
Abstract— Tackling the dark silicon problem in a 
heterogeneous multi-core system, the temperature constraints 
across the system should be addressed carefully by assigning a 
proper set of tasks to a pool of the heterogeneous cores during 
the run-time. When such a system is utilized in a reliable/real-
time application, the reliability/timing constraints of the 
application should also be augmented to the temperature 
constraints and make the tasks mapping problem more and 
more complex. To solve the mapping problem in such a 
situation, we propose READY; an online reliability- and 
deadline-aware mapping and scheduling algorithm for 
heterogeneous multi-core systems. READY utilizes an adaptive 
power constraint (as a metric for temperature measurement) 
that is updated according to the number and position of the 
active cores on the chip. READY, first, attempts to meet the 
reliability target of the system by improving the reliability of 
each task. Then, it performs the mapping and scheduling of the 
tasks on cores of different islands, so that the peak power and 
timing constraints are met. The simulation results illustrate that 
while READY guarantees the timing constraints and meets 
reliability targets, it improves the peak-power-aware system 
schedulability (chip performance) by 23.77% (up to 40.69%). 
 

Index Terms— Power constraint, Reliability, Timing 
constraint, Schedulability, Heterogeneous architectures. 

I. INRODUCTION 
ETEROGENEOUS multi-core processors are a branch 
of multi-core systems where the architectural 

heterogeneity and diversity in features of different parts 
enable digital designers to have more ability in managing and 
balancing power consumption [1] and reliability of the 
system. Due to this heterogeneity, different tasks, by running 
on distinct parts with diverse frequencies and voltages, 
consume different average power. These variations in system 
characteristics can be used to achieve the application’s 
desired goals including power, energy consumption, and 
reliability. Real-time applications are one of the important 
domains that benefit from heterogeneous architectures [4]. In 
real-time applications, any violation of constraints will cause 
critical conditions and systems failure [4][9][46]. For this 

reason, these applications should have high reliability, which 
is achieved through fault tolerance techniques [37].  

Tasks replication is one of the effective approaches to 
achieve high reliability in multi-core systems 
[4][10][11][12]. In this approach, by scheduling the task 
replicas on different cores, the probability that at least one of 
them runs correctly will increase, and therefore the reliability 
of the system will improve. While this approach theoretically 
increases the reliability of the task, it can impose another 
reliability challenge to the design, which is thermal violation 
due to activating more and more cores across the multi-core 
chips to run the replica tasks [6][7][11][12]. As a result, it is 
critical to managing the temperature and peak power of the 
fault-tolerant real-time systems [6][7][19]. 

Generally, in today's multi-core systems, the size of the 
processing cores relative to the operating voltage is 
disproportionately shrinking [13][24][31][32][35]. This 
process increases the power density of the chips, which 
causes excessive temperature rise on the chip. As a result, a 
part of the chip must be inactive so that the system operates 
within a safe temperature range, which is called dark silicon 
[14][33]. For real-time systems, designers consider an upper 
limit of power consumption to ensure that the temperature on 
the chip is within the safe range [6][7][12]. Thermal Design 
Power (TDP) is an estimate of the upper limit of power 
consumption that is considered at system design time 
[6][7][12]. This power constraint has been widely used in 
designing systems [6][7][15]. However, TDP is a 
conservative estimate, with the assumption that the chip 
works at the worst level of voltage and frequency, and 
workload [2][16]. Recently, a more efficient core-level power 
constraint than TDP has been introduced, which is called 
Thermal Safe Power (TSP). TSP is dynamically calculated 
and is a function of the number of active cores and their 
locations [8]. In order to map an application on a core, this 
power constraint is determined by considering the interactive 
temperature effect of the active and inactive cores around the 
target core [8]. The work [6] is the closest research to our 
work. The authors in [6] have considered similar constraints 
and targets in their work, but by disregarding to the 
heterogeneity of the system and exploiting a pessimistic 
power constraint, reduced system schedulability. 

