# Machine learning theory

# Regression

Hamid Beigy

Sharif university of technology

June 1, 2020



# **Table of contents**



- 1. Introduction
- 2. Generalization bounds
- 3. Pseudo-dimension bounds
- 4. Regression algorithms
- 5. Summary

# Introduction



- ▶ Let  $\mathcal{X}$  denote the input space and  $\mathcal{Y}$  a measurable subset of  $\mathbb{R}$  and  $\mathcal{D}$  be a distribution over  $\mathcal{X} \times \mathcal{Y}$ .
- ▶ Learner receives sample  $S = \{(x_1, y_m), \dots, (x_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$  drawn i.i.d. according to  $\mathcal{D}$ .
- ▶ Let  $L: \mathcal{X} \times \mathcal{Y} \mapsto \mathbb{R}_+$  be the loss function used to measure the magnitude of error.
- The most used loss function is
  - ▶  $L_2$  defined as  $L(y, y') = |y' y|^2$  for all  $y, y' \in \mathcal{Y}$ ,
  - or more generally  $L_p$  defined as  $L(y, y') = |y' y|^p$  for all  $p \ge 1$  and  $y, y' \in \mathcal{Y}$ ,
- ▶ The regression problem is defined as

#### Definition (Regression problem)

Given a hypothesis set  $H = \{h : \mathcal{X} \mapsto \mathcal{Y} \mid h \in H\}$ , regression problem consists of using labeled sample S to find a hypothesis  $h \in H$  with small generalization error R(h) respect to target f:

$$\mathbf{R}(h) = \mathop{\mathbb{E}}_{(x,y)\sim\mathcal{D}} \left[ L(h(x),y) \right]$$

The empirical loss or error of  $h \in H$  is denoted by

$$\hat{\mathsf{R}}(h) = \frac{1}{m} \sum_{i=1}^m L(h(x_i), y_i)$$

▶ If  $L(y, y) \le M$  for all  $y, y' \in \mathcal{Y}$ , problem is called bounded regression problem.

**Generalization bounds** 



# Theorem (Generalization bounds for finite hypothesis sets)

Let  $L \leq M$  be a bounded loss function and the hypothesis set H is finite. Then, for any  $\delta > 0$ , with probability at least  $(1 - \delta)$ , the following inequality holds for all  $h \in H$ 

$$\mathbf{R}(h) \leq \mathbf{\hat{R}}(h) + M\sqrt{\frac{\log|H| + \log \frac{1}{\delta}}{2m}}.$$

#### Proof (Generalization bounds for finite hypothesis sets).

By Hoeffding's inequality, since  $L \in [0, M]$ , for any  $h \in H$ , the following holds

$$\mathbb{P}\left[\mathbf{R}(h) - \mathbf{\hat{R}}(h) > \epsilon\right] \leq \exp\left(-2\frac{m\epsilon^2}{M^2}\right).$$

Thus, by the union bound, we can write

$$\begin{split} \mathbb{P}\left[\exists h \in H \ \middle| \ \mathbf{R}(h) - \mathbf{\hat{R}}(h) > \epsilon\right] &\leq \sum_{h \in H} \mathbb{P}\left[\mathbf{R}(h) - \mathbf{\hat{R}}(h) > \epsilon\right] \\ &\leq |H| \exp\left(-2\frac{m\epsilon^2}{M^2}\right). \end{split}$$

Setting the right-hand side to be equal to  $\delta$ , the theorem will proved.



#### Theorem (Rademacher complexity of $\mu$ -Lipschitz loss functions)

Let  $L \leq M$  be a bounded loss function such that for any fixed  $y' \in \mathcal{Y}$ , L(y,y') is  $\mu$ -Lipschitz for some  $\mu > 0$ . Then for any sample  $S = \{(x_1,y_m),\ldots,(x_m,y_m)\}$ , the upper bound of the Rademacher complexity of the family  $\mathcal{G} = \{(x,y) \mapsto L(h(x),y) \mid h \in H\}$  is

$$\hat{\mathcal{R}}(\mathcal{G}) \leq \mu \hat{\mathcal{R}}(H).$$

# Proof (Rademacher complexity of $\mu$ -Lipschitz loss functions).

Since for any fixed  $y_i$ , L(y, y') is  $\mu$ -Lipschitz for some  $\mu > 0$ , by Talagrand's Lemma, we can write

$$\hat{\mathcal{R}}(\mathcal{G}) = \frac{1}{m} \mathop{\mathbb{E}}_{\sigma} \left[ \sum_{i=1}^{m} \sigma_{i} L(h(x_{i}), y_{i}) \right]$$

$$\leq \frac{1}{m} \mathop{\mathbb{E}}_{\sigma} \left[ \sum_{i=1}^{m} \sigma_{i} \mu h(x_{i}) \right]$$

$$= \mu \hat{\mathcal{R}}(H).$$

ш



## Theorem (Rademacher complexity of $L_p$ loss functions)

Let  $p \ge 1$  and  $\mathcal{G} = \{\mathbf{x} \mapsto |h(x) - f(x)|^p \mid h \in H\}$  and  $|h(x) - f(x)| \le M$  for all  $x \in \mathcal{X}$  and  $h \in H$ . Then for any sample  $S = \{(x_1, y_m), \dots, (x_m, y_m)\}$ , the following inequality holds

$$\hat{\mathcal{R}}(\mathcal{G}) \leq pM^{p-1}\hat{\mathcal{R}}(H).$$

# Proof (Rademacher complexity of $L_p$ loss functions).

Let  $\phi_p: x \mapsto |x|^p$ , then  $\mathcal{G} = \{\phi_p \circ h \mid h \in H'\}$  where  $H' = \{\mathbf{x} \mapsto h(x) - f(x) \mid h \in H'\}$ . Since  $\phi_p$  is  $pM^{p-1}$ -Lipschitz over [-M, M], we can apply Talagrand's Lemma,

