
Machine learning theory

Computational complexity of learning algorithms

Hamid Beigy

Sharif university of technology

April 27, 2020

Table of contents

1. Introduction

2. Computational complexity

3. Computational complexity of learning

4. Hardness of learning

5. Summary

1/25

Introduction

Introduction

1. We have studied the statistical perspective of learning, namely, how many samples are needed for

learning.

Sample complexity of learning

How many examples do we need in order to learn from a specific concept class?

2. This focused on the amount of information learning requires.

3. We can’t ignore the computational price.

Computational complexity of learning

How much computational effort is needed for PAC learning?

4. Once a sufficient training sample is available to the learner, there is some computation to be done

to find a hypothesis.

5. The computational complexity of learning should be viewed in the wider context of the

computational complexity of general algorithmic tasks.

2/25

Computational complexity

Introduction

1. How can we say that one algorithm performs better than another?

2. Quantify the resources required to execute an algorithm.
I Time
I Memory
I I/O
I circuits, power, etc

3. Time is not merely CPU clock cycles, we want to study algorithms independent or

implementations, platforms, and hardware.

4. We need an objective point of reference.

5. We measure time by the number of operations as a function of an algorithm’s input size.

6. Hence, we need
I a computational model
I definition of the operations
I definition of input size
I definition of cost (uniform vs logarithmic)
I studying time independent of platforms and hardware

7. The input size is defined as the number of bits required to represent the input. For example

Sorting : The number of items to be sorted.

Graphs : The number of vertices and/or edges.

Numerical : The number of bits needed to represent a number.

3/25

Random access machine model

1. Running time of algorithms can be measured in a machine-independent way using the a

computational model such as random access machine (RAM) or Turing machine.

2. This model assumes a single processor.

3. Instructions are executed one after the other, with no concurrent operations.

4. This model of computation is an abstraction that allows us to compare algorithms on the basis of

performance.

5. The assumptions made in the RAM model to accomplish this are:
I Each simple operation takes 1 time step.
I Loops and subroutines are not simple operations.
I Each memory access takes one time step, and there is no shortage of memory.

6. For any given problem the running time of an algorithms is assumed to be the number of time

steps.

7. The space used by an algorithm is assumed to be the number of RAM memory cells.

4/25

Types of complexity

1. Four types of complexity could be considered when analyzing algorithm performance.
I worst-case complexity,
I best-case complexity,
I average-case complexity, and
I amortized complexity.

2. In the worst case analysis, we calculate upper bound on running time of an algorithm.

3. Considering bubble sort

4. In bubble Sort, (n− 1) comparisons will be done in the 1st pass, (n− 2) in 2nd pass,(n− 3) in 3rd

pass and so on. So the total number of comparisons (c(n)) will be,

T (n) = (n − 1) + (n − 2) + . . .+ 3 + 2 + 1

=
n(n − 1)

2
.

5/25

O notation

1. The runtime of an algorithm depends on the machine running the algorithm.

2. To avoid such dependency, the runtime is computed in an asymptotic sense.

3. We are typically only interested in how fast T (n) is growing as a function of input size n

Definition (big-O notation)

Let f and g be functions f , g : N 7→ R+. We say that f (n) = O(g(n)) if there exists positive

integers c and n0 such that for every integer n ≥ n0,

f (n) ≤ cg(n).

When f (n) = O(g(n)), we say that g(n) is an upper bound for f (n).3.1 Asymptotic notation 45

(b) (c)(a)

nnn
n0n0n0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D !.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c1g.n/

c2g.n/

Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

4. For bubble sort, it is easy to show that T (n) = O(n2).

6/25

Computational complexity of learning

Introduction

1. Recall from previous sessions

Learning algorithm

A learning algorithm has access to a domain of examples, Z, a hypothesis class, H, a loss function,

`, and a training set, S , of examples from Z that are sampled i.i.d. according to an unknown

distribution D. Given parameters ε and δ, the algorithm should output a hypothesis h such that with

probability of at least 1− δ,

R(h) ≤ min
h′∈H

R(h′) + ε

2. The actual runtime of an algorithm in seconds depends on the specific machine.

3. To allow machine independent analysis, we use the standard approach in computational
complexity theory.

I First, we rely on a notion of an abstract machine, such as a Turing machine or RAM.
I Second, we analyze the runtime in an asymptotic sense, while ignoring constant factors.

4. Usually, the asymptote is with respect to the size of the input to the algorithm. For example, the

number of elements of array given to the Bubble-sort algorithm.

