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Introduction




The problem of regression

v

Let X denote the input space and )V a measurable subset of R and D be a distribution over X x ).
> Learner receives sample S = {(x1,¥m), - .., (Xm, ym)} € (X x V)™ drawn i.i.d. according to D.

v

Let L: X x Y+ R, be the loss function used to measure the magnitude of error.
» The most used loss function is

> L, defined as L(y,y’) = |y’ —y|? forall y,y’ € Y,

> or more generally L, defined as L(y,y’) = |y’ —y|P forallp>1and y,y' €Y,

> The regression problem is defined as

Definition (Regression problem)

Given a hypothesis set H = {h: X — )Y | h € H}, regression problem consists of using labeled
sample S to find a hypothesis h € H with small generalization error R(h) respect to target f:

R(h)= E [L(h(x),y)]

(x.y)~D

The empirical loss or error of h € H is denoted by

> If L(y,y) < M for all y,y’ € ), problem is called bounded regression problem.
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Generalization bounds



Finite hypothesis sets

Theorem (Generalization bounds for finite hypothesis sets)

Let L < M be a bounded loss function and the hypothesis set H is finite. Then, for any § > 0, with
probability at least (1 — ¢), the following inequality holds for all h € H

1
R log|H| + log =
R(h) < R(h) + M\ ——— 0

2m

Proof (Generalization bounds for finite hypothesis sets).

By Hoeffding's inequality, since L € [0, M], for any h € H, the following holds
- me>
P [R(h) —R(h) > e] < exp (fQW) .
Thus, by the union bound, we can write

P[3heH ’ R(h) — R(h) > ¢] <3P [R(h) — R(h) > ¢]

m€2
S |H|eXp (—2w> .

Setting the right-hand side to be equal to §, the theorem will proved. O
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Rademacher complexity bounds

Theorem (Rademacher complexity of u-Lipschitz loss functions)

Let L < M be a bounded loss function such that for any fixed y' € Y, L(y,y') is ju-Lipschitz for
some > 0. Then for any sample S = {(x1, Ym), - - ., (Xm, ym)}, the upper bound of the Rademacher
complexity of the family G = {(x,y) — L(h(x),y) | h € H} is

R(G) < uR(H).

Proof (Rademacher complexity of yu-Lipschitz loss functions).

Since for any fixed y;, L(y, y’) is u-Lipschitz for some 1 > 0, by Talagrand's Lemma, we can write

Ifi;j [Z oiLl(h(x:), yi)

i=1

Z O';uh(X,‘):|

WR(H).

3\'-‘

R(G) =

IA
| =

E

3
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Rademacher complexity bounds

Theorem (Rademacher complexity of L, loss functions)

Let p>1and G = {x+ |h(x) — f(x)|° | h € H} and |h(x) — f(x)| < M for all x € X and he H .
Then for any sample S = {(x1, Ym), - .., (Xm, ym)}, the following inequality holds

R(G) < PMPTIR(H).

Proof (Rademacher complexity of L, loss functions).

Let ¢p : x +— |x|P, then G = {¢poh | h € H'} where H' = {x > h(x)

— f(x) | h€ H'}. Since ¢, is
pMP~1_Lipschitz over [~ M, M], we can apply Talagrand’s Lemma,

R(G) < PMPTIR(H).
Now, R(H’) can be expressed as

IE[::E,Z ot o)
% [Za,f(x ] )| = R(H).

R(H') =

3~

3~

E [sup Z oih

heH

Since B, [Y.7, 0if (xi)] = X7 Eo [07] F(xi) = 0
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Rademacher complexity regression bounds

Theorem (Rademacher complexity regression bounds)

Let 0 < L < M be a bounded loss function such that for any fixed y' € Y, L(y,y") is u-Lipschitz for
some 1 > 0. Then,

1 log %
B (LGOI < 205 L)) + 2R )+ MY

1 . log ;
LB TR S S L) ) + 20R(H) +3MY 5

i=1

Proof (Rademacher complexity of y-Lipschitz loss functions).

Since for any fixed y;, L(y,y’) is u-Lipschitz for some 1 > 0, by Talagrand's Lemma, we can write

R(G) = %Igj [Z O’iL(h(Xi),_)/i):|
< %]g [Z a,-uh(x;)] = pR(H).

