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Introduction




Introduction C 5

» PAC (Probably Approximately Correct) Learning provides guarantees on the expected error
(approximately) of prediction rules that hold with high probability (probably) with respect to
representativeness of the observed sample.

> In PAC approach, we choose hypothesis class H as the prior knowledge.

» The PAC approach has the advantage that one can prove guarantees for generalization error
without assuming the truth of the prior.

> How to incorporate more complicated prior knowledge.

» The Bayesian approach has the advantage of using arbitrary domain knowledge in the form of a
Bayesian prior.

> A PAC-Bayesian approach to machine learning attempts to combine the advantages of both PAC
and Bayesian approaches.

> A PAC-Bayesian approach bases the bias of the learning algorithm on an arbitrary prior
distribution, thus allowing the incorporation of domain knowledge, and yet provides a guarantee
on generalization error that is independent of any truth of the prior.
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Bayesian methods




Maximum likelihood

> Let the data is drawn from a distribution that comes from some parametric family.

Example (Gaussian distribution)

Let o be a known fixed parameter. Then, P[y | x;w] = N ((w,x),0°) = (w,x) + A (0,0%) is a
parametric family.

> Given a sample S = {(x1, 1), .., (Xm,ym)}, we define the likelihood of w as

L(w,S) =log(P[y1,--,Ym | X1,...,Xm;W]) = Zlog (Plyi | xi;w])

i=1

» The maximum livelihood is the given value of w that maximizes L(w, S) (w = argmax L(w’, S))
W/

Example (Gaussian distribution)

1. Let o be a known fixed parameter. Then, P[y | x;w] = N ((w,x),0?) = (w,x) + N (0,02) is a
parametric family.

. 2
2. This means that P [y; | x;;w] = —=L— exp (f Gi= ) ) and the likelihood is
Yixen
L 2
L(w,S)=->", %(”577“2”» + C, where C is a normalization factor that does not depend on w.

3. This means that maximum likelihood is equivalent to minimizing square loss.

4. We want to maximize P [w | x, y].
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Maximum a posteriori

» To find P[w | x, y], we need to a prior distribution P [w].

» We have P[y | x,w] and [P [w] from Bayes Theorem, hence, we have

Ply | x, w]P[w]
Ply[x]

» The maximum a posteriori (MAP) model is

Plw | xy] = X P[y | x, w]P[w].

w = argmax P [y ‘ X,w'| P [w'] = argmax L(w', S) + log P [w']

Example (Gaussian distribution (cont.))

1. Let P[w] = N(0,021) be prior distribution on w.

2. Now, we have

_ L (WX 1
wW = arg:)ax — ; ;70—2 — ; HW H2
CNm (- wix))?
:ar%Tm Z; ! s +?||w’||§

i=1

3. This is equivalent to doing regularized ERM with L, regularization.

4. If we use Laplacian distribution instead of Gaussian, we will get L; regularization.
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Bayesian inference

v

MAP picks the best model, given our model and data.
» Why do we have to pick one model?

» We have seen that the optimal classifier can be calculated given P[y | x].

v

The Bayesian approach does exactly that, so we get

n»[y|x,51:/my|x,w1u»[w\ﬂdﬂ»[w]

v

In some cases (such as Guassian), this as an analytic solution, but most of the time there isn't any.

P T
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PAC-Bayes theory




Introduction

> In agnostic PAC learning, this prior is defined as selecting the hypothesis class H.

v

» In MDL, this prior is defined as the description length of hypothesis h.

> In the above models, the output of the learning algorithm is a single hypothesis h, i.e h = A(S).

» In PAC-Bayes, algorithms return a distribution Q on H.

In SRM learning, this prior is defined as the weights assigned to different hypothesis class H,.

Example (Loss of posterior)

Let Q be a distribution on H, D a distribution on X x ) and S a finite sample. Define

R(Q) = 5 R()] = 5| B [(h.2)]

h~Q
S un, z)}

i=1

> The learning algorithm is
1. Define prior distribution P on H.
2. Get sample S ~ D™,
3. Define/find posterior distribution Q on H.

TR

P T

™S
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Gibbs classifier

> We can turn a posterior into a learning algorithm.

Definition (Gibbs classifier)
Let Q be a distribution on H. The Gibbs classifier is the following randomized hypothesis

1. Pick h € H according to Q(h).

2. Observe x.
3. Return h(x).

> It is straightforward to show that the expected loss Gibbs classifier equals to R(Q).

Example

1. Let H:{hl,...,hk}.

2. Let P be a uniform distribution over H.

3. Let Q be defined as
{ 1 if h= herm

0 if h# hem
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Gibbs classifier

Example
1. For w € R", define

() = +1 with probability %e“"")
R | with probability e~

2. The prior P is N (0,0°1), i.e. P(hw) o< exp(— [|w||* /o?).

3. Given sample S = {(x1,y1),..., (Xm, ym)} ~ D™, and sample h ~ P and output
S ={(x1, h(y1)), ..., (Xm, h(ym))}. Then likelihood equals to

1 .
P[y1,~--7ym | hW7X17"'5Xm] = H?e<W7XI> X exp (Zy: <W7Xi>> .
i i

4. Using Bayes' rule, we can form the posterior

We will see that the critical factor determining the complexity of the learning algorithm will become
KL(Q||P), the Kullback-Liebler divergence from Q to P instead of the Rademacher complexity.
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KL divergence C )

> We want to show that if Q is similar to P, the classifier generalizes well.
> Kullback-Leibler (KL) divergence is how to measure the similarity of two distributions.