5. In the context of learning algorithms, there is no clear notion of input size.

7/25

What is the input size?

1. In the context of learning algorithms, there is no clear notion of input size.

2. We can define the input size as the size of the training set, m, the algorithm receives.

Problem

If we give the algorithm a very large number of examples, much larger than the sample complexity of

the learning problem, the algorithm can simply ignore the extra examples.

3. Therefore, a larger m does not make the problem more difficult, and, the runtime of learning

algorithm should not increase as we increase m.

4. We can still analyze the runtime as a ε, δ, n, or some measures of the complexity of H.

Example (Learning axis aligned rectangles)

I This problem is derived by specifying ε, δ, and n.

I We can define a sequence of rectangles learning problems by fixing ε, δ, and varying n = 2, 3,

I We can also define another sequence of rectangles learning problems by fixing d , δ and varying

ε =
1

2
,

1

3
. . ..

I One can of course choose other sequences of such problems.

I When a sequence of the problems is fixed, one can analyze the asymptotic runtime.

8/25

Learning algorithm

1. A learning algorithm receives a training set and outputs a hypothesis, which is a program.

2. A learning algorithm can cheat, by transferring the computational burden to the output

hypothesis.

3. Considering the following learning algorithm.

The algorithm can simply define the output hypothesis to be the function that stores the training

set in its memory, and whenever it gets a test example x it calculates the ERM hypothesis on the

training set and applies it on x .

4. This algorithm has a fixed output and can run in constant time.

5. The hardness is now in implementing the output classifier to obtain a label prediction.

6. To prevent this cheating,

We shall require that the output of a learning algorithm must be applied to predict the label

of a new example in time that does not exceed the runtime of training.

9/25

Computational complexity of a learning algorithm

Definition (Computational complexity of a learning algorithm)

We define the complexity of learning in two steps. First we consider the computational complexity of

a fixed learning problem (Z,H, `). Then, in the second step we consider the rate of change of that

complexity along a sequence of such tasks.

1. Given function f : (0, 1)2 → N, a problem (Z,H, `), and an algorithm, A. Algorithm A solves
the problem in time O(f), if there exists some constant c, such that for every distribution D
over Z, and input ε, δ ∈ (0, 1), when A has access to samples S ∼ D,

I AlgorithmA terminates after performing at most cf (ε, δ) operations.
I The output of A, denoted hA, can be applied to predict the label of a new example while

performing at most cf (ε, δ) operations.
I The output of A is probably approximately correct; i.e.with probability of at least 1− δ

R(h) ≤ minh′∈H R(h′) + ε.

2. Consider a sequence of problems, (Zn,Hn, `n)∞n=1, where problem n is defined by (Z,H, `). Let

A be an algorithm designed for solving these problems. Given a function g : (0, 1)2 → N, we say

that the runtime of A with respect to (Zn,Hn, `n) is O(g), if for all n, A solves the problem

(Zn,Hn, `n) in time O(fn), where fn : (0, 1)2 → N is defined by fn(ε, δ) = fn(n, ε, δ).

10/25

Computational complexity of a learning algorithm

1. Algorithm A is efficient with respect to a sequence (Zn,Hn, `n) if its runtime is O(p(n,
1

ε
,

1

δ
)), for

some polynomial p.

2. This definition implies that the question whether a general learning problem can be solved

efficiently depends on how it can be broken into a sequence of specific learning problems.

Example (Learning a finite hypothesis class)

I It was shown that the ERM rule over H is guaranteed to (ε, δ)-learn H if the number of training

examples is order of mH(ε, δ) =
log(|H|/δ)

ε2
.

I Let the evaluation of a hypothesis on an example takes a constant time, it is possible to implement the

ERM rule in time O(|H|mH(ε, δ)) by performing an exhaustive search over H with a training set of size

mH(ε, δ).

I For any fixed finite H, the exhaustive search algorithm runs in polynomial time.

I If we define a sequence of problems in which |Hn| = n, then the exhaustive search is still considered to

be efficient.

I However, if we define a sequence of problems for which |Hn| = 2n, then the sample complexity is still

polynomial in n but thecomputational complexity of the exhaustive search algorithm grows

exponentially with n (thus, rendered inefficient).

11/25

Implementing ERM rule

1. For problem, (H,Zn, `), the corresponding ERM rule can be defined as follows:

Definition (ERM rule)

For a finite sample S ∈ Zm output h ∈ H that minimizes R̂(h) =
1

|S |
∑

z∈S `(h, z).

