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Introduction



Introduction

I Convex learning comprises an important family of learning problems, because most of what we can

learn efficiently.

I Linear regression with the squared loss is a convex problem for regression.

I logistic regression is a convex problem for classification.

I Halfspaces with the 0− 1 loss, which is a computationally hard problem to learn in unrealizable

case, is non-convex.

I In general, a convex learning problem is a problem.

1. whose hypothesis class is a convex set and

2. whose loss function is a convex function for each example.

I Other properties of the loss function that facilitate successful learning are

1. Lipschitzness

2. Smoothness

I In this session, we study the learnability of

1. Convex-Smooth problems

2. Lipschitz-Bounded problems
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Convex set

Definition (Convex set)

A set C in a vector space is convex if for any two vectors u, v ∈ C , the line segment between u and v

is contained in set C . That is, for any α ∈ [0, 1], the convex combination αu + (1− α)v ∈ C .

Given α ∈ [0, 1], the combination, αu + (1− α)v of the points u, v is called a convex combination.

Example (Convex and non-convex sets)

Some examples of convex and non-convex sets in R2

non-convex sets convex sets

Definition (Convex Set)

A set C in a vector space is convex if for any two vectors u,v in C, the
line segment between u and v is contained in C. That is, for any
↵ 2 [0, 1] we have that the convex combination ↵u + (1 � ↵)v is in C.

non-convex convex
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Convex function

Definition (Convex function)

Let C be a convex set. Function f : C 7→ C is convex if for any two vectors u, v ∈ C and α ∈ [0, 1],

f (αu + (1− α)v) ≤ αf (u) + (1− α)f (v).

In words, f is convex if for any u, v ∈ C , the graph of f between u and v lies below the line segment

joining f (u) and f (v).

Example (Convex function)

Definition (Convex function)

Let C be a convex set. A function f : C ! R is convex if for every
u,v 2 C and ↵ 2 [0, 1],

f(↵u + (1 � ↵)v)  ↵f(u) + (1 � ↵)f(v) .

f(u)

f(v)

u

↵u + (1 � ↵)v

v

↵f(u) + (1 � ↵)f(v)

f(↵u + (1 � ↵)v)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 4 / 47
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Epigraph

A function f is convex if and only if its epigraph is a convex set.

epigraph(f ) = {(x, β) | f (x) ≤ β}.

Epigraph

A function f is convex if and only if its epigraph is a convex set:

epigraph(f) = {(x, �) : f(x)  �} .

x

f(x)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 5 / 47
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Properties of convex functions

1. If f is convex then every local minimum of f is also a global minimum.
I Let B(u, r) = {v | ‖v − u‖ ≤ r} be a ball of radius r centered around u.
I f (u) is a local minimum of f at u if ∃r > 0 such that ∀v ∈ B(u, r), we have f (v) ≥ f (u).
I It follows that for any v (not necessarily in B), there is a small enough α > 0 such that

u + α(v − u) ∈ B(u, r) and therefore

f (u) ≤ f (u + α(v − u)).

I If f is convex, we also have that

f (u + α(v − u)) = f (αu + (1− α)v) ≤ (1− α)f (u) + αf (v).

I Combining these two equations and rearranging terms, we conclude that

f (u) ≤ f (v).

I This holds for every v, hence f (u) is also a global minimum of f .

350 Convex Optimization

Figure B.1 Examples of a convex (left) and a concave (right) functions. Note that

any line segment drawn between two points on the convex function lies entirely

above the graph of the function while any line segment drawn between two points

on the concave function lies entirely below the graph of the function.

B.2 Convexity

This section introduces the notions of convex sets and convex functions. Convex

functions play an important role in the design and analysis of learning algorithms,

in part because a local minimum of a convex function is necessarily also a global

minimum. Thus, the properties of a learning hypothesis that is a local minimum

of a convex optimization are often well understood, while for some non-convex

optimization problems, there may be a very large number of local minima for which

no clear characterization can be given.

Definition B.3 Convex set

A set X ⊆ RN is said to be convex if for any two points x,y ∈ X the segment [x,y]

lies in X , that is

{αx + (1 − α)y : 0 ≤ α ≤ 1} ⊆ X .

