Computational Plasticity

in Powder Forming Processes

Amir R. Khoei

The application of computer-aided engineering is essential in modern metal forming technology. Process modeling for the investigation and understanding of deformation mechanics has become a major concern in research, and the finite element simulation has assumed increased importance, particularly in the modeling of powder forming processes.

The main purpose of this book is to present the fundamentals and applications of finite element plasticity in powder forming analysis and technology. The book focuses on specific areas, such as large deformation, including: Lagrangian and arbitrary Lagrangian-Eulerian formulation, classical and modern constitutive theories, such as single-surface, double-surface and multi-surface plasticity models, endochronic plasticity theory, continuum model of frictional phenomena, a finite strain plasticity based on hypoelasto-plastic model, and finally, the presentation of pre- and post-processing of powder compaction software (PCS_SUT).

in Powder Forming Processes putational Plasticity

http://books.elsevier.com

Khoei

ELSEVIER

Computational Plasticity in Powder Forming Processes

Computational Plasticity in Powder Forming Processes

Amir R. Khoei

Associate Professor

Civil Engineering Department Sharif University of Technology P.O. Box 11365-9313 Tehran Iran

2005

Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo ELSEVIER B.V. Radarweg 29 P.O. Box 211, 1000 AE Amsterdam The Netherland ELSEVIER Inc. 525 B Street, Suite 1900 San Diego, CA 92101-4495 USA ELSEVIER Ltd. The Boulevard, Langford Lane Kidlington, Oxford OX5 1GB UK ELSEVIER Ltd. 84 Theobalds Road London WC1X 8RR UK

© 2005 Elsevier Ltd. All rights reserved.

This work is protected under copyright by Elsevier Ltd, and the following terms and conditions apply to its use:

Photocopying:

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for nonprofit educational classroom use.

Permissions may be sought directly from Elsevier's Rights Department in Oxford, UK; phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com. Requests may also be completed on-line via the Elsevier homepage (http://www.elsevier.com/locate/permissions).

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP, UK; phone (+44) 20 7631 5555; fax (+44) 20 7631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative works

Tables of contents may be reproduced for internal circulation, but permission of the Publisher is required for external resale or distribution of such material. Permission of the Publisher is required for all other derivative works, including compilations and translations.

Electronic Storage or Usage

Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher.

Address permissions requests to: Elsevier's Rights Department, at the fax and e-mail addresses noted above.

Notice

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

First edition 2005

ISBN: 0080446361

Printed and bound in Great Britain by MPG Books Ltd, Bodmin, Cornwall

Working together to grow				
libraries in developing countries				
www.elsevier.com www.bookaid.org www.sabre.org				
ELSEVIER	BOOK AID International	Sabre Foundation		

To my wife and son Azadeh and Arsalan

Contents

Preface

1. Introduction	1
1.1. Metal forming processes	1
1.2. Design of forming processes	4
1.3. Finite element analysis in metal forming	6
1.4. Powder compaction processes	7
1.5. Powder metallurgy technology	8
1.6. Mechanical behavior of powder	9
1.7. Numerical simulation of powder forming processes	11
2. Finite Element Method	19
2.1. Introduction	19
2.2. Governing equations for powder forming analysis	21
2.3. Lagrangian formulation	22
2.4. Finite element discretization	26
2.5. Time domain discretization	29
2.6. Nonlinear iterative strategy	32
2.7. Arbitrary Lagrangian-Eulerian method	35
2.8. ALE governing equations	37
3. Powder Constitutive Models	44
3.1. Introduction	44
3.2. Generalized plasticity	47
3.3. Plasticity models for porous materials	51
3.4. Plasticity models for granular materials	52
3.5. Plasticity models for powder materials	55
3.6. MCEC plasticity model	60
3.7. Double-surface plasticity model	63
3.8. The three-invariant single plasticity model	67
3.9. Integration of the constitutive relation	70
4. Boundary Friction Model	101
4.1. Introduction	101
4.2. Physical aspects of friction	102

