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Introduction



The problem of regression

I Let X denote the input space and Y a measurable subset of R and D be a distribution over X ×Y.

I Learner receives sample S = {(x1, ym), . . . , (xm, ym)} ∈ (X × Y)m drawn i.i.d. according to D.

I Let L : X × Y 7→ R+ be the loss function used to measure the magnitude of error.

I The most used loss function is
I L2 defined as L(y , y ′) = |y ′ − y |2 for all y , y ′ ∈ Y,
I or more generally Lp defined as L(y , y ′) = |y ′ − y |p for all p ≥ 1 and y , y ′ ∈ Y,

I The regression problem is defined as

Definition (Regression problem)

Given a hypothesis set H = {h : X 7→ Y | h ∈ H}, regression problem consists of using labeled

sample S to find a hypothesis h ∈ H with small generalization error R(h) respect to target f :

R(h) = E
(x,y)∼D

[L(h(x), y)]

The empirical loss or error of h ∈ H is denoted by

R̂(h) =
1

m

m∑
i=1

L(h(xi ), yi )

I If L(y , y) ≤ M for all y , y ′ ∈ Y, problem is called bounded regression problem.
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Generalization bounds



Finite hypothesis sets

Theorem (Generalization bounds for finite hypothesis sets)

Let L ≤ M be a bounded loss function and the hypothesis set H is finite. Then, for any δ > 0, with

probability at least (1− δ), the following inequality holds for all h ∈ H

R(h) ≤ R̂(h) + M

√√√√ log|H|+ log
1

δ
2m

.

Proof (Generalization bounds for finite hypothesis sets).

By Hoeffding’s inequality, since L ∈ [0,M], for any h ∈ H, the following holds

P
[
R(h)− R̂(h) > ε

]
≤ exp

(
−2

mε2

M2

)
.

Thus, by the union bound, we can write

P
[
∃h ∈ H

∣∣∣ R(h)− R̂(h) > ε
]
≤
∑
h∈H

P
[
R(h)− R̂(h) > ε

]
≤ |H| exp

(
−2

mε2

M2

)
.

Setting the right-hand side to be equal to δ, the theorem will proved.
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Rademacher complexity bounds

Theorem (Rademacher complexity of µ-Lipschitz loss functions)

Let L ≤ M be a bounded loss function such that for any fixed y ′ ∈ Y, L(y , y ′) is µ-Lipschitz for

some µ > 0. Then for any sample S = {(x1, ym), . . . , (xm, ym)}, the upper bound of the Rademacher

complexity of the family G = {(x , y) 7→ L(h(x), y) | h ∈ H} is

R̂(G) ≤ µR̂(H).

Proof (Rademacher complexity of µ-Lipschitz loss functions).

Since for any fixed yi , L(y , y ′) is µ-Lipschitz for some µ > 0, by Talagrand’s Lemma, we can write

R̂(G) =
1

m
E
σ

[
m∑
i=1

σiL(h(xi ), yi )

]

≤ 1

m
E
σ

[
m∑
i=1

σiµh(xi )

]
= µR̂(H).
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Rademacher complexity bounds

Theorem (Rademacher complexity of Lp loss functions)

Let p ≥ 1 and G = {x 7→ |h(x)− f (x)|p | h ∈ H} and |h(x)− f (x)| ≤ M for all x ∈ X and h ∈ H .

Then for any sample S = {(x1, ym), . . . , (xm, ym)}, the following inequality holds

R̂(G) ≤ pMp−1R̂(H).

Proof (Rademacher complexity of Lp loss functions).

Let φp : x 7→ |x |p, then G = {φp ◦ h | h ∈ H ′} where H ′ = {x 7→ h(x)− f (x) | h ∈ H ′}. Since φp is

pMp−1-Lipschitz over [−M,M], we can apply Talagrand’s Lemma,

R̂(G) ≤ pMp−1R̂(H ′).

Now, R̂(H ′) can be expressed as

R̂(H ′) =
1

m
E
σ

[
sup
h∈H

m∑
i=1

(σih(xi ) + σi f (xi ))

]

=
1

m
E
σ

[
sup
h∈H

m∑
i=1

σih(xi )

]
+

1

m
E
σ

[
m∑
i=1

σi f (xi )

]
= R̂(H).

Since Eσ
[∑m

i=1 σi f (xi )
]

=
∑m

i=1 Eσ [σi ] f (xi ) = 0.
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Rademacher complexity regression bounds

Theorem (Rademacher complexity regression bounds)

Let 0 ≤ L ≤ M be a bounded loss function such that for any fixed y ′ ∈ Y, L(y , y ′) is µ-Lipschitz for

some µ > 0. Then,

E
(x,y)∼D

[L(h(x), y)] ≤ 1

m

m∑
i=1

L(h(xi ), yi ) + 2µRm(H) + M

√√√√ log
1

δ
2m

E
(x,y)∼D

[L(h(x), y)] ≤ 1

m

m∑
i=1

L(h(xi ), yi ) + 2µR̂(H) + 3M

√√√√ log
1

δ
2m

.

Proof (Rademacher complexity of µ-Lipschitz loss functions).