$$\hat{\mathcal{R}}(\mathcal{G}) \leq pM^{p-1}\hat{\mathcal{R}}(H').$$

Now,  $\hat{\mathcal{R}}(H')$  can be expressed as

$$\begin{split} \hat{\mathcal{R}}(H') &= \frac{1}{m} \mathop{\mathbb{E}}_{\sigma} \left[ \sup_{h \in H} \sum_{i=1}^{m} \left( \sigma_{i} h(\mathbf{x}_{i}) + \sigma_{i} f(\mathbf{x}_{i}) \right) \right] \\ &= \frac{1}{m} \mathop{\mathbb{E}}_{\sigma} \left[ \sup_{h \in H} \sum_{i=1}^{m} \sigma_{i} h(\mathbf{x}_{i}) \right] + \frac{1}{m} \mathop{\mathbb{E}}_{\sigma} \left[ \sum_{i=1}^{m} \sigma_{i} f(\mathbf{x}_{i}) \right] = \hat{\mathcal{R}}(H). \end{split}$$

Since 
$$\mathbb{E}_{\sigma}\left[\sum_{i=1}^{m} \sigma_{i} f(\mathbf{x}_{i})\right] = \sum_{i=1}^{m} \mathbb{E}_{\sigma}\left[\sigma_{i}\right] f(\mathbf{x}_{i}) = 0.$$



#### Theorem (Rademacher complexity regression bounds)

Let  $0 \le L \le M$  be a bounded loss function such that for any fixed  $y' \in \mathcal{Y}$ , L(y,y') is  $\mu$ -Lipschitz for some  $\mu > 0$ . Then,

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[L(h(x),y)\right] \leq \frac{1}{m}\sum_{i=1}^{m}L(h(x_i),y_i) + 2\mu\mathcal{R}_m(H) + M\sqrt{\frac{\log\frac{1}{\delta}}{2m}}$$

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[L(h(x),y)\right] \leq \frac{1}{m}\sum_{i=1}^{m}L(h(x_i),y_i) + 2\mu\hat{\mathcal{R}}(H) + 3M\sqrt{\frac{\log\frac{1}{\delta}}{2m}}.$$

# Proof (Rademacher complexity of $\mu$ -Lipschitz loss functions).

Since for any fixed  $y_i$ , L(y, y') is  $\mu$ -Lipschitz for some  $\mu > 0$ , by Talagrand's Lemma, we can write

$$\hat{\mathcal{R}}(\mathcal{G}) = \frac{1}{m} \mathop{\mathbb{E}}_{\sigma} \left[ \sum_{i=1}^{m} \sigma_{i} L(h(x_{i}), y_{i}) \right] \\
\leq \frac{1}{m} \mathop{\mathbb{E}}_{\sigma} \left[ \sum_{i=1}^{m} \sigma_{i} \mu h(x_{i}) \right] = \mu \hat{\mathcal{R}}(H).$$

Combining this inequality with general Rademacher complexity learning bound completes proof.

**Pseudo-dimension bounds** 



- VC dimension is a measure of complexity of a hypothesis set.
- ▶ We define shattering for families of real-valued functions.
- $\triangleright$  Let  $\mathcal{G}$  be a family of loss functions associated to some hypothesis set H, where

$$\mathcal{G} = \{z = (x, y) \mapsto L(h(x), y) \mid h \in H\}$$

# **Definition (Shattering)**

Let  $\mathcal{G}$  be a family of functions from a set  $\mathcal{Z}$  to  $\mathbb{R}$ . A set  $\{z_1, \ldots, z_m\} \in (\mathcal{X} \times \mathcal{Y})$  is said to be shattered by  $\mathcal{G}$  if there exists  $t_1, \ldots, t_m \in \mathbb{R}$  such that

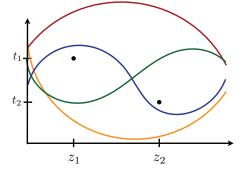
$$\left| \left\{ \begin{bmatrix} \operatorname{sgn}(g(z_1) - t_1) \\ \operatorname{sgn}(g(z_2) - t_2) \\ \vdots \\ \operatorname{sgn}(g(z_m) - t_m) \end{bmatrix} \middle| g \in \mathcal{G} \right\} \right| = 2^m$$

When they exist, the threshold values  $t_1, \ldots, t_m$  are said to witness the shattering.

In other words, S is shattered by  $\mathcal{G}$ , if there are real numbers  $t_1, \ldots, t_m$  such that for  $b \in \{0, 1\}^m$ , there is a function  $g_b \in \mathcal{G}$  with  $\text{sgn}(g_b(\mathbf{x}_i) - t_i) = b_i$  for all  $1 \le i \le m$ .



- ▶ Thus,  $\{z_1, \ldots, z_m\}$  is shattered if for some witnesses  $t_1, \ldots, t_m$ , the family of functions  $\mathcal{G}$  is rich enough to contain a function going
  - 1. above a subset A of the set of points  $\mathcal{J} = \{(z_i, t_i) \mid 1 \leq i \leq m\}$  and
  - 2. below the others  $\mathcal{J} A$ , for any choice of the subset A.



For any  $g \in \mathcal{G}$ , let  $B_g$  be the indicator function of the region below or on the graph of g, that is

$$B_g(\mathbf{x}, y) = \operatorname{sgn}(g(\mathbf{x}) - y).$$

▶ Let  $B_{\mathcal{G}} = \{B_g \mid g \in \mathcal{G}\}.$ 



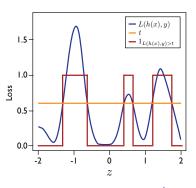
► The notion of shattering naturally leads to definition of pseudo-dimension.

# **Definition (Pseudo-dimension)**

Let  $\mathcal G$  be a family of functions from  $\mathcal Z$  to  $\mathbb R$ . Then, the pseudo-dimension of  $\mathcal G$ , denoted by  $Pdim(\mathcal G)$ , is the size of the largest set shattered by  $\mathcal G$ . If no such maximum exists, then  $Pdim(\mathcal G)=\infty$ .