vii

Contents

4.3. Plasticity theory of friction	104
4.4. Modeling of friction	110
4.5. Continuum model of friction	111
4.6. Interface element formulation	115
5. Application of Cap Plasticity Model	128
5.1. Introduction	128
5.2. Experimental investigation	129
5.3. Parameter determination	131
5.4. Application of MCEC plasticity model	133
5.5. Application of three-invariant single plasticity model	138
6. Error Estimation and Adaptivity	175
6.1. Introduction	175
6.2. Adaptive FEM strategy	177
6.3. Error estimation	178
6.4. Adaptive mesh refinement	180
6.5. Adaptive mesh generator	182
6.6. Mapping of variables	183
6.7. Error estimates and adaptive time stepping	188
6.8. Numerical simulation results	191
7. Advanced Plasticity Models	210
7.1. Introduction	210
7.2. Endochronic plasticity theory	211
7.3. Endochronic theory of plastic deviatoric deformation	212
7.4. Endochronic theory of plastic volumetric deformation	214
7.5. Endochronic theory of plastic volumetric and plastic deviatoric deformations	217
7.6. Endochronic theory of visco-plasticity	223
7.7. Multi-surface plasticity theory	224
7.8. Multi-surface theory of J_2 plasticity	226
7.9. Multi-surface theory of pressure-dependent plasticity	234
8. Finite Deformation Plasticity	246
8.1. Introduction	246
8.2. Finite deformation of endochronic plasticity	248
8.3. Numerical integration of hypoelasto-plastic equations	250
8.4. Finite deformation of endochronic visco-plasticity	256
8.5. Numerical examples of finite elasto- and visco-plasticity	259
8.6. Finite torsion of thin-walled tubes	262
9. Application of Advanced Plasticity Models	294
9.1. Introduction	294
9.2. Application of endochronic plasticity	296
9.3. Application of double-surface plasticity	304
9.4. Application of three-invariant single-cap plasticity	306

v

Contents

10. Discontinuous Displacements and Localization	358
10.1. Introduction	358
10.2. Causes of localization in solid mechanics	360
10.3. Governing equations of incompressible plasticity	361
10.4. Theory of Cosserat continuum	364
10.5. Adaptive strategy for discontinuous displacements	368
10.6. Numerical simulation results	371
11. Powder Compaction Software	403
11.1. Introduction	403
11.2. Overview of the software environment	405
11.3. Pre-processing – mesh generation	407
11.4. The analysis utility environment	408
11.5. Post-processing	409
References	417
Author Index	436
Subject Index	442

vi

Preface

The application of computer-aided engineering is essential in modern metal forming technology. Process modeling for the investigation and understanding of deformation mechanics has become a major concern in research, and the finite element method has assumed increased importance, particularly in the modeling of powder forming processes. The finite element method emerges as the preferred approach and its flexibility leads to the development of powerful program packages capable of treating wide range of problems. The FE analysis provides detailed information on conditions within the processed material, which is often more complete than can be obtained even from elaborate physical experiments, and the numerical simulation makes it possible to examine a range of designs, or operating conditions economically. The main purpose of this book is to present the fundamentals and applications of finite element plasticity in powder forming analysis and technology.

The book is primarily written for graduate students and researchers (Masters and PhD students in Mechanical, Materials, Civil and Chemical Engineering). However, it will be useful to practicing engineers who have a good background in FEM and who are interested in applying this technique to the analysis of metal forming processes.

The book begins with a general background on the subject in Chapter 1. A general description of the governing equations for large deformation process of metal powder forming is given in Chapter 2 based on the Lagrangian and arbitrary Lagrangian-Eulerian formulation. Chapter 3 describes the mechanical behavior of powder materials using classical and modern constitutive theories. A combination of a Mohr-Coulomb and hardening cap model, a generalized double-surface plasticity and a three-invariant single plasticity theory are developed in this chapter in the concept of the generalized plasticity formulation. In Chapter 4, the general problem of formulating continuum models for frictional phenomena and of developing computational methods for analyzing these phenomena is introduced. Chapter 5 illustrates the applicability of the cap plasticity in simulating powder forming processes. Chapter 6 is devoted to the application of adaptive FEM strategy in the analysis of powder forming processes. In chapter 7, a new approach is developed based on an endochronic density-dependent plasticity model for describing the isothermal deformation behavior of powder materials. An application of the multi-surface plasticity theory is presented for pressure-independent and pressure-dependent materials in this chapter. In chapter 8, the numerical modeling of powder forming process is simulated by a finite strain plasticity based on hypoelasto-plastic formulation. Chapter 9 presents 2D and 3D numerical modeling of powder forming process using advanced plasticity models. In chapter 10, a computational algorithm is presented for dealing with softening plasticity due to material instability. Finally, the powder compaction software (PCS SUT), which is designed for pre- and post-processing for computational simulation of the process compaction of powder is presented in Chapter 11.

Preface

Sincere thanks are due to a number of individuals. I wish to express my sincere gratitude to Professor Roland W. Lewis, University of Wales Swansea, who helped me to devote my careers to research in powder compaction. I am indebted to the predecessors of this research, in particular Professor D.T. Gethin, Dr. D.V. Tran, and Dr. R.S. Ransing, University of Wales Swansea, whose work formed the basis of the new developments reported here. I wish to thank my colleagues and former graduate students in the Department of Civil Engineering, Sharif University of Technology, who have contributed to the advances in the application of computational plasticity to powder forming; Professor M. Mofid, Dr. A. Bakhshiani, A.R. Azami, S.A. Gharehbaghi, S. Azizi, N. Jamali, A.R. Tabarraie, A. Riahi and M. Anahid. I also thank S. Azizi and A.R. Azami for their contribution in the preparation of this manuscript.

Amir R. Khoei