Example (Finite hypothesis classes)

I The sample complexity of learning a finite class is upper bounded by mH(ε, δ) = c log (c|H|/δ)) /εc ,

where c = 1 in realizable case and c = 2 in nonrealizable case.

I A simple implementation of ERM rule for finite hypothesis class is exhaustive search.

I Assuming that the evaluation of `(h, z) on a single example takes a constant amount of time, k, the

runtime of this exhaustive search becomes k|H|m ,where m is the size of the training set.

I Then then the runtime becomes k|H|c log (c|H|/δ)) /εc .

I The linear dependency on H makes this approach inefficient for large classes.

I Formally, if we define a sequence of problems (Zn,Hn, `n)∞n=1 such that log(|Hn|) = n, then the

exhaustive search approach yields an exponential runtime.

I Inefficiency of one implementation doesn’t imply that no efficient ERM implementation exists.

12/25

Axis aligned rectangles (Realizable case)

1. Let Hn =
{
h(a1,...,an,b1,...,bn)

∣∣ ∀i , ai ≤ bi
}
∈ Rn, where h(a1,...,an,b1,...,bn)(x) = 1 when

∀i , xi ∈ [ai , bi].

2. This problem is efficiently learnable in the realizable case.
I Consider implementing the ERM rule in the realizable case.
I We need only to specify n corners of this rectangle.

a

b

I For each i ∈ {1, 2, . . . , n}, set

ai = min{xi | (x , 1) ∈ S}
bi = max{xi | (x , 1) ∈ S}

I The resulting rectangle has zero training error and the total runtime is O(nm), where

m ≥ mHn (ε, δ) =
2n + ln(2/δ)

ε
.

13/25

Axis aligned rectangles (Unrealizable case) i

This problem is not efficiently learnable in the agnostic case.

1. We can specify each rectangle with at most 2n points.

2. There are
(
m
2n

)
different subsets with size 2n points, which contain non-repetitive elements of the

training set.

3. We have also
(
m
2n

)
= O(m2n) and

(
m
2n

)
≤ m2n.

4. If you allow the repetitive elements in each subset, then we have exactly m2n subsets of size 2n. In

learning, this case is allowed.

5. Let these subsets be S1, S2, . . . , Sm2n and we use the following algorithm.

a Build a rectangle for each Si using 2n points in this set and then calculate the empirical risk of this

rectangle using the training set S . Let this rectangle be denoted by hi , which contains the set Si .

b Return the rectangle with the minimum empirical risk, i.e. return min1≤i≤m2n hi .

14/25

Axis aligned rectangles (Unrealizable case) ii

6. We must prove the correctness of the given algorithm.

Lemma (Correctness of algorithm for finding the smallest empirical risk hypothesis)

For any h ∈ Hn and for every S, there exist a hi such that R̂(hi) ≤ R̂(h).

7. The running time for this algorithm is (mHd (ε, δ))2n+1.

8. If n is fixed, then running time is polynomial and there exist efficient learning algorithms for this

class.

9. if If n is not fixed, then running time is exponential and there is no efficient learning algorithms for

this class.

10. Solving this problem by using ERM in the agnostic setting is NP-hard unless P = NP.

11. There are successful agnostic PAC learners that run in time polynomial in
1

ε
and

1

δ
but their

dependence on the dimension n is not polynomial.

12. This does not contradict the hardness result given before.

15/25

Boolean conjunctions

1. A Boolean conjunction is in the form of xi1 ∧ . . . ∧ xik ∧ ¬xj1 ∧ . . . ∧ ¬xjr for some indices

i1, . . . , ik , j1, . . . , jr ∈ {1, . . . , n}.

2. This proposition defines function h(x) = 1 if i1 = . . . = ik = 1 and j1 = . . . = jr = 0.

3. What is VC dimension of this class? We can calculate the upper bound of the VC as

VC(H) ≤ log|H|.

4. Let HCn be the class of all Boolean conjunctions over {0, 1}n, where |HCn | = Θ(3n) and hence

VC(HCn) ≤ log|HCn | = n log 3.

5. Hence, the sample complexity of learning HCn using the ERM rule is at most
n log 3 + log(1/δ)

ε
.

6. This problem is efficiently learnable in the realizable case.
I Let h0(x) = (x1 ∧ ¬x1) ∧ (x2 ∧ ¬x2) ∧ . . . ∧ (xn ∧ ¬xn).
I Note that ∀x , we have h0(x) = 0.
I Then we build a sequence of hypothesis h1, h2, . . . by testing only positive samples and removing

inconsistent literals.
I The resulting conjunction has zero training error and the total runtime is O(nm).