 $ightharpoonup Pdim(\mathcal{G})$  coincides with VC of the corresponding thresholded functions mapping  $\mathcal{X}$  to  $\{0,1\}$ .

$$Pdim(\mathcal{G}) = VC\left(\{(x,t) \mapsto \mathbb{I}\left[(g(x)-t) > 0\right] \mid g \in \mathcal{G}\}\right)$$



▶ Thus  $Pdim(\mathcal{G}) = d$ , if there are real numbers  $t_1, \ldots, t_d$  and  $2^d$  functions  $g_b$  that achieves all possible **below/above** combinations w.r.t  $t_i$ .



# Theorem (Composition with non-decreasing function)

Suppose  $\mathcal G$  is a class of real-valued functions and  $\sigma:\mathbb R\mapsto\mathbb R$  is a non-decreasing function. Let  $\sigma(\mathcal G)$  denote the class  $\{\sigma\circ g\mid g\in\mathcal G\}$ . Then

$$Pdim(\sigma(\mathcal{G})) \leq Pdim(\mathcal{G})$$

# Proof (Pseudo-dimension of hyperplanes).

1. For  $d \leq Pdim(\sigma(\mathcal{G}))$ , suppose

$$\left\{\sigma\circ g_b\;\middle|\;b\in\{0,1\}^d\right\}\subseteq\sigma(\mathcal{G})$$

shatters a set  $\{\mathbf{x}_1, \dots, \mathbf{x}_d\} \subseteq \mathcal{X}$  witnessed by  $(t_1, \dots, t_d)$ .

- 2. By suitably relabeling  $g_b$ , for all  $\{0,1\}^d$  and  $1 \le i \le d$ , we have  $\operatorname{sgn}(\sigma(g_b(\mathbf{x}_i)) t_i) = b_i$ .
- 3. For all  $1 \le i \le d$ , take

$$y_i = \min \Big\{ g_b(\mathbf{x}_i) \ \Big| \ \sigma(g_b(\mathbf{x}_i)) \geq t_i, b \in \{0,1\}^d \Big\}$$

4. Since  $\sigma$  is non-decreasing, it is straightforward to verify that  $sgn(g_b(\mathbf{x}_i) - t_i) = b_i$  for all  $\{0,1\}^d$  and  $1 \le i \le d$ 



▶ A class  $\mathcal{G}$  of real-valued functions is a vector space if for all  $g_1, g_2 \in \mathcal{G}$  and any numbers  $\lambda, \mu \in \mathbb{R}$ , we have  $\lambda g_1 + \mu g_2 \in \mathcal{G}$ .

#### Theorem (Pseudo-dimension of vector spaces)

If  $\mathcal{G}$  is a vector space of real-valued functions, then  $Pdim(\mathcal{G}) = dim(\mathcal{G})$ .

#### Proof (Pseudo-dimension of vector spaces).

- 1. Let  $B_G$  be the class of below th graph indicator functions, we have  $Pdim(\mathcal{G}) = VC(B_G)$ .
- 2. But  $B_{\mathcal{G}} = \{(\mathbf{x}, y) \mapsto \operatorname{sgn}(g(\mathbf{x}) y) \mid g \in \mathcal{G}\}.$
- 3. Hence, the functions  $B_G$  are of the form  $sgn(g_1 + g_2)$ , where
  - $ightharpoonup g_1 = g$  is a function from vector space
  - $ightharpoonup g_2$  is the fixed function  $g_2(\mathbf{x}, y) = -y$ .
- 4. Then, Theorem (Pseudo-dimension of vector spaces) shows that  $Pdim(\mathcal{G}) = dim(\mathcal{G})$ .

▶ Functions that map into some bounded range are not vector space.

#### **Corollary**

If  $\mathcal{G}$  is a subset of a vector space  $\mathcal{G}'$  of real valued functions then  $Pdim(\mathcal{G}) \leq dim(\mathcal{G}')$ 



## Theorem (Pseudo-dimension of hyperplanes)

 $\text{Let } \mathcal{G} = \{\mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle + b \mid \mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}\} \text{ be the class of hyperplanes in } \mathbb{R}^n, \text{ then } Pdim(\mathcal{G}) = n+1.$ 

# Pseudo-dimension of hyperplanes.

- 1. It is easy to check that  $\mathcal{G}$  is a vector space.
- 2. Let  $g_i$  be the *i*th coordinate projection  $f_i(\mathbf{x}) = x_i$  for all  $1 \le i \le n$  and  $\mathbf{1}$  be identity-1 function. Then  $B = \{g_1, \dots, g_n, \mathbf{1}\}$  is basis of  $\mathcal{G}$ .
- 3. Hence,  $Pdim(\mathcal{G}) = n + 1$



▶ A polynomial transformation of  $\mathbb{R}^n$  is function  $g(\mathbf{x}) = w_0 + w_1\phi_1(\mathbf{x}) + w_2\phi_2(\mathbf{x}) + \ldots + w_k\phi_k(\mathbf{x})$  for  $\mathbf{x} \in \mathbb{R}^n$ , where k is an integer and for each  $1 \le i \le k$ , function  $\phi_i(\mathbf{x})$  is defined as

$$\phi_i(\mathbf{x}) = \prod_{j=1}^n x_j^{r_{ij}}$$

for some nonnegative integers  $r_{ij}$  and  $r_i = r_{i1} + r_{i2} + \ldots + r_{in}$  and the degree of g as  $r = \max_i r_i$ .

Theorem (Pseudo-dimension of polynomial transformation)

If  $\mathcal{G}$  is a class of all polynomial transformations on  $\mathbb{R}^n$  of degree at most r, then  $Pdim(\mathcal{G}) = \binom{n+r}{r}$ .

Proof (Pseudo-dimension of polynomial transformation).

Homework: Prove this Theorem.

