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Introduction



Introduction

I We have studied the passive supervised learning methods.

I Given access to a labeled sample of size m (drawn iid from an unknown distribution D), we want

to learn a classifier h ∈ H such that R(h) ≤ ε with probability higher than (1− δ).

Supervised Learning

Given access to a labeled sample (drawn iid from an unknown distribution D),
we want to learn a classifier h 2 H with eD(h)  epsilon.

VC theory: need m to be roughly VCdim(H)/✏, in the realizable case (when all

examples are consistent with some target function in H)

I We need m to be roughly
VC(H)

ε
in realizable case and

VC(H)

ε2
in urealizable case.

I In many applications such as web-page classification, there are a lot of unlabeled examples but

obtaining their labels is a costly process.
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Active learning



Active learning

I In many applications unlabeled data is cheap and easy to collect, but labeling it is very

expensive (e.g., requires a hired human).

I Considering the problem of web page classification.

1. A basic web crawler can very quickly collect millions of web pages, which can serve as the unlabeled

pool for this learning problem.

2. In contrast, obtaining labels typically requires a human to read the text on these pages to determine

its label.

3. Thus, the time-bottleneck in the data-gathering process is the time spent by the human labeler.

I The idea is to let the classifier/regressor pick which examples it wants labeled.

Active Learning

In many situations unlabeled data is cheap and easy to collect, but labeling it is
very expensive (e.g., requires a hired human). Idea: let the classifier pick which
examples it wants labeled.

The hope is that by directing the labeling process, we can pick a good classifier

at low cost.

I The hope is that by directing the labeling process, we can pick a good classifier at low cost.

I It is therefore desirable to minimize the number of labels required to obtain an accurate classifier.
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Active learning setting

I In passive supervised learning setting, we have
1. There is a set X called the instance space.

2. There is a set Y called the label space.

3. There is a distribution D called the target distribution.

4. Given a training sample S ⊂ X × Y, the goal is to find a classifier h : X 7→ Y with acceptable error

rate R(h) = P
(x,y)∼D

[h(x) 6= y ].

I In active learning, we have
1. There is a set X called the instance space.

2. There is a set Y called the label space.

3. There is a distribution D called the target distribution.

4. The learner have access to sample SX = {x1, x2, . . . , x∞} ⊂ X .

5. There is an oracle that labels each instant x.

6. There is a budget m.

7. The learner chooses an instant and gives it to the oracle and receives its label.

8. After a number of these label requests not exceeding the budget m, the algorithm halts and returns a

classifier h.

Active learning systems attempt to overcome the labeling bottleneck by asking
queries in the form of unlabeled instances to be labeled by an oracle (e.g., a human
annotator). In this way, the active learner aims to achieve high accuracy using
as few labeled instances as possible, thereby minimizing the cost of obtaining
labeled data. Active learning is well-motivated in many modern machine learning
problems where data may be abundant but labels are scarce or expensive to obtain.
Note that this kind of active learning is related in spirit, though not to be confused,
with the family of instructional techniques by the same name in the education
literature (Bonwell and Eison, 1991).

1.2 Active Learning Examples

machine learning
model

L
U

labeled
training set

unlabeled pool

oracle (e.g., human annotator)

learn a model

select queries

Figure 1: The pool-based active learning cycle.

There are several scenarios in which active learners may pose queries, and
there are also several different query strategies that have been used to decide which
instances are most informative. In this section, I present two illustrative examples
in the pool-based active learning setting (in which queries are selected from a
large pool of unlabeled instances U) using an uncertainty sampling query strategy
(which selects the instance in the pool about which the model is least certain how
to label). Sections 2 and 3 describe all the active learning scenarios and query
strategy frameworks in more detail.

5
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Active learning scenarios[6]

I There are three main scenarios where active learning has been studied.

instance 

space or input 

distribution

U
sample a large

pool of instances

sample an

instance

model generates

a query de novo

model decides to

query or discard

model selects

the best query

membership query synthesis

stream-based selective sampling

pool-based sampling query is labeled

by the oracle

Figure 4: Diagram illustrating the three main active learning scenarios.

2.1 Membership Query Synthesis
One of the first active learning scenarios to be investigated is learning with mem-
bership queries (Angluin, 1988). In this setting, the learner may request labels
for any unlabeled instance in the input space, including (and typically assuming)
queries that the learner generates de novo, rather than those sampled from some
underlying natural distribution. Efficient query synthesis is often tractable and
efficient for finite problem domains (Angluin, 2001). The idea of synthesizing
queries has also been extended to regression learning tasks, such as learning to
predict the absolute coordinates of a robot hand given the joint angles of its me-
chanical arm as inputs (Cohn et al., 1996).