Motivational Example: Here we will see how READY 
outperforms state-of-the-art approaches in dealing with 
reliability and power consumption constraints. To this end, 
we consider a graph-based application which is received as 
input. For this application, the execution of its tasks has data 
dependency with each other. Since we consider 
heterogeneous multi-core processor with two different types 
of islands (each of them consists of 3 homogeneous cores), 
each task has a different worst-case execution time when 
running on different islands. Fig. 1 depicts the task graph 
(equipped with the deadline and the duration of each task) of 
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the considered application (Fig. 1a) and the three different 
mapping and scheduling scenarios for the tasks in a 
heterogeneous multi-core processor. For the sake of 
comparison, we considered two other mapping and 
scheduling approaches besides READY in this example, one 
is the traditional triple modular redundancy (TMR) which is 
depicted in Fig. 1b [30] and the other is a state-of-the-art 
approach i.e., two-phase peak-power management (TP3M) 
[6] which is illustrated in Fig. 1c. Furthermore, the mapping 
and scheduling Gantt chart of the READY approach can be 
seen in Fig. 1d. According to Fig. 1b, the traditional TMR 
scheduling approach first attempts to increase the reliability 
by considering three replicas for each task, i.e. the parallel 
execution of the tasks with TMR technique. It then maps and 
schedules the tasks by considering the load of each core 
regardless of the type of cores and the data dependencies 
between the tasks. Because of the lack of attention to the 
priority of tasks, core heterogeneity, and peak power 
consumption, this approach violates application deadline at 
time 70ms and also TDP constraint on the chip at the time 
slot [30ms to 50ms] and [85ms to 95ms]. Considering 
Fig. 1.c, TP3M method provides three replicas for each task 
to improve the reliability of the system. The overall goal of 
TP3M is peak power-aware reliability management. This 
approach assigns tasks to less-loaded cores, regardless of 
system heterogeneity. Its scheduling goal is to reduce the 
overlaps between the tasks with the highest peak power 
consumption while keeping the maximum power 
consumption below the chip TDP constraint. Also, at first it 
executes two replicas of each task in parallel and then 
schedules the third replica because when no fault occurs, the 
third replica of the tasks is not required. This policy 
drastically reduces system schedulability due to the disregard 
of system heterogeneity and imposing the pessimistic TDP 
constraint and violates the deadline of the application, e.g. at 
the time 70ms. Now let’s see how READY resolves the 
previous challenges in mapping and scheduling the soft real-
time tasks on a heterogeneous multi-core processor. Fig. 1d 
illustrates that READY, by considering system reliability 
target, provides a different number of replicas for each task 
to prevent extra execution of replicas for the tasks. In order 
to improve the schedulability and performance, READY 
employs TSP constraint as an adaptive power constraint on 
each core. TSP is dynamically calculated and is a function of 
the number of active cores and their locations [8]. In order to 
meet the application deadline, READY determines the tasks 
that are on the critical path and then they are assigned to the 
higher performance cores along with their replicas. Then, the 
remaining application’s tasks and their replicas are assigned 
to cores that are capable of meeting deadline and peak power 

constraint with the lowest TSP. In order to schedule the tasks, 
READY first checks the TSP constraint of the designated 
core. If the selected task meets the TSP constraint, the task 
can be scheduled, otherwise, the execution of task shifts to 
the next time slots. This shifting increases the probability of 
meeting the deadline because if we shift the whole of the 
mentioned task to the next time slots, we should re-schedule 
its other data dependent tasks. Therefore, in order to increase 
the probability of deadline meeting and utilize the core 
efficiently, we use this shift. Indeed, READY decides about 
the scheduling each part of a task individually. Accordingly, 
this example demonstrates that READY has been able to 
increase tasks schedulability (system performance) by 
adhering to deadlines, power constraints, and system 
reliability target. In the following subsection, we will 
introduce how we can apply READY to its target system. 