Since for any fixed yi , L(y , y ′) is µ-Lipschitz for some µ > 0, by Talagrand’s Lemma, we can write

R̂(G) =
1

m
E
σ

[
m∑
i=1

σiL(h(xi ), yi )

]

≤ 1

m
E
σ

[
m∑
i=1

σiµh(xi )

]
= µR̂(H).

Combining this inequality with general Rademacher complexity learning bound completes proof.
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Pseudo-dimension bounds



Shattering

I VC dimension is a measure of complexity of a hypothesis set.

I We define shattering for families of real-valued functions.

I Let G be a family of loss functions associated to some hypothesis set H, where

G = {z = (x , y) 7→ L(h(x), y) | h ∈ H}

Definition (Shattering)

Let G be a family of functions from a set Z to R. A set {z1, . . . , zm} ∈ (X × Y) is said to be

shattered by G if there exists t1, . . . , tm ∈ R such that∣∣∣∣∣∣∣∣∣∣




sgn (g(z1)− t1)

sgn (g(z2)− t2)
...

sgn (g(zm)− tm)


∣∣∣∣∣∣∣∣∣∣
g ∈ G



∣∣∣∣∣∣∣∣∣∣
= 2m

When they exist, the threshold values t1, . . . , tm are said to witness the shattering.

In other words, S is shattered by G, if there are real numbers t1, . . . , tm such that for b ∈ {0, 1}m,

there is a function gb ∈ G with sgn (gb(xi )− ti ) = bi for all 1 ≤ i ≤ m.
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Shattering

I Thus, {z1, . . . , zm} is shattered if for some witnesses t1, . . . , tm, the family of functions G is rich
enough to contain a function going

1. above a subset A of the set of points J = {(zi , ti ) | 1 ≤ i ≤ m} and

2. below the others J − A, for any choice of the subset A.

11.2 Generalization bounds 271

t2

t1

z1 z2

Figure 11.1
Illustration of the shattering of a set of two points {z1, z2} with witnesses t1 and t2.

11.2.3 Pseudo-dimension bounds
As previously discussed in the case of classification, it is sometimes computation-

ally hard to estimate the empirical Rademacher complexity of a hypothesis set. In

chapter 3, we introduce other measures of the complexity of a hypothesis set such as

the VC-dimension, which are purely combinatorial and typically easier to compute

or upper bound. However, the notion of shattering or that of VC-dimension intro-

duced for binary classification are not readily applicable to real-valued hypothesis

classes.

We first introduce a new notion of shattering for families of real-valued functions.

As in previous chapters, we will use the notation G for a family of functions, when-

ever we intend to later interpret it (at least in some cases) as the family of loss func-

tions associated to some hypothesis set H: G = {z = (x, y) 7! L(h(x), y) : h 2 H}.

Definition 11.4 (Shattering) Let G be a family of functions from a set Z to R. A set

{z1, . . . , zm} ✓ X is said to be shattered by G if there exist t1, . . . , tm 2 R such that,
��������

8
>><
>>:

2
664

sgn
�
g(z1)� t1

�

...

sgn
�
g(zm)� tm

�

3
775 : g 2 G

9
>>=
>>;

��������
= 2m .

When they exist, the threshold values t1, . . . , tm are said to witness the shattering.

Thus, {z1, . . . , zm} is shattered if for some witnesses t1, . . . , tm, the family of func-

tions G is rich enough to contain a function going above a subset A of the set of

points I = {(zi, ti) : i 2 [m]} and below the others (I � A), for any choice of the

subset A. Figure 11.1 illustrates this shattering in a simple case. The notion of

shattering naturally leads to the following definition.

I For any g ∈ G, let Bg be the indicator function of the region below or on the graph of g , that is

Bg (x, y) = sgn (g(x)− y) .

I Let BG = {Bg | g ∈ G}.
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Pseudo-dimension

I The notion of shattering naturally leads to definition of pseudo-dimension.

Definition (Pseudo-dimension)

Let G be a family of functions from Z to R. Then, the pseudo-dimension of G, denoted by Pdim(G),

is the size of the largest set shattered by G. If no such maximum exists, then Pdim(G) =∞.

I Pdim(G) coincides with VC of the corresponding thresholded functions mapping X to {0, 1}.

Pdim(G) = VC ({(x , t) 7→ I [(g(x)− t) > 0] | g ∈ G})
272 Chapter 11 Regression

Lo
ss
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0.0

0.5

1.0

1.5

z

t
L(h(x), y)

1L(h(x),y)>t

Figure 11.2
A function g : z = (x, y) 7! L(h(x), y) (in blue) defined as the loss of some fixed hypothesis h 2 H,
and its thresholded version (x, y) 7! 1L(h(x),y)>t (in red) with respect to the threshold t (in
yellow).

Definition 11.5 (Pseudo-dimension) Let G be a family of functions mapping from X to

R. Then, the pseudo-dimension of G, denoted by Pdim(G), is the size of the largest

set shattered by G.

