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Preface

The systematic analysis of solid mechanics problems using numerical techniques

can be traced back to the 1960s and 1970s following the development of the finite

element method. The early approaches to elastic materials and, to a certain extent,

inelastic problems, paved the way to an all-encompassing discipline known today

as computational materials modelling.

As computer technologies have evolved, placing portable computers on the desk

of virtually every university staff and graduate student, numerical techniques and

algorithms have experienced extraordinary advances in a wide range of engineering

fields. The development of new computational modelling strategies, especially those

based on the finite element method, has prompted new applications such as crystal

plasticity, damage and multi-scale formulations, semi-solid, particulate, porous and

functionally graded materials amongst others.

This book was conceived in an attempt to congregate innovative modelling

approaches so that graduate students and researchers, both from academia and

industry, can use it as a springboard to further advancements. It is also impor-

tant to say that this book is by no means exhaustive on the subject of materials

modelling and some advanced readers would probably have appreciated the in-

clusion of further details on the underlying mathematical formulations. For the

sake of objectivity, we have focussed on topics which show not only new and

innovative modelling strategies, but also on sound physical foundations and both

promising and direct application to engineering problems. Emphasis is placed on

computational modelling rather than materials processing, although illustrative

examples featuring some process applications are also included. A review of the

state-of-the-art modelling approaches as well as a discussion on future trends and

advancements is also presented by the contributors.

Finally we would like to sincerely thank all the authors for their time and

commitment to produce such high quality chapters. We really appreciate their

contribution.

July 2010 Miguel Vaz Jr.

Eduardo A. de Souza Neto

Pablo A. Muñoz-Rojas
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University of Porto

Faculty of Engineering

Rua Dr. Roberto Frias

4200-465 Porto

Portugal

Guillermo Juan Creus

Federal University of

Rio Grande do Sul

Department of Civil Engineering

Centre for Computational and

Applied Mechanics

Rua Osvaldo Aranha

90035-190 – Porto Alegre

99, Rio Grande do Sul

Brazil

Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques.
Edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Munoz-Rojas
Copyright  2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32479-8



XVI List of Contributors

Luiz Antonio B. da Cunda

Federal University of Rio

Grande Foundation

School of Engineering

Rua Alfredo Huch

96201-900 – Rio Grande

475, Rio Grande do Sul

Brazil
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7
Modeling of Powder Forming Processes; Application of a
Three-invariant Cap Plasticity and an Enriched Arbitrary
Lagrangian–Eulerian FE Method
Amir R. Khoei

7.1
Introduction

Powder metallurgy is a highly developed method of manufacturing reliable ferrous
and nonferrous parts. The powder metallurgy process is cost-effective, because
it minimizes machining, produces good surface finish, and maintains close di-
mensional tolerances. The method is a material-processing technique utilized to
achieve a coherent near-to-net shape industrial component. The often extremely
high tolerance requirements of the parts and the cost for hard machining of a sin-
tered component are a challenge for die pressing. One of the main difficulties that
exists in the compaction-forming process of powders includes a nonhomogeneous
density distribution, which has wide ranging effects on the final performance of
the compacted part. The variation of density results in cracks and also in localized
deformation in the compact, producing regions of high density surrounded by
lower density material, leading to compact failure. The lack of homogeneity is
primarily caused by friction, due to interparticle movement, as well as relative
slip between powder particles and the die wall. The die geometry and the se-
quence of movement result in a lack of homogeneity of density distribution in a
compact. Thus, the success of compaction forming depends on the ability of the
process in imparting a uniform density distribution in the engineered part. In
order to perform such analysis, the complex mechanisms of compaction process
must be drawn into a mathematical formulation with the knowledge of material
behavior.

A number of constitutive models have been developed for the compaction of
powders over the last three decades, including micromechanical models [1–3],
flow formulations [4], and solid mechanics models [5–11]. The porous material
model, generally known as a modified von Mises criterion [12], has been used for
the simulation of powder-forming processes. This model includes the influence
of the hydrostatic stress component, and satisfies the symmetry and convexity
conditions required for the development of a plasticity theory. The yielding of
porous materials is more complicated than that of fully dense materials, because
the onset of yielding is influenced not only by the deviatoric stress components
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