Combining this inequality with general Rademacher complexity learning bound completes proof. [
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Pseudo-dimension bounds



Shattering

» VC dimension is a measure of complexity of a hypothesis set.
> We define shattering for families of real-valued functions.

> Let G be a family of loss functions associated to some hypothesis set H, where

G ={z=(xy) = L(h(x),y) | h € H}

Definition (Shattering)
Let G be a family of functions from a set Z to R. A set {z1,...,zm} € (X x ) is said to be
shattered by G if there exists ti,..., tn € R such that

sgn (g(z1) — t1)
sgn (g(z) — t2)

gegyl=2"
sgn (g(zm) — tm)
When they exist, the threshold values ti,..., t, are said to witness the shattering.
In other words, S is shattered by G, if there are real numbers ti, ..., t, such that for b € {0,1}",

there is a function g» € G with sgn (gs(x;) — ti) = bj forall 1 < i < m.

P T

TR

xRS
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Shattering

> Thus, {z1,...,zm} is shattered if for some witnesses t1, ..., tm, the family of functions G is rich
enough to contain a function going
1. above a subset A of the set of points J = {(z;,t;) | 1 <i < m} and
2. below the others 7 — A, for any choice of the subset A.

Z1 z2

> For any g € G, let B be the indicator function of the region below or on the graph of g, that is

Bg(x,y) = sgn(g(x) —y).

> Let Bg = {B; | g € G}.
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Pseudo-dimension

> The notion of shattering naturally leads to definition of pseudo-dimension.

Definition (Pseudo-dimension)

Let G be a family of functions from Z to R. Then, the pseudo-dimension of G, denoted by Pdim(G),
is the size of the largest set shattered by G. If no such maximum exists, then Pdim(G) = cc.

> Pdim(G) coincides with VC of the corresponding thresholded functions mapping X’ to {0, 1}.

Pdim(G) = VC ({(x,t) = T[(g(x) —t) > 0] | g € G})

— L(h(z),y)
t

= Lo >t

SRR
N

0.0

» Thus Pdim(G) = d, if there are real numbers t1, ..., ts and 27 functions g, that achieves all
possible below/above combinations w.r.t t;.
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Properties of Pseudo-dimension

Theorem (Composition with non-decreasing function)

Suppose G is a class of real-valued functions and o : R — R is a non-decreasing function. Let o(G)
denote the class {cog | g € G}. Then

Pdim(c(G)) < Pdim(G)

Proof (Pseudo-dimension of hyperplanes).
1. For d < Pdim(c(G)), suppose

{oogb ‘ be {0,1}d} Ca(9)

shatters a set {x1,...,xq} C X witnessed by (ti,..., tq).
2. By suitably relabeling g, for all {0,1}¢ and 1 </ < d, we have sgn (o(gs(x;)) — t;) = bx.
3. Forall1 <i<d, take

yi = min{gs(x) | o(as(x)) > ti.b € 0,1}

4. Since o is non-decreasing, it is straightforward to verify that sgn (gs(x;) — t;) = b; for all {0,1}¢
and 1 <i<d

O
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Pseudo-dimension of vector spaces

> A class G of real-valued functions is a vector space if for all g1,g € G and any numbers
A i€ R, we have A\g1 + ug» € G.

Theorem (Pseudo-dimension of vector spaces)

If G is a vector space of real-valued functions, then Pdim(G) = dim(G).

Proof (Pseudo-dimension of vector spaces).
1. Let Bg be the class of below th graph indicator functions, we have Pdim(G) = VC(Bg).
2. But Bg = {(x,y) = sgn(g(x) —y) | & € G}
3. Hence, the functions Bg are of the form sgn (g1 + g2), where

> gy = g is a function from vector space
> g is the fixed function ga(x,y) = —y.

4. Then, Theorem (Pseudo-dimension of vector spaces) shows that Pdim(G) = dim(G).

» Functions that map into some bounded range are not vector space.

Corollary
If G is a subset of a vector space G’ of real valued functions then Pdim(G) < dim(G")
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Pseudo-dimension of hyperplanes

Theorem (Pseudo-dimension of hyperplanes)

Let G = {x— (w,x) + b|w € R" bec R} be the class of hyperplanes in R", then Pdim(G) = n+ 1.

Pseudo-dimension of hyperplanes.