Definition B.4 Convex hull

The convex hull conv(X ) of a set of points X ⊆ RN is the minimal convex set

containing X and can be equivalently defined as follows:

conv(X ) =
{ m∑

i=1

αixi : m ≥ 1, ∀i ∈ [1,m],xi ∈ X , αi ≥ 0,
m∑

i=1

αi = 1
}

. (B.1)

Let Epi f denote the epigraph of function f : X → R, that is the set of points lying

above its graph: {(x, y) : x ∈ X , y ≥ f(x)}.
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Properties of convex functions

2. If f is convex and differentiable, then

∀u, f (u) ≥ f (w) + 〈∇f (w), u− w〉

where ∇f (w) =

(
∂f (w)

∂w1
, . . . ,

∂f (w)

∂wn

)
is the gradient of f at w.

I If f is convex, for every w, we can construct a tangent to f at w that lies below f everywhere.
I If f is differentiable, this tangent is the linear function l(u) = f (w) + 〈∇f (w), u− w〉.

Property II: tangents lie below f

If f is convex and di↵erentiable, then

8u, f(u) � f(w) + hrf(w),u � wi

(recall, rf(w) =
⇣
@f(w)
@w1

, . . . , @f(w)
@wd

⌘
is the gradient of f at w)

f(w)

f(u)

w u

f(
w
) +

hu
�w

,r
f(
w
)i

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 7 / 47
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Properties of convex functions (Sub-gradients)

I v is sub-gradient of f at w if ∀u, f (u) ≥ f (w) + 〈∇f (w), u− w〉
I The differential set, ∂f (w), is the set of sub-gradients of f at w.

where ∇f (w) =

(
∂f (w)

∂w1
, . . . ,

∂f (w)

∂wn

)
is the gradient of f at w.

Lemma

Function f is convex iff for every w, ∂f (w) 6= 0.

Sub-gradients

v is sub-gradient of f at w if 8u, f(u) � f(w) + hv,u � wi
The di↵erential set, @f(w), is the set of sub-gradients of f at w

Lemma: f is convex i↵ for every w, @f(w) 6= ;

f(w)

f(u)

w u

f(
w
) +

hu
�w

,v
i

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 8 / 47

I f is locally flat around w (0 is a sub-gradient) iff w is aglobal minimizer.
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Convex functions

Lemma (Convexity of a scaler function)

Let f : R 7→ R be a scalar twice differential function, and f ′, f ′′ be its first and second derivatives,

respectively. Then, the following are equivalent:

1. f is convex.

2. f ′ is monotonically nondecreasing.

3. f ′′ is nonnegative.

Example (convexity of scaler functions)

1. The scaler function f (x) = x2 is convex, because f ′(x) = 2x and f ′′(x) = 2 > 0.

2. The scaler function f (x) = log (1 + ex) is convex, because

I f ′(x) =
ex

1 + ex
=

1

e−x + 1
is a monotonically increasing function since the exponent function is a

monotonically increasing function.

I f ′′(x) =
e−x

(e−x + 1)2
= f (x)(1− f (x)) is nonnegative.
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Convex functions

Lemma (Convexity of composition of a convex scalar function with a linear function)

Let f : Rn 7→ R can be written as f (w) = g (〈w, x〉+ y), for some x ∈ Rn, y ∈ R and g : R 7→ R.

Then convexity of g implies the convexity of f .

Proof (Convexity of composition of a convex scalar function with a linear function).

Let w1,w2 ∈ Rn and α ∈ [0, 1]. We have

f (αw1 + (1− α)w2) = g (〈αw1 + (1− α)w2, x〉+ y)

= g (α 〈w1, x〉+ (1− α) 〈w2, x〉+ y)

= g (α (〈w1, x〉+ y) + (1− α) (〈w2, x〉+ y))

≤ αg(〈w1, x〉+ y) + (1− α)g(〈w2, x〉+ y).

where the last inequality follows from the convexity of g .

Example (Convexity of composition of a convex scalar function with a linear function)

1. Given some x ∈ Rn and y ∈ R, let f (w) = (〈w, x〉 − y)2. Then, f is a composition of the

function g(a) = a2 onto a linear function, and hence f is a convex function

2. Given some x ∈ Rn and y ∈ {−1,+1}, let f (w) = log (1 + exp (−y 〈w, x〉)). Then, f is a

composition of the function g(a) = log (1 + ea) onto a linear function, and hence f is a convex

function
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Convex functions

Lemma (Convexity of maximum and sum of convex functions)

Let fi : Rn 7→ R(1 ≤ i ≤ r) be convex functions. Following functions g : Rn 7→ R are convex.

1. g(x) = maxi∈{1,...,r} fi (x).

2. g(x) =
∑r

i=1 wi fi (x), where ∀i ,wi ≥ 0.