Theorem (Pseudo-dimension of all polynomial transformations)

Let  $\mathcal{G}$  be class of all polynomial transformations on  $\{0,1\}^n$  of degree at most r, then  $Pdim(\mathcal{G}) = \sum_{i=0}^r \binom{n}{i}$ .

Proof (Pseudo-dimension of all polynomial transformations).

Homework: Prove this Theorem.



# Theorem (Generalization bound for bounded regression)

Let H be a family of real-valued functions and  $\mathcal{G}=\{z=(x,y)\mapsto L(h(x),y)\mid h\in H\}$  be a family of loss functions associated to a hypothesis set H. Assume that  $Pdim(\mathcal{G})=d$  and loss function L is non-negative and bounded by M. Then, for any  $\delta>0$ , with probability at least  $(1-\delta)$  over the choice of an i.i.d. sample S of size M drawn from  $\mathcal{D}^{m}$ , the following inequality holds for all  $h\in H$ 

$$\mathbf{R}(h) \leq \mathbf{\hat{R}}(h) + M\sqrt{\frac{2d\log\frac{em}{d}}{m}} + M\sqrt{\frac{\log\frac{1}{\delta}}{2m}}$$

Proof (Generalization bound for bounded regression).

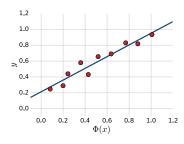
Homework: Prove this Theorem.

Regression algorithms



- ▶ Let  $\Phi : \mathcal{X} \mapsto \mathbb{R}^n$  and  $H = \{h : \mathbf{x} \mapsto \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle + b \mid \mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}\}.$
- ▶ Given sample S, the problem is to find a  $h \in H$  such that

$$h = \min_{\mathbf{w},b} \mathbf{\hat{R}}(h) = \min_{\mathbf{w},b} \frac{1}{m} \sum_{i=1}^{m} (\langle \mathbf{w}, \Phi(x_i) \rangle + b - y_i)^2$$



► Define data matrix

$$\mathbf{X} = \left[ egin{array}{cccc} \mathbf{\phi}(\mathbf{x}_1) & \phi(\mathbf{x}_2) & \dots & \phi(\mathbf{x}_m) \\ 1 & 1 & \dots & 1 \end{array} 
ight]$$

- ▶ Let  $\mathbf{w} = (w_1, \dots, w_n, b)^T$  be the weight vector and  $\mathbf{y} = (y_1, \dots, y_m)^T$  be the target vector.
- ▶ By setting  $\nabla \hat{\mathbf{R}}(h) = 0$ , we obtain

$$\mathbf{w} = (\mathbf{X}\mathbf{X}^T)^{\dagger}\mathbf{X}\mathbf{y}$$

▶ When XX<sup>T</sup> is invertible, there is a unique solution; otherwise the problem has several solutions.



#### Theorem

Let  $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$  be a PDS kernel,  $\Phi: \mathcal{X} \mapsto \mathbb{H}$  a feature mapping associated to K, and  $H = \{\mathbf{x} \mapsto \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle \mid \|\mathbf{w}\|_{\mathbb{H}} \leq \Lambda\}$ . Assume that there exists r > 0 suh that  $K(\mathbf{x}, \mathbf{x}) \leq r^2$  and M > 0 such that  $|h(\mathbf{x}) - y| < M$  for all  $(\mathbf{x}, y \in \mathcal{X} \times \mathcal{Y})$ . Then for any  $\delta > 0$ , with probability at least  $(1 - \delta)$ , each of the following inequalities holds for all  $h \in H$ .

$$\mathbf{R}(h) \le \mathbf{\hat{R}}(h) + 4M\sqrt{\frac{r^2\Lambda^2}{m}} + M^2\sqrt{\frac{\log\frac{1}{\delta}}{2m}}$$
$$\mathbf{R}(h) \le \mathbf{\hat{R}}(h) + \frac{4M\Lambda\sqrt{\mathsf{Tr}\left[\mathbf{K}\right]}}{m} + 3M^2\sqrt{\frac{\log\frac{2}{\delta}}{2m}}$$

#### Proof.

By the bound on the empirical Rademacher complexity of kernel-based hypotheses, the following holds for any sample S of size m:

$$\widehat{\mathcal{R}}(H) \leq \frac{\Lambda\sqrt{\mathsf{Tr}\left[K\right]}}{m} \leq \sqrt{\frac{r^2\Lambda^2}{m}}$$

This implies that  $\mathcal{R}_m(h) \leq \sqrt{\frac{r^2\Lambda^2}{m}}$ . Combining these inequalities with the bounds of Theorem Rademacher complexity regression bounds, the Theorem will be proved.



The following bound suggests minimizing a trade-off between empirical squared loss and norm of the weight vector.

$$\mathbf{R}(h) \leq \mathbf{\hat{R}}(h) + 4M\sqrt{\frac{r^2\Lambda^2}{m}} + M^2\sqrt{\frac{\log\frac{1}{\delta}}{2m}}$$

Kernel ridge regression is defined by minimization of an objective function (theoretical analysis)

$$\min_{\mathbf{w}} F(\mathbf{w}) = \min_{\mathbf{w}} \left[ \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^{m} (\langle \mathbf{w}, \Phi(\mathbf{x}_i) \rangle - y_i)^2 \right]$$
$$= \min_{\mathbf{w}} \left[ \lambda \|\mathbf{w}\|^2 + \left\| \mathbf{\Phi}^T \mathbf{w} - \mathbf{y} \right\|^2 \right]$$

▶ By setting  $\nabla F(\mathbf{w}) = 0$ , we obtain

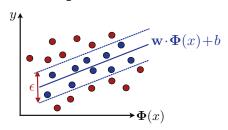
$$\mathbf{w} = (\mathbf{\Phi} \mathbf{\Phi}^T + \lambda \mathbf{I})^{-1} \mathbf{\Phi} \mathbf{y}$$

An alternative formulation of kernel ridge regression is

$$\begin{split} \min_{\mathbf{w}} \left\| \mathbf{\Phi}^T \mathbf{w} - \mathbf{y} \right\|^2 \text{ subject to } \|\mathbf{w}\|^2 &\leq \Lambda^2 \\ \min_{\mathbf{w}} \sum_{i=1}^m \xi_i^2 \text{ subject to } (\|\mathbf{w}\|^2 &\leq \Lambda^2) \wedge (\forall i \in \{1, \dots, m\}, \xi_i = y_i - \langle \mathbf{w}, \Phi(\mathbf{x}_i) \rangle) \end{split}$$



- Support vector regression (SVR) algorithm is inspired by SVM algorithm.
- ▶ The main idea of SVR consists of fitting a tube of width  $\epsilon > 0$  to the data.