1. It is easy to check that G is a vector space.

2. Let gi be the ith coordinate projection fi(x) = x; for all 1 < < n and 1 be identity-1 function.
Then B = {gi1,...,8n, 1} is basis of G.

3. Hence, Pdim(G) =n+1
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Pseudo-dimension of polynomial transformation

> A polynomial transformation of R" is function g(x) = wo + wig1(x) + wa¢2(x) + . .. + wipi(x) for
x € R", where k is an integer and for each 1 < i < k, function ¢;(x) is defined as

n

¢i(x) ="

j=1

for some nonnegative integers rj and r; = ri1 + ri2 + ... + ri» and the degree of g as r = max; r;.

Theorem (Pseudo-dimension of polynomial transformation)

")

If G is a class of all polynomial transformations on R" of degree at most r, then Pdim(G) = (

Proof (Pseudo-dimension of polynomial transformation).

Homework: Prove this Theorem. O

Theorem (Pseudo-dimension of all polynomial transformations)

Let G be class of all polynomial transformations on {0,1}" of degree at most r, then

Pdim(G) =377, (7)-

Proof (Pseudo-dimension of all polynomial transformations).

Homework: Prove this Theorem. O
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Generalization bound for bounded regression

Theorem (Generalization bound for bounded regression)

Let H be a family of real-valued functions and G = {z = (x,y) — L(h(x),y) | h € H} be a family of
loss functions associated to a hypothesis set H. Assume that Pdim(G) = d and loss function L is
non-negative and bounded by M. Then, for any 6 > 0, with probability at least (1 — &) over the
choice of an i.i.d. sample S of size m drawn from D™, the following inequality holds for all h € H

. 2d Iog? Iog%
< . a
R(h) < R(h)+ M = +M >m

Proof (Generalization bound for bounded regression).

Homework: Prove this Theorem. O
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Regression algorithms




Linear regression

> Let »: X — R and H={h:x— (w,P(x))+ b|weR" bec R}
» Given sample S, the problem is to find a h € H such that

h:ml lz (w, ®(x;) +b*}’i)2
b i=1

3

Define data matrix

v

O(xi) olx2) oo P(xm)
1 1 1

X =

Let w = (wi,..., wp, b)T be the weight vector and y = (y1, ... ,y,,,)T be the target vector.
By setting VR(h) = 0, we obtain

v

v

w = (XX")"Xy

v

When XX is invertible, there is a unique solution; otherwise the problem has several solutions.

15/35



Linear regression

Theorem

Let K: X X X — ]R be a PDS kernel, ® : X — H a feature mapping associated to K, and
H={x+ (w, ®(x { lwll; < A}. Assume that there exists r > 0 suh that K(x,x) < r* and M > 0
such that |h(x) — y| < M for all (x,y € X x Y). Then for any § > 0, with probability at least

(1 — ), each of the following inequalities holds for all h € H.

272 lo
R(h)<R(h)+4M\/ A VEI g

lo
R(h)<R(h)—|—4MA\/Tr[K 2gm

Proof.

By the bound on the empirical Rademacher complexity of kernel-based hypotheses, the following
holds for any sample S of size m:

ﬁ(H)SAiVTr[K]< ﬁ

m m

r2/\2

This implies that Rm(h) <

Rademacher complexity regression bounds, the Theorem will be proved. ([

. Combining these inequalities with the bounds of Theorem
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Kernel ridge regression

xRS

> The following bound suggests minimizing a trade-off between empirical squared loss and norm of

1
. 2 )\2 s Iogg

R(h) < R(h) + 4M M
(h) < Reh) + amy| =20 |

> Kernel ridge regression is defined by minimization of an objective function (theoretical analysis)

the weight vector.

min F(w) = min [A Wl + > ((w, ®(x:)) y,-)z]

i=1

= min {)\ | wl]* + ‘

o'w— sz}
> By setting VF(w) = 0, we obtain
w= (00" +\I) by
> An alternative formulation of kernel ridge regression is
mvjn Hd)Tw — yH2 subject to ||w]||* < A?

min > &7 subject to (||w|> < A’) A (Vi€ {1,...,m}, & = y; — (w, D(x)))

i=1
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Support vector regression (SVR)

» Support vector regression (SVR) algorithm is inspired by SVM algorithm.
» The main idea of SVR consists of fitting a tube of width ¢ > 0 to the data.