By definition of the shattering just introduced, the notion of pseudo-dimension of

a family of real-valued functions G coincides with that of the VC-dimension of the

corresponding thresholded functions mapping X to {0, 1}:

Pdim(G) = VCdim
⇣�

(x, t) 7! 1(g(x)�t)>0 : g 2 G
 ⌘

. (11.3)

Figure 11.2 illustrates this interpretation. In view of this interpretation, the follow-

ing two results follow directly the properties of the VC-dimension.

Theorem 11.6 The pseudo-dimension of hyperplanes in RN is given by

Pdim({x 7! w · x + b : w 2 RN , b 2 R}) = N + 1 .

Theorem 11.7 The pseudo-dimension of a vector space of real-valued functions H is

equal to the dimension of the vector space:

Pdim(H) = dim(H) .

The following theorem gives a generalization bound for bounded regression in

terms of the pseudo-dimension of a family of loss function G = {z = (x, y) 7!
L(h(x), y) : h 2 H} associated to a hypothesis set H. The key technique to derive

these bounds consists of reducing the problem to that of classification by making

use of the following general identity for the expectation of a random variable X:

E[X] = �
Z 0

�1
P[X < t]dt +

Z +1

0

P[X > t]dt , (11.4)

I Thus Pdim(G) = d , if there are real numbers t1, . . . , td and 2d functions gb that achieves all

possible below/above combinations w.r.t ti .
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Properties of Pseudo-dimension

Theorem (Composition with non-decreasing function)

Suppose G is a class of real-valued functions and σ : R 7→ R is a non-decreasing function. Let σ(G)

denote the class {σ ◦ g | g ∈ G}. Then

Pdim(σ(G)) ≤ Pdim(G)

.

Proof (Pseudo-dimension of hyperplanes).

1. For d ≤ Pdim(σ(G)), suppose {
σ ◦ gb

∣∣∣ b ∈ {0, 1}d} ⊆ σ(G)

shatters a set {x1, . . . , xd} ⊆ X witnessed by (t1, . . . , td).

2. By suitably relabeling gb, for all {0, 1}d and 1 ≤ i ≤ d , we have sgn (σ(gb(xi ))− ti ) = bi .

3. For all 1 ≤ i ≤ d , take

yi = min
{
gb(xi )

∣∣∣ σ(gb(xi )) ≥ ti , b ∈ {0, 1}d
}

4. Since σ is non-decreasing, it is straightforward to verify that sgn (gb(xi )− ti ) = bi for all {0, 1}d

and 1 ≤ i ≤ d

10/35



Pseudo-dimension of vector spaces

I A class G of real-valued functions is a vector space if for all g1, g2 ∈ G and any numbers

λ, µ ∈ R, we have λg1 + µg2 ∈ G.

Theorem (Pseudo-dimension of vector spaces)

If G is a vector space of real-valued functions, then Pdim(G) = dim(G).

Proof (Pseudo-dimension of vector spaces).

1. Let BG be the class of below th graph indicator functions, we have Pdim(G) = VC(BG).

2. But BG = {(x, y) 7→ sgn (g(x)− y) | g ∈ G}.
3. Hence, the functions BG are of the form sgn (g1 + g2), where

I g1 = g is a function from vector space
I g2 is the fixed function g2(x, y) = −y .

4. Then, Theorem (Pseudo-dimension of vector spaces) shows that Pdim(G) = dim(G).

I Functions that map into some bounded range are not vector space.

Corollary

If G is a subset of a vector space G′ of real valued functions then Pdim(G) ≤ dim(G′)
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Pseudo-dimension of hyperplanes

Theorem (Pseudo-dimension of hyperplanes)

Let G = {x 7→ 〈w, x〉+ b | w ∈ Rn, b ∈ R} be the class of hyperplanes in Rn, then Pdim(G) = n + 1.

Pseudo-dimension of hyperplanes.

1. It is easy to check that G is a vector space.

2. Let gi be the ith coordinate projection fi (x) = xi for all 1 ≤ i ≤ n and 1 be identity-1 function.

Then B = {g1, . . . , gn, 1} is basis of G.

3. Hence, Pdim(G) = n + 1
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Pseudo-dimension of polynomial transformation

I A polynomial transformation of Rn is function g(x) = w0 + w1φ1(x) + w2φ2(x) + . . .+ wkφk(x) for

x ∈ Rn, where k is an integer and for each 1 ≤ i ≤ k, function φi (x) is defined as

φi (x) =
n∏

j=1

x
rij
j

for some nonnegative integers rij and ri = ri1 + ri2 + . . .+ rin and the degree of g as r = maxi ri .

Theorem (Pseudo-dimension of polynomial transformation)

If G is a class of all polynomial transformations on Rn of degree at most r , then Pdim(G) =
(
n+r
r

)
.

Proof (Pseudo-dimension of polynomial transformation).

Homework: Prove this Theorem.

Theorem (Pseudo-dimension of all polynomial transformations)

Let G be class of all polynomial transformations on {0, 1}n of degree at most r , then

Pdim(G) =
∑r

i=0

(
n
i

)
.

Proof (Pseudo-dimension of all polynomial transformations).