- ► This defines two sets of points:
  - 1. points falling inside the tube, which are  $\epsilon$ -close to the function predicted and thus not penalized,
  - 2. points falling outside the tube, which are penalized based on their distance to the predicted function.
- ▶ This is similar to the penalization used by SVMs in classification.
- ▶ Using a hypothesis set of linear functions  $H = \{\mathbf{x} \mapsto \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle + b \mid \mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}\}$ , where  $\Phi$  is the feature mapping corresponding some PDS kernel K.
- ▶ The optimization problem for SVR is

$$\min_{\mathbf{w},b} \left[ \frac{1}{2} \lambda \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} |y_i - (\langle \mathbf{w}, \Phi(\mathbf{x}_i) \rangle + b)|_{\epsilon} \right]$$

where  $|.|_{\epsilon}$  denotes  $\epsilon$ -insensitive loss

$$\forall y, y' \in \mathcal{Y}, \quad |y' - y|_{\epsilon} = \max(0, |y' - y| - \epsilon)$$



▶ The  $\epsilon$ -insensitive loss is defined as

$$\forall y, y' \in \mathcal{Y}, \quad |y' - y|_{\epsilon} = \max(0, |y' - y| - \epsilon)$$

- ► The use of e-insensitive loss leads to sparse solutions with a relatively small number of support vectors.
- ▶ Using slack variables  $\xi_i \geq 0$  and  $\xi_i' \geq 0$  for  $1 \leq i \leq m$ , the problem becomes

$$\begin{split} \min_{\mathbf{w},b,\xi,\xi'} \left[ \frac{1}{2} \lambda \left\| \mathbf{w} \right\|^2 + C \sum_{i=1}^m \left( \xi_i + \xi_i' \right) \right] \\ \text{subject to } \left( \langle \mathbf{w}, \Phi(\mathbf{x}_i) \rangle + b \right) - y_i \leq \epsilon + \xi_i \\ y_i - \left( \langle \mathbf{w}, \Phi(\mathbf{x}_i) \rangle + b \right) \leq \epsilon + \xi_i' \\ \xi_i \geq 0, \quad \xi_i' \geq 0, \quad \forall i, 1 \leq i \leq m \end{split}$$

- This is a convex quadratic program (QP) with affine constraints.
- By introducing Lagrangian and applying KKT conditions, the problem will be solved.



- $\blacktriangleright$  Let  $\mathcal{D}$  be the distribution according to which sample points are drawn.
- Let  $\hat{D}$  the empirical distribution defined by a training sample of size m.

#### Theorem (Generalization bounds of SVR)

Let  $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$  be a PDS kernel,  $\Phi: \mathcal{X} \mapsto \mathbb{H}$  a feature mapping associated to K, and  $H = \{\mathbf{x} \mapsto \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle \mid \|\mathbf{w}\|_{\mathbb{H}} \leq \Lambda\}$ . Assume that there exists r > 0 suh that  $K(\mathbf{x}, \mathbf{x}) \leq r^2$  and M > 0 such that  $|h(\mathbf{x}) - y| < M$  for all  $(\mathbf{x}, y \in \mathcal{X} \times \mathcal{Y})$ . Then for any  $\delta > 0$ , with probability at least  $(1 - \delta)$ , each of the following inequalities holds for all  $h \in H$ .

$$\mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}}[|h(\mathbf{x})-y|_{\epsilon}] \leq \mathbb{E}_{(\mathbf{x},y)\sim\hat{\mathcal{D}}}[|h(\mathbf{x})-y|_{\epsilon}] + 2\sqrt{\frac{r^{2}\Lambda^{2}}{m}} + M\sqrt{\frac{\log\frac{1}{\delta}}{2m}}$$

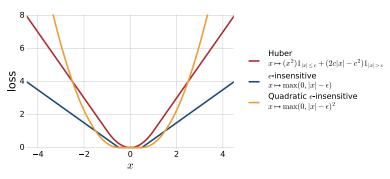
$$\mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}}[|h(\mathbf{x})-y|_{\epsilon}] \leq \mathbb{E}_{(\mathbf{x},y)\sim\hat{\mathcal{D}}}[|h(\mathbf{x})-y|_{\epsilon}] + \frac{2\Lambda\sqrt{\mathrm{Tr}[\mathbf{K}]}}{m} + 3M\sqrt{\frac{\log\frac{2}{\delta}}{2m}}$$

#### Proof (Generalization bounds of SVR).

Since for any  $y' \in \mathcal{Y}$ , the function  $y \mapsto |y - y'|_{\epsilon}$  is 1-Lipschitz, the result follows Theorem Rademacher complexity regression bounds and the bound on the empirical Rademacher complexity of H.



▶ Alternative convex loss functions can be used to define regression algorithms.



- SVR admits several advantages
  - 1. SVR algorithm is based on solid theoretical guarantees,
  - 2. The solution returned SVR is sparse
  - 3. SVR allows a natural use of PDS kernels
  - 4. SVR also admits favorable stability properties.
- SVR also admits several disadvantages
  - 1. SVR requires the selection of two parameters, C and  $\epsilon$ , which are determined by cross-validation.
  - 2. may be computationally expensive when dealing with large training sets.