Proof (Convexity of maximum and sum of convex functions).

1. The first claim follows by

g(αu + (1− α)v) = max
i

fi (αu + (1− α)v) ≤ max
i

[αfi (u) + (1− α)fi (v)]

= αmax
i

fi (u) + (1− α) max
i

fi (v) = αg(u) + (1− α)g(v).

2. The second claim follows by

g(αu + (1− α)v) =
r∑

i=1

wi fi (αu + (1− α)v) ≤
r∑

i=1

wi [αfi (u) + (1− α)fi (v)]

= α
r∑

i=1

wi fi (u) + (1− α)
r∑

i=1

wi fi (v) = αg(u) + (1− α)g(v).

Function g(x) = |x | is convex, because g(x) = max{f1(x), f2(x)}, where both f1(x) = x and

f2(x) = −x are convex. 11/31
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Lipschitzness

I Definition of Lipschitzness is w.r.t Euclidean norm Rn, but it can be defined w.r.t any norm.

Definition (Lipschitzness)

Function f : Rn 7→ Rk is ρ-Lipschitz if for all w1,w2 ∈ C we have ‖f (w1)− f (w2)‖ ≤ ρ ‖w1 − w2‖.

I A Lipschitz function cannot change too fast. If f : R 7→ R is differentiable, then by the mean

value theorem we have f (w1)− f (w2) = f ′(u)(w1 − w2), where u is a point between w1 and w2.

Theorem (Mean-Value Theorem)

If f (x) is defined and continuous on the interval [a, b] and differentiable on (a, b), then there is at

least one number c in the interval (a, b) (that is a < c < b) such that f ′(c) =
f (b)− f (a)

b − a
.

I If f ′ is bounded everywhere (in absolute value) by ρ, then f is ρ-Lipschitz.
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Lipschitzness

Example (Lipschitzness)

1. Function f (x) = |x | is 1-Lipschitz over R, because (using triangle inequality)

|x1| − |x2| = |x1 − x2 + x2| − |x2| ≤ |x1 − x2|+ |x2| − |x2| = |x1 − x2|.

2. Function f (x) = log (1 + ex) is 1-Lipschitz over R, because

|f ′(x)| =

∣∣∣∣ ex

1 + ex

∣∣∣∣ =

∣∣∣∣ 1

e−x + 1

∣∣∣∣ ≤ 1.

3. Function f (x) = x2 is not ρ-Lipschitz over R for any ρ. Let x1 = 0 and x2 = 1 + ρ, then

f (x2)− f (x1) = (1 + ρ)2 > ρ(1 + ρ) = ρ|x2 − x1|.

4. Function f (x) = x2 is ρ-Lipschitz over set C =
{
x
∣∣ |x | ≤ ρ

2

}
. For x1, x2, we have∣∣∣x2

1 − x2
2

∣∣∣ = |x1 − x2||x1 + x2| ≤ 2
ρ

2
|x1 − x2| = ρ|x1 − x2|.

5. Linear function f : Rn 7→ R defined by f (w) = 〈v,w〉+ b, where v ∈ Rn is ‖v‖−Lipschitz. By

using Cauchy-Schwartz inequality, we have

|f (w1)− f (w2)| = |〈v,w1 − w2〉| ≤ ‖v‖ ‖w1 − w2‖ .
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Lipschitzness

The following Lemma shows that composition of Lipschitz functions preserves Lipschitzness.

Lemma (Composition of Lipschitz functions)

Let f (x) = g1(g2(x)), where g1 is ρ1-Lipschitz and g2 is ρ2-Lipschitz. The f is (ρ1ρ2)-Lipschitz. In

particular, if g2 is the linear function, g2(x) = 〈v, x〉+ b, for some v ∈ Rn and b ∈ R, then f is

(ρ1 ‖v‖)-Lipschitz.

Proof (Composition of Lipschitz functions).

|f (w1)− f (w2)| = |g1(g2(w1))− g1(g2(w2))|

≤ ρ1 ‖g2(w1)− g2(w2)‖

≤ ρ1ρ2 ‖w1 − w2‖ .
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Smoothness

I The definition of a smooth function relies on the notion of gradient.

I Let f : Rn 7→ R be a differentiable function at w and its gradient as

∇f (w) =

(
∂f (w)

∂w1
, . . . ,

∂f (w)

∂wn

)
.

I Smoothness of f is defined as

Definition (Smoothness)

A differentiable function f : Rn 7→ R is β-smooth if its gradient is β-Lipschitz; namely, for all v,w

we have ‖∇f (v)−∇f (w)‖ ≤ β ‖v − w‖.

