1 & & ext{if } h = h_{erm} \ \\ 0 & & ext{if } h
eq h_{erm} \end{array}
ight.$$

Example

1. For $\mathbf{w} \in \mathbb{R}^n$, define

$$h_{\mathbf{w}}(\mathbf{x}) = \left\{ egin{array}{ll} +1 & \quad \text{with probability } rac{1}{Z} e^{\langle \mathbf{w}, \mathbf{x}
angle} \ -1 & \quad \text{with probability } rac{1}{Z} e^{-\langle \mathbf{w}, \mathbf{x}
angle} \end{array}
ight.$$

- 2. The prior P is $\mathcal{N}(0, \sigma^2 \mathbf{I})$, i.e. $P(h_{\mathbf{w}}) \propto \exp(-\|\mathbf{w}\|^2/\sigma^2)$.
- 3. Given sample $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \sim \mathcal{D}^m$, and sample $h \sim P$ and output $S = \{(\mathbf{x}_1, h(y_1)), \dots, (\mathbf{x}_m, h(y_m))\}$. Then likelihood equals to

$$\mathbb{P}\left[y_1,\ldots,y_m\mid h_{\mathbf{w}},\mathbf{x}_1,\ldots,\mathbf{x}_m\right] = \prod_i \frac{1}{Z} e^{\langle \mathbf{w},\mathbf{x}_i\rangle} \propto \exp\left(\sum_i y_i \langle \mathbf{w},\mathbf{x}_i\rangle\right).$$

4. Using Bayes' rule, we can form the posterior

$$\mathbb{P}\left[h_{\mathbf{w}} \mid y_{1}, \dots, y_{m}, \mathbf{x}_{1}, \dots, \mathbf{x}_{m}\right] \propto \left(\exp\left(\sum_{i} y_{i} \left\langle \mathbf{w}, \mathbf{x}_{i} \right\rangle\right)\right) \left(\exp\left(-\frac{\|\mathbf{w}\|^{2}}{\sigma^{2}}\right)\right)$$

$$\propto \left(\exp\left(\sum_{i} y_{i} \left\langle \mathbf{w}, \mathbf{x}_{i} \right\rangle\right) - \frac{\|\mathbf{w}\|^{2}}{\sigma^{2}}\right)$$

We will see that the critical factor determining the complexity of the learning algorithm will become KL(Q||P), the Kullback-Liebler divergence from Q to P instead of the Rademacher complexity.

- \triangleright We want to show that if Q is similar to P, the classifier generalizes well.
- Kullback-Leibler (KL) divergence is how to measure the similarity of two distributions.

Definition (KL divergence)

Let P and Q be continuous or discrete distributions. Then, KL divergence of distributions P and Q defined as

$$\mathit{KL}(Q||P) = \mathop{\mathbb{E}}_{x \sim Q} \left[\ln \left(\frac{Q(x)}{P(x)} \right) \right].$$

- ▶ Note that KL divergence is not symmetric, i.e. $KL(Q||P) \neq KL(P||Q)$.
- ▶ The intuition behind this definition comes from information theory.
- Assume we have a finite alphabet and message x is sent with probability P(x).
- Shannon's coding theorem states that code of x with $\log_2(1/P(x))$ bits is an optimal coding and the expected bits per letter is $\mathbb{E}_{x \sim P} \left[\log_2 \left(\frac{1}{P(x)} \right) \right] = H(P)$.
- Consider now that we use the optimal code for P, but the letters where sent according to Q. The expected bits per letter is now

$$\underset{x \sim Q}{\mathbb{E}} \left[\log_2 \left(\frac{1}{P(x)} \right) \right] = \underset{x \sim Q}{\mathbb{E}} \left[\log_2 \left(\frac{Q(x)}{P(x)} \right) + \log_2 \left(\frac{1}{Q(x)} \right) \right] = H(Q) + KL(Q||P).$$

- ightharpoonup KL(Q||P) is the extra number of bits expected per letter from using P instead of Q to create the codebook.
- ▶ This shows that $KL(Q||P) \ge 0$.

Example

Let P be some distribution on $\mathbf{x}_1, \dots, \mathbf{x}_m$ and Q be 1 on \mathbf{x}_i then, $KL(Q||P) = \ln\left(\frac{1}{P(\mathbf{x}_i)}\right)$.

Example

Let $P(\mathbf{x}_i) = 0$ and $Q(\mathbf{x}_i) > 0$, then $KL(Q||P) = \infty$.

Example

Let $\alpha, \beta \in [0, 1]$, then $\mathit{KL}(\alpha||\beta) = \mathit{KL}(\mathit{Ber}(\alpha)||\mathit{Ber}(\beta)) = \alpha \ln\left(\frac{\alpha}{\beta}\right) + (1 - \alpha) \ln\left(\frac{1 - \alpha}{1 - \beta}\right)$. Show the above equation.

Example

Let $Q = \mathcal{N}(\mu_0, \Sigma_0)$ and $P = \mathcal{N}(\mu_1, \Sigma_1)$ be two *n*-dimensional Gaussian distributions. Then,

$$\mathit{KL}(\mathit{Q}||P) = rac{1}{2} \left(\mathsf{Tr} \left[\Sigma_1^{-1} \Sigma_0
ight] + (\mu_1 - \mu_0) \Sigma_1^{-1} (\mu_1 - \mu_0) - n - rac{\mathsf{det} \left(\Sigma_0
ight)}{\mathsf{det} \left(\Sigma_1
ight)}
ight)$$

Show the above equation.

Lemma

If X is a real valued random number satisfying $\mathbb{P}[X \leq x] \leq e^{-mf(x)}$, then $\mathbb{E}\left[e^{(m-1)f(x)}\right] \leq m$.