Query synthesis is reasonable for many problems, but labeling such arbitrary
instances can be awkward if the oracle is a human annotator. For example, Lang
and Baum (1992) employed membership query learning with human oracles to
train a neural network to classify handwritten characters. They encountered an
unexpected problem: many of the query images generated by the learner con-
tained no recognizable symbols, only artificial hybrid characters that had no nat-
ural semantic meaning. Similarly, one could imagine that membership queries
for natural language processing tasks might create streams of text or speech that
amount to gibberish. The stream-based and pool-based scenarios (described in the
next sections) have been proposed to address these limitations.

However, King et al. (2004, 2009) describe an innovative and promising real-
world application of the membership query scenario. They employ a “robot scien-

9

I In all scenarios, at each iteration a model is fitted to the current labeled set and that model is

used to decide which unlabeled example we should label next.

I In membership query synthesis, the active learner is expected to produce an example that it would

like us to label.

I In stream based selective sampling, the learner gets a stream of examples from the data

distribution and decides if a given instance should be labeled or not.

I In pool-based sampling, the learner has access to a large pool of unlabeled examples and chooses

an example to be labeled from that pool. This scenario is most useful when gathering data is

simple, but the labeling process is expensive.
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Typical heuristics for active learning

Typical heuristics for active learning[5]

1: Start with a pool of unlabeled data.

2: Pick a few points at random and get their labels.

3: repeat

4: Fit a classifier to the labels seen so far.

5: Query the unlabeled point that is closest to the boundary (or most uncertain, or most likely

to decrease overall uncertainty,...)

6: until forever

Typical heuristics for active learning

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Biased sampling: the
labeled points are not
representative of the
underlying distribution!

Biased sampling: the labeled points are not representative of the underlying distribution!

6/18



Typical heuristics for active learning

Typical heuristics for active learning

1: Start with a pool of unlabeled data.

2: Pick a few points at random and get their labels.

3: repeat

4: Fit a classifier to the labels seen so far.

5: Query the unlabeled point that is closest to the boundary (or most uncertain, or most likely

to decrease overall uncertainty,...)

6: until forever

Example (Samplin bias)

Sampling bias

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Example:

45% 5% 5% 45%

Even with infinitely many labels, converges to a classifier with 5%
error instead of the best achievable, 2.5%. Not consistent!

Manifestation in practice, eg. Schutze et al 03.

Even with infinitely many labels, converges to a classifier with 5% error instead of the best

achievable, 2.5%. Not consistent!
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Can adaptive querying really help?

I There are two distinct narratives for explaining how adaptive querying can help

1. Exploiting (cluster) structure in data

2. Efficient search through hypothesis space

I Exploiting (cluster) structure in data

1. Suppose the unlabeled data looks like this

Case I: Exploiting cluster structure in data

Suppose the unlabeled data looks like this.

Then perhaps we just need five labels!

Challenges: In general, the cluster structure (i) is not so clearly
defined and (ii) exists at many levels of granularity. And the
clusters themselves might not be pure in their labels. How to
exploit whatever structure happens to exist?

2. Then perhaps we just need five labels!

I In general, the cluster structure has the following
challenges

1. It is not so clearly defined

2. There exists at many levels of granularity.

I The clusters themselves might not be pure in their

labels.

I How to exploit whatever structure happens to exist?

I Efficient search through hypothesis
space

1. Ideal case is when each query cuts the

version space in two.

2. Then perhaps we need just log|H|
labels to get a perfect hypothesis!

I In general, the efficient search through
hypothesis space has the following
challenges

1. Do there always exist queries that will

cut off a good portion of the version

space?

2. If so, how can these queries be found?

3. What happens in the non-separable

case?
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Exploiting cluster structure in data (An algorithm [2])

I Find a clustering of the data

I Sample a few randomly-chosen points in each cluster

I Assign each cluster its majority label

I Now use this fully labeled data set to build a classifier

Exploiting cluster structure in data [DH 08]

Basic primitive:

! Find a clustering of the data

! Sample a few randomly-chosen points in each cluster

! Assign each cluster its majority label

! Now use this fully labeled data set to build a classifier

⇒
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Efficient search through hypothesis space

I Threshold functions on the real line: H = {hw | w ∈ R} and hw (x) = I [x ≥ w ].

Efficient search through hypothesis space

Threshold functions on the real line:

H = {hw : w ∈ R}
hw(x) = 1(x ≥ w) w

− +

Supervised: for misclassification error ≤ ε, need ≈ 1/ε labeled
points.