I Show that smoothness implies that or all v,w we have

f (v) ≤ f (w) + 〈∇f (w), v − w〉+
β

2
‖v − w‖2 . (1)

while convexity of f implies that

f (v) ≥ f (w) + 〈∇f (w), v − w〉 .

I When a function is both convex and smooth, we have both upper and lower bounds on the

difference between the function and its first order approximation.

I Setting v = w − 1

β
∇f (w) in rhs of (1), we obtain

1

2β
‖∇f (w)‖2 ≤ f (w)− f (v).
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Smoothness

I We had

1

2β
‖∇f (w)‖2 ≤ f (w)− f (v).

I Let f (v) ≥ 0 for all v, then smoothness implies that

‖∇f (w)‖2 ≤ 2βf (w).

I A function that satisfies this property is also called a self-bounded function.

Example (Smooth functions)

1. Function f (x) = x2 is 2-smooth. This can be shown from f ′(x) = 2x .

2. Function f (x) = log (1 + ex ) is
(

1
4

)
-smooth. Since f ′(x) =

1

1 + e−x
, we have

∣∣f ′′(x)
∣∣ =

e−x

(1 + e−x )2
=

1

(1 + e−x ) (1 + ex )
≤ 1

4
.

Hence f ′ is
(

1
4

)
-Lipshitz.
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Smoothness

Lemma (Composition of smooth scaler function)

Let f (w) = g (〈w, x〉+ b), where g : R 7→ R is a β-smooth function and x ∈ Rn and b ∈ R. Then, f

is
(
β ‖x‖2)-smooth.

Proof (Composition of smooth scaler function).

1. By using the chain rule we have ∇f (w) = g ′ (〈w, x〉+ b) x.

2. Using smoothness of g and Cauchy-Schwartz inequality, we obtain

f (v) = g (〈v, x〉+ b)

≤ g (〈w, x〉+ b) + g ′ (〈v, x〉+ b) 〈v − w, x〉+
β

2
(〈v − w, x〉)2

≤ g (〈w, x〉+ b) + g ′ (〈v, x〉+ b) 〈v − w, x〉+
β

2
(‖v − w‖ ‖x‖)2

≤ f (w) + 〈∇f (w), v − w〉+
β ‖x‖2

2
‖v − w‖2 .

Example (Smooth functions)

1. For any x ∈ Rn and y ∈ R, let f (w) = (〈w, x〉 − y)2. Then, f is
(
2 ‖x‖2)-smooth.

2. For any x ∈ Rn and y ∈ {±1}, let f (x) = log (1 + exp (−y 〈w, x〉)). Then, f is
(
‖x‖2

4

)
-smooth.
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Convex optimization

I Approximately solve

argmin
w∈C

f (w)

where C is a convex set and f is a convex function.

Example (Convex optimization)

The linear regression problem can be defined as the following convex optimization problem.

argmin
‖w‖≤1

1

m

m∑
i=1

[〈w, xi 〉 − yi ]
2

I An special case is unconstrained minimization C = Rn.

I Can reduce one to another

1. Adding the function IC(w) to the objective eliminates the constraint.

2. Adding the constraint f (w) ≤ f ∗ + ε eliminates the objective.
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Learning problems

Definition (Agnostic PAC learnability)

A hypothesis class H is agnostic PAC learnable with respect to a set Z and a loss function

` : H ×Z 7→ R+, if there exist a function mH : (0, 1)2 7→ N and a learning algorithm A with the

following property: For every ε, δ ∈ (0, 1) and for every distribution D over Z, when running the

learning algorithm on m ≥ mH(ε, δ) i.i.d. examples generated by D, the algorithm returns h ∈ H

such that, with probability of at least (1− δ) (over the choice of the m training examples),

R(h) ≤ min
h′∈H

R̂(h) + ε,

where R(h) = Ez∼D [`(h, z)].

In this definition, we have

1. a hypothesis class H,

2. a set of examples Z, and

3. a loss function ` : H ×Z 7→ R+

Now, we consider hypothesis classes H that are subsets of the Euclidean space Rn, therefore, denote a

hypothesis in H by w.
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Convex learning problems

Definition (Convex learning problems)

A learning problem (H,Z, `) is called convex if

1. the hypothesis class H is a convex set, and

2. for all z ∈ Z, the loss function, `(., z), is a convex function, where, for any z , `(., z) denotes the

function f : H 7→ R defined by f (w) = `(w, z).