Lemma

With probability greater then $(1 - \delta)$ over S,

$$\mathop{\mathbb{E}}_{h \sim P} \left[e^{(m-1) \mathit{KL}(\hat{R}(h)||R(h))} \right] \leq \frac{m}{\delta}.$$

Lemma (Shift of measure)

$$\mathop{\mathbb{E}}_{x \sim Q} \left[f(x) \right] \leq \mathit{KL}(Q||P) + \ln \mathop{\mathbb{E}}_{x \sim P} \left[e^{f(x)} \right].$$

Theorem (PAC Bayes bound)

Let Q and P be distributions on H and \mathcal{D} be a distribution on $\mathcal{X} \times \mathcal{Y}$. Also let $\ell(h,z) \in [0,1]$ and $S \sim \mathcal{D}^m$ be a sample of size m, then with probability greater or equal to $(1-\delta)$ over S we have

$$KL(\hat{\mathbf{R}}(Q)||\mathbf{R}(Q)) \leq \frac{KL(P||Q) + \ln\left(\frac{m+1}{\delta}\right)}{m}.$$

- 1. The left-hand side is the KL divergence between two numbers; while the right-hand side is the KL divergence between distributions.
- 2. We assume no connection between \mathcal{D} and P (an agnostic analysis).

Proof (PAC Bayes bound).

1. Define $f(h) = KL(\hat{\mathbf{R}}(h)||\mathbf{R}(h))$. Using the Lemma Shift of measure and its preceding lemma, we get

$$\underset{h \sim Q}{\mathbb{E}} \left[mf(h) \right] \leq \mathit{KL}(Q||P) + \ln \underset{h \sim P}{\mathbb{E}} \left[e^{mf(h)} \right] \leq \mathit{KL}(Q||P) + \ln \left(\frac{m+1}{\delta} \right)$$

2. Since KL divergence is convex, so from the Jensen inequality

$$KL(\hat{\mathbf{R}}(Q)||\mathbf{R}(Q)) = KL\left(\underset{h \sim Q}{\mathbb{E}}\left[\hat{\mathbf{R}}(h)\right] ||\underset{h \sim Q}{\mathbb{E}}\left[\mathbf{R}(h)\right]\right)$$

$$\leq \underset{h \sim Q}{\mathbb{E}}\left[KL(\hat{\mathbf{R}}(h)||\mathbf{R}(h))\right] = \underset{h \sim Q}{\mathbb{E}}\left[f(h)\right]$$

- ▶ We bounded $KL(\hat{\mathbf{R}}(Q)||\mathbf{R}(Q))$.
- Now, we bound $R(Q) \hat{R}(Q)$.

Lemma

Let $a,b \in [0,1]$ and $KL(a||b) \le x$, then $b \le a + \sqrt{\frac{x}{2}}$ and $b \le a + 2x + \sqrt{2ax}$, where the second is much stronger if a is very small.

Theorem (Generalization bounds)

Let Q and P be distributions on H and D be a distribution on $\mathcal{X} \times \mathcal{Y}$. Let also $\ell(h,z) \in [0,1]$ and $S \sim \mathcal{D}^m$ be a sample, then with probability greater or equal to $(1-\delta)$ over S we have

$$\begin{split} & \mathbf{R}(Q) \leq \mathbf{\hat{R}}(Q) + \sqrt{\frac{\mathit{KL}(Q||P) + \ln\left(\frac{m+1}{\delta}\right)}{2m}} \\ & \mathbf{R}(Q) \leq \mathbf{\hat{R}}(Q) + 2\frac{\mathit{KL}(Q||P) + \ln\left(\frac{m+1}{\delta}\right)}{m} + \sqrt{2\mathbf{\hat{R}}(Q)\frac{\mathit{KL}(Q||P) + \ln\left(\frac{m+1}{\delta}\right)}{m}} \end{split}$$

Summary

- ▶ Shawe-Taylor et al. gave PAC analysis of Bayesian estimators.
- McAllester gave PAC-Bayesian bound.
- PAC-Bayes bounds hold even if prior incorrect; while Bayesian inference must assume prior is correct.
- PAC-Bayes bounds hold for all posteriors; while in Bayesian learning, posterior computed by Bayesian inference, depends on statistical modeling
- ▶ PAC-Bayes bounds can be used to define prior, hence no need to be known explicitly; while in Bayesian learning, input effectively excluded from the analysis, randomness lies in the noise model generating the output.
- ▶ We analyzed Gibbs classifier. Another solution is to sample many $h_i \sim Q$ i.i.d. and output the majority vote.
- ▶ PAC-Bayes theory gives the tightest known generalization bounds for SVMs, with fairly simple proofs.
- ▶ PAC-Bayesian analysis applies directly to algorithms that output distributions on the hypothesis class, rather than a single best hypothesis.
- ▶ However, it is possible to de-randomize the PAC-Bayes bound to get bounds for algorithms that output deterministic hypothesis.

- 1. Chapter 31 of Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algorithms.* Cambridge University Press, 2014.
- 2. The papers given in References [4, 2, 3, 1].

- David A. McAllester. "A PAC-Bayesian Tutorial with A Dropout Bound". In: *CoRR* abs/1307.2118 (2013).
- David A. McAllester. "PAC-Bayesian Stochastic Model Selection". In: *Machine Learning* 51.1 (2003), pp. 5–21.
- David A. McAllester. "Simplified PAC-Bayesian Margin Bounds". In: Lecture Notes in Computer Science. Vol. 2777. Springer, 2003, pp. 203–215.
- David A. McAllester. "Some PAC-Bayesian Theorems". In: *Machine Learning* 37.3 (1999), pp. 355–363.
- Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge University Press, 2014.

Questions?