Definition (KL divergence)
Let P and @ be continuous or discrete distributions. Then, KL divergence of distributions P and Q

defined as
KLQIIP) = E_ {'“ <§8ﬂ '

> Note that KL divergence is not symmetric, i.e. KL(Q||P) # KL(P||Q).
> The intuition behind this definition comes from information theory.

> Assume we have a finite alphabet and message x is sent with probability P(x).

> Shannon's coding theorem states that code of x with log,(1/P(x)) bits is an optimal coding and
the expected bits per letter is E,p [Iog2 (ﬁ)] = H(P).

> Consider now that we use the optimal code for P, but the letters where sent according to Q. The
expected bits per letter is now

()] 2 o (3 . ()] - 0 i

> KL(Q||P) is the extra number of bits expected per letter from using P instead of Q to create the
codebook.
» This shows that KL(Q||P) > 0.
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KL Divergence

Example

Let P be some distribution on xi,...,xm and Q be 1 on x; then, KL(Q||P) = In (P(X))

Example
Let P(x;) = 0 and Q(x;) > 0, then KL(Q||P) = o0

Example

Let o, B € [0, 1], then KL(a||8) = KL(Ber(a)||Ber(5)) = an (%) +(1-a)ln (7)
Show the above equation.

Example

Let @ = N (10, X0) and P = N(u1,X1) be two n-dimensional Gaussian distributions. Then,

KL(Q|IP) = % (Tr [z;lzo} (i — o) (i — o) — 1 — :::E;g)

Show the above equation.
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PAC Bayes bound

Lemma

If X is a real valued random number satisfying P[X < x] < e"™), then E [e(’"_l)f(x)] <m.

Lemma

With probability greater then (1 — &) over S,

E [e(m_nm(ﬁ(h)HR(h))} <
h~P ’

Lemma (Shift of measure)

E_[F()] < KL(QIIP) +1n & [ef<X>] .
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PAC Bayes bound

Theorem (PAC Bayes bound)

Let Q and P be distributions on H and D be a distribution onX x Y. Also let {(h,z) € [0,1] and
S ~ D™ be a sample of size m, then with probability greater or equal to (1 — 0) over S we have

KL(PI|Q) +In (1)

KL(R(Q)IIR(Q)) <

1. The left-hand side is the KL divergence between two numbers; while the right-hand side is the KL
divergence between distributions.
2. We assume no connection between D and P (an agnostic analysis).

Proof (PAC Bayes bound).

1. Define f(h) = KL(R(h)||R(h)). Using the Lemma Shift of measure and its preceding lemma, we

get

mf(h m+1
E [mf(h)] < KL(QIIP) +1n E_[¢”®)] < KL(QIP) +1n (T>

2. Since KL divergence is convex, so from the Jensen inequality

KL( B[R] 1| E_R(h))

E_[KLRIRM)| = B [F(m)]

KL(R(Q)|IR(Q))

IA
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Generalization bounds

» We bounded KL(R(Q)||R(Q)).
» Now, we bound R(Q) — R(Q).

Lemma

Let a,b € [0,1] and KL(al|b) < x, then b < a+ /5 and b < a+ 2x + \/2ax, where the second is
much stronger if a is very small.

Theorem (Generalization bounds)

Let Q and P be distributions on H and D be a distribution on X x ). Let also {(h, z) € [0,1] and
S ~ D™ be a sample, then with probability greater or equal to (1 — 0) over S we have

R(Q) < ﬁ(o)+\/KL(Q”P)2;|"(;)

KL(QIIP) +1n(75) | %mm) KL(QIIP) + In (7))

m m

R(Q) < R(Q) +
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Summary




Summary C )

» Shawe-Taylor et al. gave PAC analysis of Bayesian estimators.
> McAllester gave PAC-Bayesian bound.

» PAC-Bayes bounds hold even if prior incorrect;while Bayesian inference must assume prior is
correct.

» PAC-Bayes bounds hold for all posteriors; while in Bayesian learning, posterior computed by
Bayesian inference, depends on statistical modeling

» PAC-Bayes bounds can be used to define prior, hence no need to be known explicitly; while in
Bayesian learning, input effectively excluded from the analysis, randomness lies in the noise model
generating the output.

» We analyzed Gibbs classifier. Another solution is to sample many h; ~ Q i.i.d. and output the
majority vote.

> PAC-Bayes theory gives the tightest known generalization bounds for SVMs, with fairly simple
proofs.

» PAC-Bayesian analysis applies directly to algorithms that output distributions on the hypothesis
class, rather than a single best hypothesis.

> However, it is possible to de-randomize the PAC-Bayes bound to get bounds for algorithms that

output deterministic hypothesis.
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Readings

1. Chapter 31 of Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning : From
theory to algorithms. Cambridge University Press, 2014,

2. The papers given in References [4, 2, 3, 1].
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