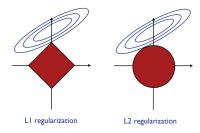
The optimization problem for Lasso is defined as

$$\min_{\mathbf{w},b} F(\mathbf{w}) = \min_{\mathbf{w},b} \left[ \lambda \|\mathbf{w}\|_1 + C \sum_{i=1}^m (\langle \mathbf{w}, \mathbf{x}_i \rangle + b - y_i)^2 \right]$$

- ▶ This is a convex optimization problem, because
  - 1.  $\|\mathbf{w}\|_1$  is convex as with all norms
  - 2. the empirical error term is convex
- ▶ Hence, the optimization problem can be written as

$$\min_{\mathbf{w},b} \left[ \sum_{i=1}^{m} \left( \langle \mathbf{w}, \mathbf{x}_i \rangle + b - y_i \right)^2 \right]$$
 subject to  $\|\mathbf{w}\|_1 \leq \Lambda_1$ 

► The L<sub>1</sub> norm constraint is that it leads to a sparse solution w.





# Theorem (Bounds of $\hat{\mathcal{R}}(H)$ of Lasso)

Let  $\mathcal{X} \subseteq \mathbb{R}^n$  and let  $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$  be sample of size m. Assume that for all  $1 \le i \le m$ ,  $\|\mathbf{x}_i\|_{\infty} \le r_{\infty}$  for some  $r_{\infty} > 0$ , and let  $H = \{\mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle \mid \|\mathbf{w}\|_1 \le \Lambda_1\}$ . Then, the empirical Rademacher complexity of H can be bounded as follows

$$\widehat{\mathcal{R}}(H) \leq \sqrt{\frac{2r_{\infty}^2 \Lambda_1^2 \log(2n)}{m}}$$

#### **Definition (Dual norms)**

Let  $\|.\|$  be a norm on  $\mathbb{R}^n$ . Then, the dual norm  $\|.\|_*$  associated to  $\|.\|$  is the norm defined by

$$\forall \mathbf{y} \in \mathbb{R}^n, \quad \|\mathbf{y}\|_* = \sup_{\|\mathbf{x}\|=1} |\langle \mathbf{y}, \mathbf{x} \rangle|$$

For any  $p, q \ge 1$  that are conjugate that is such that  $\frac{1}{p} + \frac{1}{q} = 1$ , the  $L_p$  and  $L_q$  norms are dual norms of each other.

In particular, the dual norm of  $L_2$  is the  $L_2$  norm, and the dual norm of the  $L_1$  norm is the  $L_{\infty}$  norm.



# **Proof (Bounds of** $\hat{\mathcal{R}}(H)$ **of Lasso).**

For any  $1 \le i \le m$ , we denote by  $x_{ii}$ , the jth component of  $\mathbf{x}_i$ .

$$\begin{split} \hat{\mathcal{R}}(H) &= \frac{1}{m} \mathop{\mathbb{E}} \left[ \sup_{\|\mathbf{w}\|_1 \le \Lambda_1} \sum_{i=1}^m \sigma_i \left\langle \mathbf{w}, \mathbf{x}_i \right\rangle \right] = \frac{\Lambda_1}{m} \mathop{\mathbb{E}} \left[ \left\| \sum_{i=1}^m \sigma_i \mathbf{x}_i \right\|_{\infty} \right] & \text{(by definition of the dual norm)} \\ &= \frac{\Lambda_1}{m} \mathop{\mathbb{E}} \left[ \max_{j \in \{1, \dots, n\}} \left| \sum_{i=1}^m \sigma_i \mathbf{x}_{ij} \right| \right] \\ &= \frac{\Lambda_1}{m} \mathop{\mathbb{E}} \left[ \max_{j \in \{1, \dots, n\}} \max_{s \in \{-1, +1\}} s \sum_{i=1}^m \sigma_i \mathbf{x}_{ij} \right] \\ &= \frac{\Lambda_1}{m} \mathop{\mathbb{E}} \left[ \sup_{z \in A} \sum_{i=1}^m \sigma_i z_i \right]. \end{split}$$

where A denotes the set of n vectors  $\{s(x_{1j},\ldots,x_{mj})\mid j\in\{1,\ldots,n\},s\in\{-1,+1\}\}$ . For any  $\mathbf{z}\in A$ , we have  $\|\mathbf{z}\|_2\leq \sqrt{mr_\infty^2}=r_\infty\sqrt{m}$ .

Thus by Massart's Lemma, since A contains at most 2n elements, the following inequality holds:

$$\hat{\mathcal{R}}(H) \leq \Lambda_1 r_{\infty} \sqrt{m} \frac{2 \log(2n)}{m} = \Lambda_1 r_{\infty} \sqrt{\frac{2 \log(2n)}{m}}.$$



- ▶ This bounds depends on dimension *n* is only logarithmic, which suggests that using very high-dimensional feature spaces does not significantly affect generalization.
- ▶ By combining of Theorem Bounds of  $\hat{\mathcal{R}}(H)$  of Lasso and Rademacher generalization bound, we obtain

Theorem (Rademacher complexity of linear hypotheses with bounded  $L_1$  norm)

Let  $\mathcal{X} \subseteq \mathbb{R}^n$  and  $H = \{\mathbf{x}_1 \mapsto \langle \mathbf{w}, \mathbf{x} \rangle \mid \|\mathbf{w}\|_1 \leq \Lambda_1\}$ . Let also  $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$  be sample of size m. Assume that there exists  $r_\infty > 0$  such that for all  $\mathbf{x} \in \mathcal{X}$ ,  $\|\mathbf{x}_i\|_\infty \leq r_\infty$  and M > 0 such that  $|h(\mathbf{x}) - y| \leq M$  for all  $(\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$ . Then, for any  $\delta > 0$ , with probability at least  $(1 - \delta)$ , each of the following inequality holds for  $h \in H$ 

$$\mathbf{R}(h) \leq \mathbf{\hat{R}}(h) + 2r_{\infty}\Lambda_1 M \sqrt{\frac{2\log(2n)}{m}} + M^2 \sqrt{\frac{\log\frac{1}{\delta}}{2m}}$$

- ▶ Ridge regression and Lasso have same form as the right-hand side of this generalization bound.
- Lasso has several advantages:
  - 1. It benefits from strong theoretical guarantees and returns a sparse solution.
  - 2. The sparsity of the solution is also computationally attractive (inner product).
  - 3. The algorithm's sparsity can also be used for feature selection.
- ▶ The main drawbacks are: usability of kernel and closed-form solution.