Homework: Prove this Theorem.
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Generalization bound for bounded regression

Theorem (Generalization bound for bounded regression)

Let H be a family of real-valued functions and G = {z = (x, y) 7→ L(h(x), y) | h ∈ H} be a family of

loss functions associated to a hypothesis set H. Assume that Pdim(G) = d and loss function L is

non-negative and bounded by M. Then, for any δ > 0, with probability at least (1− δ) over the

choice of an i.i.d. sample S of size m drawn from Dm, the following inequality holds for all h ∈ H

R(h) ≤ R̂(h) + M

√√√√2d log
em

d
m

+ M

√√√√ log
1

δ
2m

Proof (Generalization bound for bounded regression).

Homework: Prove this Theorem.
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Regression algorithms



Linear regression

I Let Φ : X 7→ Rn and H = {h : x 7→ 〈w,Φ(x)〉+ b | w ∈ Rn, b ∈ R}.
I Given sample S , the problem is to find a h ∈ H such that

h = min
w,b

R̂(h) = min
w,b

1

m

m∑
i=1

(〈w,Φ(xi )〉+ b − yi )
2

274 Chapter 11 Regression

Figure 11.3
For N = 1, linear regression consists of finding the line of best fit, measured in terms of the
squared loss.

potheses {c(h, t) : h 2 H, t 2 [0, M ]}, which, by definition of the pseudo-dimension,

is precisely Pdim(G) = d. The resulting bound coincides with (11.6). ⇤
The notion of pseudo-dimension is suited to the analysis of regression as demon-

strated by the previous theorem; however, it is not a scale-sensitive notion. There

exists an alternative complexity measure, the fat-shattering dimension, that is scale-

sensitive and that can be viewed as a natural extension of the pseudo-dimension.

Its definition is based on the notion of �-shattering.

Definition 11.9 (�-shattering) Let G be a family of functions from Z to R and let � > 0.

A set {z1, . . . , zm} ✓ X is said to be �-shattered by G if there exist t1, . . . , tm 2 R
such that for all y 2 {�1, +1}m, there exists g 2 G such that:

8i 2 [m], yi(g(zi)� ti) � � .

Thus, {z1, . . . , zm} is �-shattered if for some witnesses t1, . . . , tm, the family of

functions G is rich enough to contain a function going at least � above a subset A

of the set of points I = {(zi, ti) : i 2 [m]} and at least � below the others (I � A),

for any choice of the subset A.

Definition 11.10 (�-fat-dimension) The �-fat-dimension of G, fat�(G), is the size of the

largest set that is �-shattered by G.

Finer generalization bounds than those based on the pseudo-dimension can be de-

rived in terms of the �-fat-dimension. However, the resulting learning bounds, are

not more informative than those based on the Rademacher complexity, which is also

a scale-sensitive complexity measure. Thus, we will not detail an analysis based on

the �-fat-dimension.

I Define data matrix

X =

[
Φ(x1) φ(x2) . . . φ(xm)

1 1 . . . 1

]
I Let w = (w1, . . . ,wn, b)T be the weight vector and y = (y1, . . . , ym)T be the target vector.

I By setting ∇R̂(h) = 0, we obtain

w = (XXT )†Xy

I When XXT is invertible, there is a unique solution; otherwise the problem has several solutions.
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Linear regression

Theorem

Let K : X × X 7→ R be a PDS kernel, Φ : X 7→ H a feature mapping associated to K, and

H =
{

x 7→ 〈w,Φ(x)〉
∣∣ ‖w‖H ≤ Λ

}
. Assume that there exists r > 0 suh that K(x, x) ≤ r 2 and M > 0

such that |h(x)− y | < M for all (x, y ∈ X × Y). Then for any δ > 0, with probability at least

(1− δ), each of the following inequalities holds for all h ∈ H.

R(h) ≤ R̂(h) + 4M

√
r 2Λ2

m
+ M2

√√√√ log
1

δ
2m

R(h) ≤ R̂(h) +
4MΛ

√
Tr [K]

m
+ 3M2

√√√√ log
2

δ
2m

Proof.

By the bound on the empirical Rademacher complexity of kernel-based hypotheses, the following

holds for any sample S of size m:

R̂(H) ≤
Λ
√

Tr [K ]

m
≤
√

r 2Λ2

m

This implies that Rm(h) ≤
√

r 2Λ2

m
. Combining these inequalities with the bounds of Theorem

Rademacher complexity regression bounds, the Theorem will be proved.

16/35



Kernel ridge regression

I The following bound suggests minimizing a trade-off between empirical squared loss and norm of

the weight vector.

R(h) ≤ R̂(h) + 4M

√
r 2Λ2

m
+ M2

√√√√ log
1

δ
2m

I Kernel ridge regression is defined by minimization of an objective function (theoretical analysis)

min
w

F (w) = min
w

[
λ ‖w‖2 +

m∑
i=1

(〈w,Φ(xi )〉 − yi )
2

]

= min
w

[
λ ‖w‖2 +

∥∥∥ΦTw − y
∥∥∥2
]

I By setting ∇F (w) = 0, we obtain

w = (ΦΦT + λI)−1Φy

I An alternative formulation of kernel ridge regression is

min
w

∥∥∥ΦTw − y
∥∥∥2

subject to ‖w‖2 ≤ Λ2

min
w

m∑
i=1

ξ2
i subject to (‖w‖2 ≤ Λ2) ∧ (∀i ∈ {1, . . . ,m}, ξi = yi − 〈w,Φ(xi )〉)
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Support vector regression (SVR)

I Support vector regression (SVR) algorithm is inspired by SVM algorithm.
I The main idea of SVR consists of fitting a tube of width ε > 0 to the data.