Y

> This defines two sets of points:
1. points falling inside the tube, which are e-close to the function predicted and thus not penalized,
2. points falling outside the tube, which are penalized based on their distance to the predicted function.

> This is similar to the penalization used by SVMs in classification.

» Using a hypothesis set of linear functions H = {x — (w, ®(x)) + b | w € R", b € R}, where ® is
the feature mapping corresponding some PDS kernel K.

» The optimization problem for SVR is

|1 2 -
min | 5\ [[w* + CY lyi — ((w, o(xi)) + b)],

i=1

where |.|c denotes c-insensitive loss

Vy,y' €Y, |y —yle=max (0,]y’ —y| —¢)
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Support vector regression (SVR)

> The c-insensitive loss is defined as
Vy,y' €Y, |y —yle=max(0,|y’ —y| —¢)

> The use ofe-insensitive loss leads to sparse solutions with a relatively small number of support
vectors.
» Using slack variables & > 0 and & > 0 for 1 < i < m, the problem becomes
|1 .
min | SA[wl* +C Y (& + &)
w,b,g,& | 2 py
subject to ((w, ®(xi)) + b) —yi < e+ &
yi = ((w, ®(x;)) + b) < e+ &
>0, &>0, Vii1<i<m

> This is a convex quadratic program (QP) with affine constraints.

» By introducing Lagrangian and applying KKT conditions, the problem will be solved.
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Support vector regression (SVR)

> Let D be the distribution according to which sample points are drawn.

> Let D the empirical distribution defined by a training sample of size m.

Theorem (Generalization bounds of SVR)

Let K: X X X — R be a PDS kernel, ® : X — H a feature mapping associated to K, and

H = {x (w,®(x)) | w|ly; < A}. Assume that there exists r > 0 suh that K(x,x) < r* and M > 0
such that |h(x) — y| < M for all (x,y € X x Y). Then for any 6 > 0, with probability at least

(1 — 0), each of the following inequalities holds for all h € H.

272 Iog5
E [[h(x)—yld< E —yl]+2 +M
N O B N O R -

I
B I -y < B () - i+ 2V gy o8 5

N Yle 2
x.y)~ (x,y)~D m m

Proof (Generalization bounds of SVR).

Since for any y’ € ), the function y — |y — y'|c is 1-Lipschitz, the result follows Theorem
Rademacher complexity regression bounds and the bound on the empirical Rademacher complexity
of H. O
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Support vector regression (SVR)

> Alternative convex loss functions can be used to define regression algorithms.

8
6 Huber
= e (@) o+ (2] - Ay
a 4 __ einsensitive
o z — max(0, |z| —€)
Quaderatic e-insensitive
2+ max(0, [z| — €)?
2
. \ /
-4 -2 0 2 4
x

» SVR admits several advantages
1. SVR algorithm is based on solid theoretical guarantees,
2. The solution returned SVR is sparse
3. SVR allows a natural use of PDS kernels
4. SVR also admits favorable stability properties.
> SVR also admits several disadvantages
1. SVR requires the selection of two parameters, C and ¢, which are determined by cross-validation.
2. may be computationally expensive when dealing with large training sets.
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Least absolute shrinkage and selection operator (Lasso)

v

The optimization problem for Lasso is defined as

. _ . . . 2
min F{w) = min [A lwll, +C D ((w,xi) + b —y)

i=1

» This is a convex optimization problem, because

1. [|wl|; is convex as with all norms
2. the empirical error term is convex

» Hence, the optimization problem can be written as

. 2 H
e [Z ((w,x;) + b — y;) ] subject to [lwl; </

i=1

v

The L; norm constraint is that it leads to a sparse solution w.

‘e

LI regularization L2 regularization
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Least absolute shrinkage and selection operator (Lasso)

Theorem (Bounds of R(H) of Lasso)

Let X CR" and let S = {(x1,y1),-- ., (Xm, Ym)} € (X x V)™ be sample of size m. Assume that for
all 1 <i<m,|xi|l, < re for some roc >0, and let H = {x — (w,x) | |lw||;, < A1}. Then, the
empirical Rademacher complexity of H can be bounded as follows

R(H) < [2r2 A2 log(2n)
- m

Definition (Dual norms)

Let ||.|| be a norm on R". Then, the dual norm ||.||, associated to ||.|| is the norm defined by

Yy eR", yl. = sup, [y, %)
. . 1 1
For any p,q > 1 that are conjugate that is such that — + — =1, the L, and L, norms are dual
P q

norms of each other.
In particular, the dual norm of L, is the L» norm, and the dual norm of the L; norm is the Lo, norm.
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Least absolute shrinkage and selection operator (Lasso)

Proof (Bounds of R(H) of Lasso).
For any 1 < i < m, we denote by xj, the jth component of x;.

m

o 1 A1 -
R(H)=—E| su E ogi(w,xj)| = —E
=0k [nwnlg/\l Pt < >] moe [ i=

For any z € A, we have |z||, < v/mrZ = reo/m.