Example (Linear regression with the squared loss)

1. The domain set X ⊂ Rn and the label set Y ⊂ R is the set of real numbers.

2. We need to learn a linear function h : Rn 7→ R that best approximates the relationship between

our variables.

3. Let H be the set of homogeneous linear functions H = {x 7→ 〈w, x〉 | w ∈ Rn}.

4. Let the squared loss function `(h, (x, y)) = (h(x)− y)2 used to measure error.

5. This is a convex learning problem because
I Each linear function is parameterized by a vector w ∈ Rn. Hence, H = Rn.
I The set of examples is Z = X × Y = Rn × R = Rn+1.
I The loss function is `(w, (x, y)) = (〈w, x〉 − y)2.
I Clearly, H is a convex set and `(., .) is also convex with respect to its first argument.
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Convex learning problems

Lemma (Convex learning problems)

If ` is a convex loss function and the class H is convex, then the ermH problem, of minimizing the

empirical loss over H, is a convex optimization problem (that is, a problem of minimizing a convex

function over a convex set).

Proof (Convex learning problems).

1. The ermH problem is defined as

ermH(S) = argmin
w∈H

R̂(w)

2. Since, for a sample S = {z1, . . . , zm}, for every w, and R̂(w) =
1

m

∑m
i=1 `(w, zi ), Lemma

(Convexity of a scaler function) implies that R̂(w) is a convex function.

3. Therefore, the ermH rule is a problem of minimizing a convex function subject to the constraint

that the solution should be in a convex set.

21/31



Learnability of convex learning problems

I We have seen that for many cases implementing the erm rule for convex learning problems can be

done efficiently.

I Is convexity a sufficient condition for the learnability of a problem?

I In VC theory, we saw that halfspaces in n- dimension are learnable (perhaps inefficiently).

I Using discretization trick, if the problem is of n parameters, it is learnable with a sample

complexity being a function of n.

I That is, for a constant n, the problem should be learnable.

I Maybe all convex learning problems over Rn, are learnable?

I Answer is negative even when n is low (Show that linear regression is not learnable even if n = 1).

I Hence, all convex learning problems over Rn are not learnable.

I Under some additional restricting conditions that hold in many practical scenarios, convex

problems are learnable.

I A possible solution to this problem is to add another constraint on the hypothesis class.

I In addition to the convexity requirement, we require that H will be bounded (i.e. For some

predefined scalar B, every hypothesis w ∈ H satisfies ‖w‖ ≤ B).

I Boundedness and convexity alone are still not sufficient for ensuring that the problem is learnable

(Show that a linear regression with squared loss and H = {w | |w | ≤ 1} ⊂ R is not learnability).
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Convex-Lipschitz-bounded learning problems

Definition (Convex-Lipschitz-bounded learning problems)

A learning problem (H,Z, `) is called convex-Lipschitz-bounded, with parameters ρ, B if the

following hold.

1. The hypothesis class H is a convex set, and for all w ∈ H we have ‖w‖ ≤ B.

2. For all z ∈ Z, the loss function, `(., z), is a convex and ρ-Lipschitz function.

Example (Linear regression with absolute-value loss)

1. Let X = {x ∈ Rn | ‖x‖ ≤ ρ} and Y ⊂ R.

2. Let H = {w ∈ Rn | ‖w‖ ≤ B}.

3. Let loss function be `(w, (x, y)) = |〈w, x〉 − y |.

4. Then, this problem is Convex-Lipschitz-bounded with parameters ρ, B.
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Convex-smooth-bounded learning problems

Definition (Convex-smooth-bounded learning problems)

A learning problem (H,Z, `) is called convex-smooth-bounded, with parameters β, B if the following

hold.

1. The hypothesis class H is a convex set, and for all w ∈ H we have ‖w‖ ≤ B.

2. For all z ∈ Z, the loss function, `(., z), is a convex, nonnegative and β-smooth function.

Example (Linear regression with squared loss)

1. Let X = {x ∈ Rn | ‖x‖ ≤ β/2} and Y ⊂ R.

2. Let H = {w ∈ Rn | ‖w‖ ≤ B}.

3. Let loss function be `(w, (x, y)) = (〈w, x〉 − y)2.

4. Then, this problem is Convex-smooth-bounded with parameters β, B.

Lemma (Learnability of Convex-Lipschitz/-smooth-bounded learning problems)

The following two families of learning problems are learnable.