11.3 Regression algorithms 281

�(x)

y

w·�(x)+b

✏

Figure 11.4
SVR attempts to fit a “tube” with width ✏ to the data. Training data within the “epsilon tube”
(blue points) incur no loss.

presented; it admits a closed-form solution, which can make the analysis of many

of its properties convenient; and it can be used with PDS kernels, which extends

its use to non-linear regression solutions and more general features spaces. KRR

also admits favorable stability properties that we discuss in chapter 14.

The algorithm can be generalized to learning a mapping from X to Rp, p > 1.

This can be done by formulating the problem as p independent regression problems,

each consisting of predicting one of the p target components. Remarkably, the

computation of the solution for this generalized algorithm requires only a single

matrix inversion, e.g., (K + �I)�1 in the dual case, regardless of the value of p.

One drawback of the KRR algorithm, in addition to the computational issues for

determining the solution for relatively large matrices, is the fact that the solution it

returns is typically not sparse. The next two sections present two sparse algorithms

for linear regression.

11.3.3 Support vector regression
In this section, we present the support vector regression (SVR) algorithm, which

is inspired by the SVM algorithm presented for classification in chapter 5. The

main idea of the algorithm consists of fitting a tube of width ✏ > 0 to the data, as

illustrated by figure 11.4. As in binary classification, this defines two sets of points:

those falling inside the tube, which are ✏-close to the function predicted and thus

not penalized, and those falling outside, which are penalized based on their distance

to the predicted function, in a way that is similar to the penalization used by SVMs

in classification.

Using a hypothesis set H of linear functions: H = {x 7! w · �(x) + b : w 2
RN , b 2 R}, where � is the feature mapping corresponding some PDS kernel K,

the optimization problem for SVR can be written as follows:

min
w,b

1

2
kwk2 + C

mX

i=1

��yi � (w · �(xi) + b)
��
✏
, (11.20)

I This defines two sets of points:
1. points falling inside the tube, which are ε-close to the function predicted and thus not penalized,

2. points falling outside the tube, which are penalized based on their distance to the predicted function.

I This is similar to the penalization used by SVMs in classification.
I Using a hypothesis set of linear functions H = {x 7→ 〈w,Φ(x)〉+ b | w ∈ Rn, b ∈ R}, where Φ is

the feature mapping corresponding some PDS kernel K .
I The optimization problem for SVR is

min
w,b

[
1

2
λ ‖w‖2 + C

m∑
i=1

|yi − (〈w,Φ(xi )〉+ b)|ε

]
where |.|ε denotes ε-insensitive loss

∀y , y ′ ∈ Y, |y ′ − y |ε = max
(
0, |y ′ − y | − ε

)
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Support vector regression (SVR)

I The ε-insensitive loss is defined as

∀y , y ′ ∈ Y, |y ′ − y |ε = max
(
0, |y ′ − y | − ε

)
I The use ofε-insensitive loss leads to sparse solutions with a relatively small number of support

vectors.

I Using slack variables ξi ≥ 0 and ξ′i ≥ 0 for 1 ≤ i ≤ m, the problem becomes

min
w,b,ξ,ξ′

[
1

2
λ ‖w‖2 + C

m∑
i=1

(
ξi + ξ′i

)]
subject to (〈w,Φ(xi )〉+ b)− yi ≤ ε+ ξi

yi − (〈w,Φ(xi )〉+ b) ≤ ε+ ξ′i

ξi ≥ 0, ξ′i ≥ 0, ∀i , 1 ≤ i ≤ m

I This is a convex quadratic program (QP) with affine constraints.

I By introducing Lagrangian and applying KKT conditions, the problem will be solved.
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Support vector regression (SVR)

I Let D be the distribution according to which sample points are drawn.

I Let D̂ the empirical distribution defined by a training sample of size m.

Theorem (Generalization bounds of SVR)

Let K : X × X 7→ R be a PDS kernel, Φ : X 7→ H a feature mapping associated to K, and

H =
{

x 7→ 〈w,Φ(x)〉
∣∣ ‖w‖H ≤ Λ

}
. Assume that there exists r > 0 suh that K(x, x) ≤ r 2 and M > 0

such that |h(x)− y | < M for all (x, y ∈ X × Y). Then for any δ > 0, with probability at least

(1− δ), each of the following inequalities holds for all h ∈ H.

E
(x,y)∼D

[|h(x)− y |ε] ≤ E
(x,y)∼D̂

[|h(x)− y |ε] + 2

√
r 2Λ2

m
+ M

√√√√ log
1

δ
2m

E
(x,y)∼D

[|h(x)− y |ε] ≤ E
(x,y)∼D̂

[|h(x)− y |ε] +
2Λ
√

Tr [K]

m
+ 3M

√√√√ log
2

δ
2m

Proof (Generalization bounds of SVR).