- ▶ The regression algorithms admit natural online versions.
- ► These algorithms are useful when we have very large data sets, where a batch solution can be computationally expensive.

```
Online linear regression

1: Initialize \mathbf{w}_1.

2: for t \leftarrow 1, 2, ..., T do.

3: Receive \mathbf{x}_t \in \mathbb{R}^n.

4: Predict \hat{y}_t = \langle \mathbf{w}_t, \mathbf{x}_t \rangle.

5: Observe true label y_t = h^*(\mathbf{x}_t).

6: Compute the loss L(\hat{y}_t, y_t).

7: Update \mathbf{w}_{t+1}.

8: end for
```



- Widrow-Hoff algorithm uses stochastic gradient descent technique to linear regression objective function.
- At each round, the weight vector is augmented with a quantity that depends on the prediction error  $(\langle \mathbf{w}_t, \mathbf{x}_t \rangle y_t)$ .

```
WidrowHoff regression
  1: function WidrowHoff(w<sub>0</sub>)
                                                                                                                                                       \triangleright typically \mathbf{w}_0 = 0.
  2:
             Initialize \mathbf{w}_1 \leftarrow \mathbf{w}_0.
             for t \leftarrow 1, 2, \dots, T do.
  3:
                    Receive \mathbf{x}_t \in \mathbb{R}^n.
  4:
                    Predict \hat{\mathbf{v}}_t = \langle \mathbf{w}_t, \mathbf{x}_t \rangle.
  5:
                    Observe true label y_t = h^*(\mathbf{x}_t).
  6:
  7:
                    Compute the loss L(\hat{y}_t, y_t).
                    Update \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - 2\eta \left( \langle \mathbf{w}_t, \mathbf{x}_t \rangle - y_t \right) \mathbf{x}_t.
                                                                                                                                                  \triangleright learning rate \eta > 0.
  8:
              end for
  9:
              return w<sub>T+1</sub>
 10:
11: end function
```



- There are two motivations for the update rule in Widrow-Hoff.
- ▶ The first motivation is that
  - 1. The loss function is defined as

$$L(\mathbf{w}, \mathbf{x}, y) = (\langle \mathbf{w}, \mathbf{x} \rangle - y)^2$$

2. To minimize the loss function, move in the direction of the negative gradient

$$\nabla_{\mathbf{w}} L(\mathbf{w}, \mathbf{x}, y) = 2(\langle \mathbf{w}, \mathbf{x} \rangle - y) \mathbf{x}$$

3. This gives the following update rule

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta \nabla_{\mathbf{w}} L(\mathbf{w}_t, \mathbf{x}_t, y_t)$$

- The second motivation is that we have two goals:
  - 1. We want loss on  $(\mathbf{x}_t, y_t)$  to be small which means that we want to minimize  $(\langle \mathbf{w}, \mathbf{x} \rangle y)^2$ .
  - 2. We don't want to be too far from  $\mathbf{w}_t$ . That is,we don't want  $\|\mathbf{w}_t \mathbf{w}_{t+1}\|$  to be too big.
- $\triangleright$  Combining these two goals, we compute  $\mathbf{w}_{t+1}$  by solving the following optimization problem

$$\mathbf{w}_{t+1} = \operatorname{argmin} \left( \left\langle \mathbf{w}_{t+1}, \mathbf{x}_{t} \right\rangle - y_{t} \right)^{2} + \left\| \mathbf{w}_{t+1} - \mathbf{w}_{t} \right\|$$

▶ Take the gradient of this equation, and make it equal to zero. We obtain

$$\mathbf{w}_{t+1} = \mathbf{w}_t - 2\eta \left( \left\langle \mathbf{w}_{t+1}, \mathbf{x}_t \right\rangle - y_t \right) \mathbf{x}_t$$

▶ Approximating w<sub>t+1</sub> by w<sub>t</sub> on right-hand side gives updating rule of Widrow-Hoff algorithm.



- ▶ Let  $L_A = \sum_{t=1}^{T} (\hat{y}_t y_t)$  be loss of algorithm A and  $L_{\mathbf{u}} = \sum_{t=1}^{T} (\langle \mathbf{u}, \mathbf{x}_t \rangle y_t)$  be loss of  $\mathbf{u} \in \mathbb{R}^n$ .
- ▶ We upper bound loss of Widrow-Hoff algorithm in terms of loss of the best vector.

# Theorem (Upper bound of loss Widrow-Hoff algorithm)

Assume that for all rounds t we have  $\|\mathbf{x}_t\|_2^2 \leq 1$ , then we have

$$L_{WH} \leq \min_{\mathbf{u} \in \mathbb{R}^n} \left[ \frac{L_{\mathbf{u}}}{1 - \eta} + \frac{\|\mathbf{u}\|_2^2}{\eta} \right]$$

where L<sub>WH</sub> denotes the loss of the Widrow-Hoff algorithm.

Before proving this Theorem, we first prove the following Lemma.

# Lemma (Bounds on potential function of Widrow-Hoff algorithm)

Let  $\Phi_t = \|\mathbf{w}_t - \mathbf{u}\|_2^2$  be the potential function, then we have

$$\Phi_{t+1} - \Phi_t \le -\eta I_t^2 + \frac{\eta}{1-\eta} g_t^2$$

where

$$I_t = (\hat{y}_t - y) = \langle \mathbf{w}_t, \mathbf{x}_t \rangle - y_t$$
$$g_t = \langle \mathbf{u}_t, \mathbf{x}_t \rangle - y_t$$

So that  $l_t^2$  denotes the learners loss at round t, and  $g_t^2$  is  $\mathbf{u}$ 's loss at round t.