2log(2n)
—

R(H) < Mroov/m

2log(2n) — Ar
m o0

Thus by Massart’s Lemma, since A contains at most 2n elements, the following inequality holds:

iXi } (by definition of the dual norm)
Mg — max Zax (by definition of ||.||.)
m o |je{1,...,n} 7 Y oo
= &IE‘, — max max SZO"X" (by definition of ||.||_.)
m o jE{l,...,n}sE{—1,+1} Py 7y Y oo
A1
= —E|su oizi| .
m o zggz :|
where A denotes the set of n vectors {s(xyj,...,xmj) |j €{1,...,n},s € {-=1,+1}}.
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Least absolute shrinkage and selection operator (Lasso)

» This bounds depends on dimension n is only logarithmic, which suggests that using very
high-dimensional feature spaces does not significantly affect generalization.

» By combining of Theorem Bounds of R(H) of Lasso and Rademacher generalization bound, we
obtain

Theorem (Rademacher complexity of linear hypotheses with bounded L; norm)
Let X CR" and H = {x1 — (w,x) | [[w]|, <Ai}. Let also S = {(x1,y1), .., (Xm, ym)} € (X x V)"
be sample of size m. Assume that there exists ro > 0 such that for all x € X, ||x||_ < roo and

M > 0 such that |h(x) — y| < M for all (x,y) € X x Y. Then, for any 6 > 0, with probability at
least (1 — 0), each of the following inequality holds for h € H

. log =
R(h) < R(h) + 2rohs My | 21820 o g

m 2m

» Ridge regression and Lasso have same form as the right-hand side of this generalization bound.
> Lasso has several advantages:

1. It benefits from strong theoretical guarantees and returns a sparse solution.
2. The sparsity of the solution is also computationally attractive (inner product).
3. The algorithm’s sparsity can also be used for feature selection.

> The main drawbacks are: usability of kernel and closed-form solution.
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Online regression algorithms

> The regression algorithms admit natural online versions.

» These algorithms are useful when we have very large data sets, where a batch solution can be
computationally expensive.

Online linear regression
1: Initialize wy.
2. fort < 1,2,..., T do.

3: Receive x; € R".

4 Predict §: = (we, X¢).

5 Observe true label y; = h*(x).
6: Compute the loss L(J:, yt).

7 Update wiy1.

8: end for
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Widrow-Hoff algorithm

> Widrow-Hoff algorithm uses stochastic gradient descent technique to linear regression objective
function.

> At each round, the weight vector is augmented with a quantity that depends on the prediction
error ({(We, X¢) — e ).

WidrowHoff regression

: function WIDROWHOFF(wyo)
Initialize wy < wo. > typically wo = 0.
fort < 1,2,..., T do.

Receive x; € R".

Predict §: = (We, X¢).

Observe true label y; = h*(x¢).

Compute the loss L(Jt, yt).

Update wei1 < we — 21 ((We, X¢) — yi) Xe. > learning rate i > 0.
end for

© N QT A~ by R

10: return wr;
11: end function

27/35



TR

AT
s

Widrow-Hoff algorithm
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> There are two motivations for the update rule in Widrow-Hoff.
> The first motivation is that
1. The loss function is defined as
L(w,x,y) = ((w,x) —y)
2. To minimize the loss function, move in the direction of the negative gradient
Vwl(w,x,y) =2((w,x) — y)x
3. This gives the following update rule

Wei1 < We — NVwL(We, X, yt)

v

The second motivation is that we have two goals:

1. We want loss on (x¢, y¢) to be small which means that we want to minimize ((w,x) — y)2.
2. We don't want to be too far from w;. That is,we don't want ||w; — w;1]| to be too big.