Since for any y ′ ∈ Y, the function y 7→ |y − y ′|ε is 1-Lipschitz, the result follows Theorem

Rademacher complexity regression bounds and the bound on the empirical Rademacher complexity

of H.
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Support vector regression (SVR)

I Alternative convex loss functions can be used to define regression algorithms.
11.3 Regression algorithms 285

Figure 11.5
Alternative loss functions that can be used in conjunction with SVR.

which extend the algorithm to non-linear regression solutions. SVR also admits fa-

vorable stability properties that we discuss in chapter 14. However, one drawback

of the algorithm is that it requires the selection of two parameters, C and ✏. These

can be selected via cross-validation, as in the case of SVMs, but this requires a

relatively larger validation set. Some heuristics are often used to guide the search

for their values: C is searched near the maximum value of the labels in the absence

of an o↵set (b = 0) and for a normalized kernel, and ✏ is chosen close to the average

di↵erence of the labels. As already discussed, the value of ✏ determines the number

of support vectors and the sparsity of the solution. Another drawback of SVR is

that, as in the case of SVMs or KRR, it may be computationally expensive when

dealing with large training sets. One e↵ective solution in such cases, as for KRR,

consists of approximating the kernel matrix using low-rank approximations via the

Nyström method or the partial Cholesky decomposition. In the next section, we

discuss an alternative sparse algorithm for regression.

11.3.4 Lasso
Unlike the KRR and SVR algorithms, the Lasso (least absolute shrinkage and

selection operator) algorithm does not admit a natural use of PDS kernels. Thus,

here, we assume that the input space X is a subset of RN and consider a family of

linear hypotheses H = {x 7! w · x + b : w 2 RN , b 2 R}.

Let S =
�
(x1, y1), . . . , (xm, ym)

�
2 (X⇥Y)m be a labeled training sample. Lasso is

based on the minimization of the empirical squared error on S with a regularization

term depending on the norm of the weight vector, as in the case of the ridge

regression, but using the L1 norm instead of the L2 norm and without squaring the

I SVR admits several advantages

1. SVR algorithm is based on solid theoretical guarantees,

2. The solution returned SVR is sparse

3. SVR allows a natural use of PDS kernels

4. SVR also admits favorable stability properties.

I SVR also admits several disadvantages

1. SVR requires the selection of two parameters, C and ε, which are determined by cross-validation.

2. may be computationally expensive when dealing with large training sets.
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Least absolute shrinkage and selection operator (Lasso)

I The optimization problem for Lasso is defined as

min
w,b

F (w) = min
w,b

[
λ ‖w‖1 + C

m∑
i=1

(〈w, xi 〉+ b − yi )
2

]
I This is a convex optimization problem, because

1. ‖w‖1 is convex as with all norms

2. the empirical error term is convex

I Hence, the optimization problem can be written as

min
w,b

[
m∑
i=1

(〈w, xi 〉+ b − yi )
2

]
subject to ‖w‖1 ≤ Λ1

I The L1 norm constraint is that it leads to a sparse solution w.286 Chapter 11 Regression

L1 regularization L2 regularization

Figure 11.6
Comparison of the Lasso and ridge regression solutions.

norm:

min
w,b

F (w, b) = �kwk1 +

mX

i=1

(w · xi + b� yi)
2

. (11.29)

Here � denotes a positive parameter as for ridge regression. This is a convex

optimization problem, since k·k1 is convex as with all norms and since the empirical

error term is convex, as already discussed for linear regression. The optimization

for Lasso can be written equivalently as

min
w,b

mX

i=1

(w · xi + b� yi)
2

subject to: kwk1  ⇤1, (11.30)

where ⇤1 is a positive parameter.

The key property of Lasso as in the case of other algorithms using the L1 norm

constraint is that it leads to a sparse solution w, that is one with few non-zero

components. Figure 11.6 illustrates the di↵erence between the L1 and L2 regular-

izations in dimension two. The objective function of (11.30) is a quadratic function,

thus its contours are ellipsoids, as illustrated by the figure (in blue). The areas cor-

responding to L1 and L2 balls of a fixed radius ⇤1 are also shown in the left and

right panel (in red). The Lasso solution is the point of intersection of the contours

with the L1 ball. As can be seen form the figure, this can typically occur at a corner

of the L1 ball where some coordinates are zero. In contrast, the ridge regression

solution is at the point of intersection of the contours and the L2 ball, where none

of the coordinates is typically zero.
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Least absolute shrinkage and selection operator (Lasso)

Theorem (Bounds of R̂(H) of Lasso)

Let X ⊆ Rn and let S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m be sample of size m. Assume that for

all 1 ≤ i ≤ m, ‖xi‖∞ ≤ r∞ for some r∞ > 0, and let H =
{

x 7→ 〈w, x〉
∣∣ ‖w‖1 ≤ Λ1

}
. Then, the

empirical Rademacher complexity of H can be bounded as follows

R̂(H) ≤
√

2r 2
∞Λ2

1 log(2n)

m

Definition (Dual norms)

Let ‖.‖ be a norm on Rn. Then, the dual norm ‖.‖∗ associated to ‖.‖ is the norm defined by

∀y ∈ Rn, ‖y‖∗ = sup
‖x‖=1

|〈y, x〉|

For any p, q ≥ 1 that are conjugate that is such that
1

p
+

1

q
= 1, the Lp and Lq norms are dual

norms of each other.