1. Convex-smooth-bounded learning problems.

2. Convex-Lipschitz-bounded learning problems.

That is, the properties of convexity, boundedness, and Lipschitzness or smoothness of the loss

function are sufficient for learnability.

24/31



Surrogate loss functions



Surrogate loss functions

I In many cases, loss function is not convex and, hence, implementing the ERM rule is hard.

I Consider the problem of learning halfspaces with respect to 0-1 loss.

`0−1(w, (x, y)) = I [y 6= sgn (〈w, x〉)] = I [y 〈w, x〉 ≤ 0] .

I This loss function is not convex with respect to w.

I When trying to minimize R̂(w) with respect to this loss function we might encounter local minima.

I We also showed that, solving the ERM problem with respect to the 0-1 loss in the unrealizable

case is known to be NP-hard.

I One popular approach is to upper bound the nonconvex loss function by a convex surrogate loss

function.

I The requirements from a convex surrogate loss are as follows:

1. It should be convex.

2. It should upper bound the original loss.
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Hinge-loss

I Hinge-loss function is defined as

`hinge(w, (x, y)) , max{0, 1− y 〈w, x〉}.

I Hinge-loss has the following two properties

1. For all w and all (x, y), we have `0−1(w, (x, y)) ≤ `hinge(w, (x, y)).

2. Hinge-loss is a convex function.

134 Convex Learning Problems

As an example, consider the problem of learning the hypothesis class of half-
spaces with respect to the 0� 1 loss. That is,

`0�1(w, (x, y)) = 1[y 6=sign(hw,xi)] = 1[yhw,xi0] .

This loss function is not convex with respect to w and indeed, as discussed in
Chapter 8, solving the ERM problem with respect to the 0� 1 loss in the unreal-
izable case is known to be NP-hard.

To circumvent the hardness result, one popular approach is to upper bound
the non-convex loss function by a convex surrogate loss function. As its name
indicates, the requirements from a convex surrogate loss is as follows

1. It should be convex

2. It should upper bound the original loss

For example, in the context of learning halfspaces, we can define the so-called
hinge loss as a convex surrogate for the 0� 1 loss, as follows:

`hinge(w, z)
def
= max{0, 1� yhw,xi} .

Note that for all w and all z, `0�1(w, z)  `hinge(w, z). An illustration of the
functions `0�1 and `hinge is given below.

yhw,xi

`0�1

`hinge

1

1

Once we defined the surrogate convex loss, we can learn the problem with
respect to it. The generalization requirement from a Hinge loss learner will have
the form:

Lhinge
D (A(S))  min

w2H
Lhinge

D (w) + ✏ .

Using the surrogate property, we can lower bound the left-hand side by
L0�1

D (A(S)) which yields

L0�1
D (A(S))  min

w2H
Lhinge

D (w) + ✏ .

c� Shai Shalev-Shwartz and Shai Ben-David.

I Hence, the hinge loss satisfies the requirements of a convex surrogate loss function for the

zero-one loss.
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Error decomposition revisited

I Suppose we have a learner for hinge-loss that guarantees

Rhinge(A(S)) ≤ min
w∈H

Rhinge(w) + ε.

I Using the surrogate property,

R0−1(A(S)) ≤ min
w∈H

Rhinge(w) + ε.

I We can further rewrite the upper bound as

R0−1(A(S)) ≤ min
w∈H

R0−1(w) +

(
min
w∈H

Rhinge(w)−min
w∈H

R0−1(w)

)
+ ε

= εapproximation + εoptimization + εestimation

I The optimization error is a result of our inability to minimize the training loss with respect to the

original loss.
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Assignments



Assignments

1. Please specify that the following learning problems belong to which category of problems.
I Support vector regression (SVR)
I Kernel ridge regression
I Least absolute shrinkage and selection operator (Lasso)
I Support vector machine (SVM)
I Logistic regression
I AdaBoost

Prove your claim.

2. Prove Lemma Learnability of Convex-Lipschitz/-smooth-bounded learning problems.
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Summary



Summary

I We introduced two families of learning problems:

1. Convex-Lipschitz-bounded learning problems.

2. Convex-smooth-bounded learning problems.

I There are some generic learning algorithms such as stochastic gradient descent algorithm for

solving these problem. (Please read Chapter 14)

I We also introduced the notion of convex surrogate loss function, which enables us also to utilize

the convex machinery for nonconvex problems.
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Readings

1. Chapters 12 and 14 of Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning

: From theory to algorithms. Cambridge University Press, 2014.
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Questions?
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