7. This problem is not efficiently learnable in the agnostic case.
I There is no algorithm whose running time is polynomial in m and n that guaranteed to find an ERM

hypothesis for the class of Boolean conjunctions in the unrealizable case unless P = NP.

16/25

Learning 3-Term DNF

1. Each hypothesis is represented by a Boolean formula of the form h(x) = A1(x) ∨ A2(x) ∨ A3(x),

where each Ai (x) is a Boolean conjunction.

2. h(x) = 1 if either A1(x) or A2(x) or A3(x) output the label 1.

3. Let Hn
3DNFn be the hypothesis class of all such 3-term DNF formula. We have |H3DNFn | = 33n and

VC(H3DNFn) ≤ log|H3DNFn | = 3n.

4. The sample complexity of learning H3DNFn is at most
3n + log(1/δ)

ε2
.

5. How hard it is to compute ERM over H3DNFn using sample of size alert
3n + log(1/δ)

ε2
?

6. There is no polynomial time algorithm that properly learns a sequence of 3DNF learning problems

unless RP = NP even in realizable case.

7. By properly, we mean that the algorithm should output a hypothesis that is a 3DNF formula.

17/25

Learning 3-Term DNF

1. We will show that it is possible to learn 3DNF efficiently, but using ERM with respect to a larger

class by allowing representation independent learning.

2. In this case, we allow the learning algorithm to output a hypothesis that is not a 3DNF formula.

3. The basic idea is to replace the original hypothesis class of 3DNF formula with a larger hypothesis

class so that the new class is easily learnable.

4. The learning algorithm might return a hypothesis that does not belong to the original hypothesis

class; hence the name representation independent learning.

5. In most situations, we are interested in returning a hypothesis with good predictive ability.

6. By distributing ∨ over ∧, each 3DNF formula can be written as

A1 ∨ A2 ∨ A3 =
∧

u∈A1,v∈A2,w∈A3

(u ∨ v ∨ w).

7. Let us define ψ : {0, 1}n 7→ {0, 1}(2n)3

such that for each triplet of literals u, v ,w there is a

variable in the range of ψ indicating if (u ∨ v ∨ w) is true or false.

8. For each 3DNF over {0, 1}n there is a conjunction over {0, 1}(2n)3

, with the same truth table.

9. We can solve the ERM problem with respect to class of conjunctions over {0, 1}(2n)3

with sample

complexity
n3 + log(1/δ)

ε2
and runtime is polynomial in n.

18/25

Learning 3-Term DNF

1. Intuitively, the idea is as follows.
I We started with a hypothesis class for which learning is hard.
I We switched to another representation where the hypothesis class is larger than the original class but

has more structure, which allows for a more efficient ERM search.
I In the new representation, solving the ERM problem is easy.
I Then, we may transform back the learned hypothesis to the original hypothesis class

8.4 Hardness of Learning 81

3-term-DNF formulae over {0,1}n

Conjunctions over {0,1} (2n)3

8.4 HARDNESS OF LEARNING*

We have just demonstrated that the computational hardness of implementing
ERMH does not imply that such a class H is not learnable. How can we prove that
a learning problem is computationally hard?

One approach is to rely on cryptographic assumptions. In some sense, cryptog-
raphy is the opposite of learning. In learning we try to uncover some rule underlying
the examples we see, whereas in cryptography, the goal is to make sure that nobody
will be able to discover some secret, in spite of having access to some partial infor-
mation about it. On that high level intuitive sense, results about the cryptographic
security of some system translate into results about the unlearnability of some corre-
sponding task. Regrettably, currently one has no way of proving that a cryptographic
protocol is not breakable. Even the common assumption of P != NP does not suffice
for that (although it can be shown to be necessary for most common cryptographic
scenarios). The common approach for proving that cryptographic protocols are
secure is to start with some cryptographic assumptions. The more these are used
as a basis for cryptography, the stronger is our belief that they really hold (or, at
least, that algorithms that will refute them are hard to come by).

We now briefly describe the basic idea of how to deduce hardness of learnability
from cryptographic assumptions. Many cryptographic systems rely on the assump-
tion that there exists a one way function. Roughly speaking, a one way function is
a function f : {0,1}n → {0,1}n (more formally, it is a sequence of functions, one for
each dimension n) that is easy to compute but is hard to invert. More formally, f
can be computed in time poly(n) but for any randomized polynomial time algorithm
A, and for every polynomial p(·),

P [f (A(f (x))) = f (x)] < 1
p(n) ,

where the probability is taken over a random choice of x according to the uniform
distribution over {0,1}n and the randomness of A.