In particular, the dual norm of L2 is the L2 norm, and the dual norm of the L1 norm is the L∞ norm.
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Least absolute shrinkage and selection operator (Lasso)

Proof (Bounds of R̂(H) of Lasso).

For any 1 ≤ i ≤ m, we denote by xij , the jth component of xi .

R̂(H) =
1

m
E
σ

[
sup

‖w‖1≤Λ1

m∑
i=1

σi 〈w, xi 〉

]
=

Λ1

m
E
σ

[∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
∞

]
(by definition of the dual norm)

=
Λ1

m
E
σ

[
max

j∈{1,...,n}

∣∣∣∣∣
m∑
i=1

σixij

∣∣∣∣∣
]

(by definition of ‖.‖∞)

=
Λ1

m
E
σ

[
max

j∈{1,...,n}
max

s∈{−1,+1}
s

m∑
i=1

σixij

]
(by definition of ‖.‖∞)

=
Λ1

m
E
σ

[
sup
z∈A

m∑
i=1

σizi

]
.

where A denotes the set of n vectors {s(x1j , . . . , xmj) | j ∈ {1, . . . , n}, s ∈ {−1,+1}}.
For any z ∈ A, we have ‖z‖2 ≤

√
mr 2
∞ = r∞

√
m.

Thus by Massart’s Lemma, since A contains at most 2n elements, the following inequality holds:

R̂(H) ≤ Λ1r∞
√
m

2 log(2n)

m
= Λ1r∞

√
2 log(2n)

m
.

24/35



Least absolute shrinkage and selection operator (Lasso)

I This bounds depends on dimension n is only logarithmic, which suggests that using very

high-dimensional feature spaces does not significantly affect generalization.

I By combining of Theorem Bounds of R̂(H) of Lasso and Rademacher generalization bound, we

obtain

Theorem (Rademacher complexity of linear hypotheses with bounded L1 norm)

Let X ⊆ Rn and H =
{

x1 7→ 〈w, x〉
∣∣ ‖w‖1 ≤ Λ1

}
. Let also S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m

be sample of size m. Assume that there exists r∞ > 0 such that for all x ∈ X , ‖xi‖∞ ≤ r∞ and

M > 0 such that |h(x)− y | ≤ M for all (x, y) ∈ X × Y. Then, for any δ > 0, with probability at

least (1− δ), each of the following inequality holds for h ∈ H

R(h) ≤ R̂(h) + 2r∞Λ1M

√
2 log(2n)

m
+ M2

√√√√ log
1

δ
2m

I Ridge regression and Lasso have same form as the right-hand side of this generalization bound.

I Lasso has several advantages:

1. It benefits from strong theoretical guarantees and returns a sparse solution.

2. The sparsity of the solution is also computationally attractive (inner product).

3. The algorithm’s sparsity can also be used for feature selection.

I The main drawbacks are: usability of kernel and closed-form solution.
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Online regression algorithms

I The regression algorithms admit natural online versions.

I These algorithms are useful when we have very large data sets, where a batch solution can be

computationally expensive.

Online linear regression

1: Initialize w1.

2: for t ← 1, 2, . . . ,T do.

3: Receive xt ∈ Rn.

4: Predict ŷt = 〈wt , xt〉.
5: Observe true label yt = h∗(xt).

6: Compute the loss L(ŷt , yt).

7: Update wt+1.

8: end for

26/35



Widrow-Hoff algorithm

I Widrow-Hoff algorithm uses stochastic gradient descent technique to linear regression objective

function.

I At each round, the weight vector is augmented with a quantity that depends on the prediction

error (〈wt , xt〉 − yt).

WidrowHoff regression

1: function WidrowHoff(w0)

2: Initialize w1 ← w0. . typically w0 = 0.

3: for t ← 1, 2, . . . ,T do.

4: Receive xt ∈ Rn.

5: Predict ŷt = 〈wt , xt〉.
6: Observe true label yt = h∗(xt).

7: Compute the loss L(ŷt , yt).

8: Update wt+1 ← wt − 2η (〈wt , xt〉 − yt) xt . . learning rate η > 0.

9: end for

10: return wT+1

11: end function
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Widrow-Hoff algorithm

I There are two motivations for the update rule in Widrow-Hoff.