» Combining these two goals, we compute w1 by solving the following optimization problem

Weir = argmin ((Wein,Xe) = ye)® + [[Wein — we|

v

Take the gradient of this equation, and make it equal to zero. We obtain
Wil = W — 27 (<Wt+17 Xt> - }’t) Xt

> Approximating w1 by w; on right-hand side gives updating rule of Widrow-Hoff algorithm.
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Widrow-Hoff algorithm

> Let La= Z;l(f/t — ¥t) be loss of algorithm A and L, = ZZ:1(<UaXt> — ¥t) be loss of u € R".
> We upper bound loss of Widrow-Hoff algorithm in terms of loss of the best vector.

Theorem (Upper bound of loss Widrow-Hoff algorithm)

Assume that for all rounds t we have ||xt\|§ < 1, then we have

Lo Jull;
Lwy < min | —— + +—2
uer" |1 —n Ui

where Lywy denotes the loss of the Widrow-Hoff algorithm.

> Before proving this Theorem, we first prove the following Lemma.

Lemma (Bounds on potential function of Widrow-Hoff algorithm)
Let d; = |\w; — u||3 be the potential function, then we have

n

P —P: < —77/:2 + 1_ ngt2

where

b= (9t — y) = (Wi, Xe) — ye
g = (ut,Xt) — ¥

So that I? denotes the learners loss at round t, and g? is u's loss at round t.

29/35



Widrow-Hoff algorithm

Proof (Bounds on potential function of Widrow-Hoff algorithm).

Let A: = n({we, Xe) — ye) Xe = nlx: (update to the weight vector). Then, we have

Ori1 — O¢ = [lwess — ufl3 — [lwe — ul[3

= [lwe — u— A3 — [[we — ulf3

= [lwe — ull3 — 2 ((we —u), Ae) + |A¢]l3 — [lwe — ul]3
=20l (xe, (we — u)) + 07 I |[xc]13

< =20k ((xe, W) — (U, x0)) + 7° 12 (since [|xe|[3 < 1)
= =20k [((We, xe) — ye) = ((u,xe) = ye)] +7°
= —20lk(le — ge) + 0’1 = =20 + 2nhge +0’l;
201 _ 2 /01 _
< _277lt2 T2y (lt(l 77) +gt/(1 7l)> +772/:2 (by AI\/I—GM)

2
= _77/t2 + (%) gr2

1. Arithmetic mean-geometric mean inequality (AM-GM) states: for any set of non-negative real

numbers, arithmetic mean of the set is greater than or equal to geometric mean of the set.
2

,and let a=/2(1—7) and b = lg:n

a+b
2

2. Forrealsa>0and b >0, AM-GM is vab <
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Widrow-Hoff algorithm

Proof (Upperbound of loss Widrow-Hoff algorithm).

1. Let Zz—:l (¢t+1 - ¢t) = ¢T+1 — Oy,

2. By setting wi = 0 and observation that ®; > 0, we obtain that

—JJull; = =1 < dryy — Oy

3. Hence, we have

)
—Jlull} < Z(dml —®,)

Z ( nl + ( ! )gf)
= —nlwn + (7) Ly.
1—-n
4. By simplifying this inequality, we obtain
2
o= (2 s L2
1-1n n

5. Since u was arbitrary, the above inequality must hold for the best vector.
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Widrow-Hoff algorithm

> We can look at the average loss per time step

Lwh . n Lo | lull;
< )2
T —”L'“[(l—n) TtoT
lull3

(777_ — 0.

which is the average loss of the best regressor.

> As T gets large, we have

> If step-size (n) is very small,

» This means that the Widrow-Hoff algorithm is performing almost as well as the best regressor

vector as the number of rounds gets large.
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Summary




Summary

v

We study the bounded regression problem.

» For unbounded regression, there is the main issue for deriving uniform convergence bounds.

v

We defined pseudo-dimension for real-valued function classes.

> We study the generalization bounds based on Rademacher complexity.

v

We study several regression algorithms and analysis their bounds.

v

We study an online regression algorithms and analysis its bound.
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Readings

1. Chapter 11 of Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
Machine Learning. Second Edition. MIT Press, 2018.

2. Chapter 11 of Martin Anthony and Peter L. Bartlett. Learning in Neural Networks : Theoretical
Foundations. Cambridge University Press, 1999,
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