A one way function, f , is called trapdoor one way function if, for some polyno-
mial function p, for every n there exists a bit-string sn (called a secret key) of length
≤ p(n), such that there is a polynomial time algorithm that, for every n and every
x ∈ {0,1}n , on input (f (x),sn) outputs x. In other words, although f is hard to invert,
once one has access to its secret key, inverting f becomes feasible. Such functions
are parameterized by their secret key.

19/25

Hardness of learning

Hardness of learning

1. We have shown that the computational hardness of implementing ERM doesn’t imply that such a

class H is not learnable.

2. How can we prove that a learning problem is computationally hard?

3. One approach is to rely on cryptographic assumptions.

4. In some sense, cryptography is the opposite of learning.

5. In learning we try to uncover some rule underlying the examples we see.

6. In cryptography, the goal is to make sure that nobody will be able to discover some secret.

7. On that high level intuitive sense, results about the cryptographic security of some system

translate into results about the unlearnability of some corresponding task.

8. The common approach for proving that cryptographic protocols are secure is to start with some

cryptographic assumptions.

20/25

Hardness of learning

1. The basic idea of how to deduce hardness of learnability from cryptographic assumptions.

2. Many cryptographic systems rely on the assumption that there exists a one way function

f : {0, 1}n 7→ {0, 1}n that is easy to compute but is hard to invert.

3. Formally, f can be computed in time poly(n) but for any randomized polynomial time algorithm

A, and for every polynomial p(.),

P [f (A(f (x))) = f (x)] <
1

p(n)

where the probability is taken over a random choice of x according to the uniform distribution

over {0, 1}n and the randomness of A.

4. To solve this problem, in cryptography trapdoor one way function are used.

Definition (Trapdoor one way function)

A one way function, f , is called trapdoor one way function if, for some polynomial function p, for

every n there exists a bit-string sn (called a secret key) of length ≤ p(n), such that there is a

polynomial time algorithm that, for every n and every x ∈ {0, 1}n, on input (f (x), sn) outputs x .

5. Although f is hard to invert, once one has access to its secret key, inverting f becomes feasible.

21/25

Hardness of learning

1. let Fn be a family of trapdoor functions over {0, 1}n that can be calculated by some polynomial

time algorithm.

2. That is, we fix an algorithm that given a secret key (representing one function in Fn) and an input

vector, it calculates the value of the function corresponding to the secret key on the input vector

in polynomial time.

3. Consider the task of learning the class of the corresponding inverses, Hn
F =

{
f −1

∣∣ f ∈ Fn

}
.

4. Since each function in this class can be inverted by some secret key sn of size polynomial in n, the

class Hn
F can be parameterized by these keys and its size is at most 2p(n).

5. Its sample complexity is therefore polynomial in n.

6. We claim that there can be no efficient learner for this class.
I Assume that there is a learner L.
I Learner L first samples uniformly at random a polynomial number of strings in {0, 1}n.
I Then computes f over them, we could generate a labeled training sample of pairs (f (x), x).
I This should suffice for our learner to figure out an (ε, δ) approximation of f −1.
I This violates the one way property of f .

7. What is VC(Fn)?

22/25

Summary

Summary

1. We derived efficient algorithms for solving the ERM problem for some classes under the

realizability assumption.

2. However, implementing ERM for some of these classes in the agnostic case is NP-hard.

3. From the statistical perspective, there is no difference between the realizable and agnostic cases,

both are learnable because they have finite VC dimension.

4. We have also shown that implementing ERM for 3DNF is hard even in the realizable case, yet the

class is efficiently learnable by another algorithm.

5. Hardness of implementing the ERM rule for several natural hypothesis classes has motivated the

development of alternative learning methods, which we will discuss in the next sessions.

23/25

Readings

1. Chapter 8 of Shai Shalev-Shwartz and Shai Ben-David Book1

2. Chapter 6 of Kearns and Vazirani Book2.

1Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning : From theory to algorithms. Cambridge University

Press, 2014.
2Michael J. Kearns and Umesh Vazirani. An Introduction to Computational Learning Theory. MIT Press, 1994.

24/25

References

Michael J. Kearns and Umesh Vazirani. An Introduction to Computational Learning Theory. MIT

Press, 1994.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning : From theory to

algorithms. Cambridge University Press, 2014.

25/25

Questions?

25/25

	Introduction
	Computational complexity
	Computational complexity of learning
	Hardness of learning
	Summary