I Passive learning: we need Ω
(

1
ε

)
labeled points to have R(hw ) ≤ ε.

I Active learning: start with 1
ε

unlabeled points.

Efficient search through hypothesis space

Threshold functions on the real line:

H = {hw : w ∈ R}
hw(x) = 1(x ≥ w) w

− +

Supervised: for misclassification error ≤ ε, need ≈ 1/ε labeled
points.

Active learning: instead, start with 1/ε unlabeled points.

Binary search: need just log 1/ε labels, from which the rest can be
inferred. Exponential improvement in label complexity!

I Binary search: need just log 1
ε

labels, from which the rest can be inferred. Exponential

improvement in label complexity!

I Challenges:

1. Nonseparable data?

2. Other hypothesis classes?
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A simple algorithm for noiseless active learning

Algorithm CAL [1]

1: Let h : X 7→ {−1,+1} and h∗ ∈ H.

2: Initialize i = 1 and H1 = H.

3: while (|Hi | > 1) do

4: Select xi ∈ {x | h ∈ H1 disagrees}. . Region of disagreement

5: Query with xi to obtain yi = h∗(xi ). . Query the oracle

6: Set Hi+1 ← {h ∈ Hi | h(xi ) = yi}. . Version space

7: Set i ← i + 1.

8: end while

CAL example 1.3. Conceptual Themes 7
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Figure 1.1: An illustration of the concepts involved in disagreement-based active
learning, in the context of learning a linear separator in 2 dimensions.

On the other hand, what if instead we are given the unlabeled
point depicted in Figure 1.1d? In this case, there is some line that
correctly separates the other points while including this new point on
the “≠” side, and there is another line that correctly separates the
other points while including this new point on the “+” side. So we
are unable to deduce the correct label of this point based only on the
information already available. The disagreement-based active learning
strategy is characterized by the fact that it will request the value of
the label (from the expert/oracle) whenever (and only whenever) this
is the case. Indeed, for this data set, the disagreement-based strategy
would make a label request when presented with any unlabeled point
in the shaded region in Figure 1.1e: namely, the set of points such that
there is some disagreement among the separators consistent with the
observed labels. This set is referred to as the region of disagreement

Problems: (1) intractable to maintain Hi ; (2) nonseparable data.
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Label complexity and disagreement coefficient

Definition (Label complexity[4, 3])

Active learning algorithm A achieves label complexity mA if, for every ε ≥ 0 and δ ∈ [0, 1], every

distribution D over X × Y, and every integer m higher than mA(ε, δ,D), if h is the classifier

produced by running A with budget m, then with probability at least (1− δ), we have R(h) ≤ ε.

Definition ( Disagreement coefficient (separable case)[4, 3])

Let DX be the underlying probability distribution on input space X . Let Hε be all hypotheses in H

with error less than ε. Then,

1. disagreement region is defined as

DIS(Hε) =
{

x
∣∣ ∃h, h′ ∈ Hε such that h(x) 6= h′(x)

}
.

2. Then, disagreement coefficient is defined as

θ = sup
ε

DX (DIS(Hε))

ε
.

Example (Threshold classifier)

Let H be the set of all threshold functions in real line R. Show that θ = 2.

Disagreement coefficient: separable case

Let P be the underlying probability distribution on input space X .
Let Hε be all hypotheses in H with error ≤ ε. Disagreement region:

DIS(Hε) = {x : ∃h, h′ ∈ Hε such that h(x) $= h′(x)}.

Then disagreement coefficient is

θ = sup
ε

P[DIS(Hε)]

ε
.

Example: H = {thresholds in R}, any data distribution.

target

Therefore θ = 2.
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Threshold classifier

Example (Threshold classifier)

1. Let X = [0, 1] and H =
{
h[z,1] : X 7→ {−1,+1}

∣∣ z ∈ (0, 1)
}

, where

h[z,1](x) =

{
+1 if x ∈ [z , 1]

−1 if x 6∈ [z , 1]

2. One simple passive learning algorithm for the realizable case would simply return z as the

midpoint between the smallest positive example and the largest negative example.

random selection 
(passive)

binary search 
(active)          