#### Proof (Bounds on potential function of Widrow-Hoff algorithm).

Let  $\Delta_t = \eta(\langle \mathbf{w}_t, \mathbf{x}_t \rangle - y_t) \mathbf{x}_t = \eta I_t \mathbf{x}_t$  (update to the weight vector). Then, we have

$$\begin{split} \Phi_{t+1} - \Phi_t &= \|\mathbf{w}_{t+1} - \mathbf{u}\|_2^2 - \|\mathbf{w}_t - \mathbf{u}\|_2^2 \\ &= \|\mathbf{w}_t - \mathbf{u} - \Delta_t\|_2^2 - \|\mathbf{w}_t - \mathbf{u}\|_2^2 \\ &= \|\mathbf{w}_t - \mathbf{u}\|_2^2 - 2\left\langle(\mathbf{w}_t - \mathbf{u}), \Delta_t\right\rangle + \|\Delta_t\|_2^2 - \|\mathbf{w}_t - \mathbf{u}\|_2^2 \\ &= -2\eta I_t \left\langle \mathbf{x}_t, (\mathbf{w}_t - \mathbf{u})\right\rangle + \eta^2 I_t^2 \|\mathbf{x}_t\|_2^2 \\ &\leq -2\eta I_t \left(\left\langle \mathbf{x}_t, \mathbf{w}_t \right\rangle - \left\langle \mathbf{u}, \mathbf{x}_t \right\rangle\right) + \eta^2 I_t^2 \\ &= -2\eta I_t \left[\left(\left\langle \mathbf{w}_t, \mathbf{x}_t \right\rangle - y_t\right) - \left(\left\langle \mathbf{u}, \mathbf{x}_t \right\rangle - y_t\right)\right] + \eta^2 I_t^2 \\ &= -2\eta I_t \left(I_t - g_t\right) + \eta^2 I_t^2 + 2\eta I_t g_t + \eta^2 I_t^2 \\ &\leq -2\eta I_t^2 + 2\eta \left(\frac{I_t^2(1 - \eta) + g_t^2/(1 - \eta)}{2}\right) + \eta^2 I_t^2 \end{split} \tag{by AM-GM)} \\ &= -\eta I_t^2 + \left(\frac{\eta}{1 - \eta}\right) g_t^2 \end{split}$$

- 1. Arithmetic mean-geometric mean inequality (AM-GM) states: for any set of non-negative real numbers, arithmetic mean of the set is greater than or equal to geometric mean of the set.
- 2. For reals  $a \ge 0$  and  $b \ge 0$ , AM-GM is  $\sqrt{ab} \le \frac{a+b}{2}$ , and let  $a = l_t^2(1-\eta)$  and  $b = \frac{g_t^2}{1-\eta}$ .



# Proof (Upperbound of loss Widrow-Hoff algorithm).

- 1. Let  $\sum_{t=1}^{T} (\Phi_{t+1} \Phi_t) = \Phi_{T+1} \Phi_1$ .
- 2. By setting  $\mathbf{w}_1 = \mathbf{0}$  and observation that  $\Phi_t \geq \mathbf{0}$ , we obtain that

$$-\|u\|_{2}^{2}=-\Phi_{1}\leq\Phi_{T+1}-\Phi_{1}$$

3. Hence, we have

$$\begin{split} -\left\|u\right\|_{2}^{2} &\leq \sum_{t=1}^{T} \left(\Phi_{t+1} - \Phi_{t}\right) \\ &\leq \sum_{t=1}^{T} \left(-\eta l_{t}^{2} + \left(\frac{\eta}{1-\eta}\right) g_{t}^{2}\right) \\ &= -\eta L_{WH} + \left(\frac{\eta}{1-\eta}\right) L_{\mathbf{u}}. \end{split}$$

4. By simplifying this inequality, we obtain

$$L_{WH} \leq \left(\frac{\eta}{1-\eta}\right) L_{\mathbf{u}} + \frac{\|u\|_2^2}{\eta}.$$

5. Since u was arbitrary, the above inequality must hold for the best vector.



▶ We can look at the average loss per time step

$$\frac{L_{\mathit{WH}}}{T} \leq \min_{\mathbf{u}} \left \lceil \left( \frac{\eta}{1-\eta} \right) \frac{L_{\mathbf{u}}}{T} + \frac{\left \lVert u \right \rVert_2^2}{\eta \, T} \right \rceil.$$

► As *T* gets large, we have

$$\left(\frac{\|u\|_2^2}{\eta T}\right) \to 0.$$

• If step-size  $(\eta)$  is very small,

$$\left(\frac{\eta}{1-\eta}\right)\frac{L_{\mathrm{u}}}{T} 
ightarrow \min_{\mathrm{u}} \left(\frac{L_{\mathrm{u}}}{T}\right), \qquad \mathsf{Show\ it}$$

which is the average loss of the best regressor.

▶ This means that the Widrow-Hoff algorithm is performing almost as well as the best regressor vector as the number of rounds gets large.

**Summary** 



- ▶ We study the bounded regression problem.
- ▶ For unbounded regression, there is the main issue for deriving uniform convergence bounds.
- ▶ We defined pseudo-dimension for real-valued function classes.
- ▶ We study the generalization bounds based on Rademacher complexity.
- ▶ We study several regression algorithms and analysis their bounds.
- ▶ We study an online regression algorithms and analysis its bound.



- Chapter 11 of Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. Second Edition. MIT Press, 2018.
- 2. Chapter 11 of Martin Anthony and Peter L. Bartlett. Learning in Neural Networks: Theoretical Foundations. Cambridge University Press, 1999.





Martin Anthony and Peter L. Bartlett. *Learning in Neural Networks : Theoretical Foundations*. Cambridge University Press, 1999.



Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Machine Learning*. Second Edition. MIT Press, 2018.

Questions?