I The first motivation is that

1. The loss function is defined as

L(w, x, y) = (〈w, x〉 − y)2

2. To minimize the loss function, move in the direction of the negative gradient

∇wL(w, x, y) = 2 (〈w, x〉 − y) x

3. This gives the following update rule

wt+1 ← wt − η∇wL(wt , xt , yt)

I The second motivation is that we have two goals:

1. We want loss on (xt , yt) to be small which means that we want to minimize (〈w, x〉 − y)2.

2. We don’t want to be too far from wt . That is,we don’t want ‖wt − wt+1‖ to be too big.

I Combining these two goals, we compute wt+1 by solving the following optimization problem

wt+1 = argmin (〈wt+1, xt〉 − yt)
2 + ‖wt+1 − wt‖

I Take the gradient of this equation, and make it equal to zero. We obtain

wt+1 = wt − 2η (〈wt+1, xt〉 − yt) xt

I Approximating wt+1 by wt on right-hand side gives updating rule of Widrow-Hoff algorithm.
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Widrow-Hoff algorithm

I Let LA =
∑T

t=1(ŷt − yt) be loss of algorithm A and Lu =
∑T

t=1(〈u, xt〉 − yt) be loss of u ∈ Rn.
I We upper bound loss of Widrow-Hoff algorithm in terms of loss of the best vector.

Theorem (Upper bound of loss Widrow-Hoff algorithm)

Assume that for all rounds t we have ‖xt‖2
2 ≤ 1, then we have

LWH ≤ min
u∈Rn

[
Lu

1− η +
‖u‖2

2

η

]
where LWH denotes the loss of the Widrow-Hoff algorithm.

I Before proving this Theorem, we first prove the following Lemma.

Lemma (Bounds on potential function of Widrow-Hoff algorithm)

Let Φt = ‖wt − u‖2
2 be the potential function, then we have

Φt+1 − Φt ≤ −ηl2
t +

η

1− η g
2
t

where

lt = (ŷt − y) = 〈wt , xt〉 − yt

gt = 〈ut , xt〉 − yt

So that l2
t denotes the learners loss at round t, and g 2

t is u’s loss at round t.

29/35



Widrow-Hoff algorithm

Proof (Bounds on potential function of Widrow-Hoff algorithm).

Let ∆t = η (〈wt , xt〉 − yt) xt = ηltxt (update to the weight vector). Then, we have

Φt+1 − Φt = ‖wt+1 − u‖2
2 − ‖wt − u‖2

2

= ‖wt − u−∆t‖2
2 − ‖wt − u‖2

2

= ‖wt − u‖2
2 − 2 〈(wt − u),∆t〉+ ‖∆t‖2

2 − ‖wt − u‖2
2

= −2ηlt 〈xt , (wt − u)〉+ η2l2
t ‖xt‖2

2

≤ −2ηlt (〈xt ,wt〉 − 〈u, xt〉) + η2l2
t (since ‖xt‖2

2 ≤ 1)

= −2ηlt [(〈wt , xt〉 − yt)− (〈u, xt〉 − yt)] + η2l2
t

= −2ηlt(lt − gt) + η2l2
t = −2ηl2

t + 2ηltgt + η2l2
t

≤ −2ηl2
t + 2η

(
l2
t (1− η) + g 2

t /(1− η)

2

)
+ η2l2

t (by AM-GM)

= −ηl2
t +

(
η

1− η

)
g 2
t

1. Arithmetic mean-geometric mean inequality (AM-GM) states: for any set of non-negative real

numbers, arithmetic mean of the set is greater than or equal to geometric mean of the set.

2. For reals a ≥ 0 and b ≥ 0, AM-GM is
√
ab ≤ a + b

2
, and let a = l2

t (1− η) and b =
g 2
t

1− η .
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Widrow-Hoff algorithm

Proof (Upperbound of loss Widrow-Hoff algorithm).

1. Let
∑T

t=1 (Φt+1 − Φt) = ΦT+1 − Φ1.

2. By setting w1 = 0 and observation that Φt ≥ 0, we obtain that

−‖u‖2
2 = −Φ1 ≤ ΦT+1 − Φ1

3. Hence, we have

−‖u‖2
2 ≤

T∑
t=1

(Φt+1 − Φt)

≤
T∑
t=1

(
−ηl2

t +

(
η

1− η

)
g 2
t

)
= −ηLWH +

(
η

1− η

)
Lu.

4. By simplifying this inequality, we obtain

LWH ≤
(

η

1− η

)
Lu +

‖u‖2
2

η
.

5. Since u was arbitrary, the above inequality must hold for the best vector.
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Widrow-Hoff algorithm

I We can look at the average loss per time step

LWH

T
≤ min

u

[(
η

1− η

)
Lu

T
+
‖u‖2

2

ηT

]
.

I As T gets large, we have (
‖u‖2

2

ηT

)
→ 0.

I If step-size (η) is very small,

(
η

1− η

)
Lu

T
→ min

u

(
Lu

T

)
, Show it.

which is the average loss of the best regressor.

I This means that the Widrow-Hoff algorithm is performing almost as well as the best regressor

vector as the number of rounds gets large.
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Summary



Summary

I We study the bounded regression problem.

I For unbounded regression, there is the main issue for deriving uniform convergence bounds.

I We defined pseudo-dimension for real-valued function classes.

I We study the generalization bounds based on Rademacher complexity.

I We study several regression algorithms and analysis their bounds.

I We study an online regression algorithms and analysis its bound.
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1. Chapter 11 of Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of

Machine Learning. Second Edition. MIT Press, 2018.
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Foundations. Cambridge University Press, 1999.
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