Learning a 1-D Classifier

    labeled data

binary search quickly finds decision boundary

passive : ✏ ⇠ n�1

active : ✏ ⇠ e�cn

err
err 2�n

<latexit sha1_base64="LF0MCNfhuOTCFY7Wls1cSmk+ymE=">AAAB8XicbVA9T8MwED3zWcpXgZHFokFioUrKAGMFC2OR6IdoQ+W4TmvVcSLbQaqi/gsWBhBi5d+w8W9w2wzQ8qSTnt670929IBFcG9f9Riura+sbm4Wt4vbO7t5+6eCwqeNUUdagsYhVOyCaCS5Zw3AjWDtRjESBYK1gdDP1W09MaR7LezNOmB+RgeQhp8RY6cFxqo/ZuZw4Tq9UdivuDHiZeDkpQ456r/TV7cc0jZg0VBCtO56bGD8jynAq2KTYTTVLCB2RAetYKknEtJ/NLp7gU6v0cRgrW9Lgmfp7IiOR1uMosJ0RMUO96E3F/7xOasIrP+MySQ2TdL4oTAU2MZ6+j/tcMWrE2BJCFbe3YjokilBjQyraELzFl5dJs1rxLireXbVcu87jKMAxnMAZeHAJNbiFOjSAgoRneIU3pNELekcf89YVlM8cwR+gzx+gEY+S</latexit>

3. Let D be uniform distribution over X and let also

h∗[z∗,1](x) =

{
+1 if x ∈ [z∗, 1]

−1 if x 6∈ [z∗, 1]

where ε < z∗ < 1− ε to guarantee R(h) ≤ ε, it suffices to have some xi ∈ [z∗ − ε, z∗] and

another xj ∈ [z∗, z∗ + ε].

4. Each of these regions has probability ε, so the probability this happens is at least 1− 2(1− ε)m
(by a union bound);

5. Since 1− ε ≤ e−ε, this is at least 1− 2e−εm.

6. For this to be greater than (1− δ), it suffices to take m ≥ 1

ε
ln

2

δ
.
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Threshold classifier

Example (Threshold classifier (cont.))

7. The same results can be obtained for z∗ ∈ [0, ε) ∪ (1− ε, 1], hence mH(ε, δ) =
1

ε
ln

2

δ
.

8. Consider the simple active learning algorithm, which returns h[ẑ,1] when given budget m.

1: Let m0 = 2m−1 and let {jk}m0
k=1 be the sequence such that xj1 ≤ xj2 ≤ . . . ≤ xjm0

.

2: Initialize l = 0 and u = m0 + 1.

3: repeat

4: Let k = b(l + u)/2c, request label yjk of point xj1 .

5: if yjk = 1 then

6: Set u ← k

7: else

8: Set l ← k

9: end if

10: until (l = u − 1)

11: if (l > 0) and (u < m0 + 1) then

12: Set ẑ ← [xjl + xju ] /2

13: else if (l = 0) then

14: Set ẑ ← xju/2

15: else if (u = m + 1) then

16: Set ẑ ← [xjl + 1] /2

17: end if
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Threshold classifier

Example (Threshold classifier (cont.))

9. Note that,

9.1 k is median of l and u, and either l or u is set to k after each label request, the total number of

label requests is at most log2 m0 + 1 = m, so this algorithm stays within the indicated budget.

9.2 The algorithm requests the largest value of x for which its label −1 and the smallest value of x for

which its label +1.

10. Hence, this active learner outputs the same result as the passive learner.

11. This is remarkable, since m0 = 2m−1, then the label complexity of this algorithm for realizable

case equals to

mA(ε, δ,D) ≤ 1 +

⌈
log2

(
1

ε
ln

2

δ

)⌉
12. This is an exponential improvement over passive learning.

13. We have shown that VC(H) = 1.

14. It can also be easy to show that θ ≤ 2.
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Label complexity of CAL

Algorithm CAL [1]

1: Let h : X 7→ {−1,+1} and h∗ ∈ H.

2: Initialize i = 1 and H1 = H.

3: while (|Hi | > 1) do

4: Select xi ∈ {x | h ∈ H1 disagrees}. . Region of disagreement

5: Query with xi to obtain yi = h∗(xi ). . Query the oracle

6: Set Hi+1 ← {h ∈ Hi | h(xi ) = yi}. . Version space

7: Set i ← i + 1.

8: end while

I The label complexity of CAL can be captured by VC(H) = d and disagreement coefficient θ.

1. For realizable case, label complexity of CAL equals to

θd log(1/ε).

2. For unrealizable case, label complexity of CAL equals to (If best achievable error rate is v)

θ

(
d log2 1

ε
+

dv2

ε2

)
.
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Summary

I We considered active learning problems:

I There are different scenarios of active learning.

I We defined two different measures of label complexity and disagreement coefficient.

I We showed that the label complexity is characterized by VC(H) of hypothesis space and

disagreement coefficient θ.

I It was shown that active learning decreases the label complexity in an exponential improvement

over passive learning.
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Questions?
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