In this paper, we present READY; a mapping and 
scheduling algorithm by exploiting the features of 
heterogeneous multi-core systems and considering the power 
constraints that are calculated according to the state of the 
chip. Our proposed method improves the reliability of 
applications by exploiting fault tolerance techniques. The 
mentioned reliability improvement imposes more 
computational workload to the system, which increases the 
temperature of the chip. As a result, READY employs 
adaptive power constraints at the core-level to manage the 
temperature of the system. Furthermore, power constraints 
are updated during run-time to keep the performance of the 
system at an acceptable level. 

In summary, READY’s contributions in this work are as 
follows: 

• Proposing a reliability improvement method for 
graph-based applications that inserts the different 
required number of replicas for each task such that a 
specific system reliability target is met. 

• Presenting a mapping and scheduling algorithm for 
task graph model with respect to power constraints 
in heterogeneous multi-core systems. 

• Providing a dynamic frequency scaling method 
based on graph-based applications (Sub-Frame-
Based DFS) for heterogeneous multi-core systems. 

We evaluated READY by exploiting Gem5 [26], McPAT 
[27], HotSpot [28], and TSP [8] simulators. We used a set of 
applications from PARSEC Benchmark [29]. Our simulation 
results show while READY guarantees the timing constraints 
and preserves reliability target it improves the peak-power-
aware system schedulability (chip performance) by 23.77 
percent (up to 40.69 percent).  

The rest of this paper is organized as follow. In section II 
we will explore the related work. Section III explains the 

 
(a)                                                (b)                                                                                      (c)                                                                                  (d)  

 Fig. 1. Motivational example. a) Task graph of a graph-based applications (task graph model), b) TMR mapping and scheduling [30], c) TP3M mapping and 
scheduling [6], and d) READY mapping and scheduling. 
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preliminaries on the system model. In section IV we will 
introduce READY in detail. Section V presents our 
evaluation system setup and results. Finally, in section VI we 
conclude the paper. 

II. RELATED WORK 
Generally, researches related to the power-budgeting and 

energy management in heterogeneous multi-cores real-time 
systems which take into account reliability are divided into 
two categories: (i) Power/energy management in 
heterogeneous multi-core systems, regardless of the 
reliability, (ii) Reliability-aware power management in 
homogeneous multi-core systems.  

Several works have been carried out on heterogeneous 
multi-core processors that focus on the voltage/frequency 
scaling method applied to each core [17]. However, very few 
works have been done to reduce energy in heterogeneous 
multi-chip processors with the VFIS model (the cores are 
homogeneous on the island, but the islands can differ in terms 
of the number and type of cores with each other) 
[1][2][3][18][36][38][44]. Muthukaruppan et al. in [1] seek 
to observe performance constraints along with reduced power 
consumption. It should be noted that this study did not 
consider real-time constraints. In addition, diminishing 
power does not always mean that we have reduced energy 
consumption [2][6][7]. One of the works done in the field of 
energy reduction in heterogeneous processors is the work 
[18]. This work attempts to balance overall utilization on each 
island by exploiting Equally-Worst-Fit-Decreasing (EWFD) 
algorithm. Furthermore, [2] provides a mapping algorithm by 
using task partitioning and considering the energy factor for 
each task, which aims to reduce the energy consumption of 
the system. Finally, the authors in [5] have provided a method 
for managing the processor's resources with the goal of 
increasing the system’s performance and respect to the power 
density constraints. 

A lot of studies has been done to maximize performance 
by taking into account various parameters such as process 
variation, reliability, and temperature considerations 
[20][21][22][23][39]. Kanduri.et. al. in [25] have presented a 
temperature management scheme to meet the power 
constraints on the chip in a way that the performance of the 
processor is not degraded. This paper presents a sparse 
mapping algorithm that is superior to dense mapping 
algorithms in terms of cumulative heat on the chip. Also, 
several works have been done to study both power and 
reliability in the homogeneous multi-core systems [6][7][15]. 
Salehi et al. in [15] have developed a reliability management 
system for dark silicon processors by taking into account 
TDP, soft errors, and process variations. Ansari et al. [6] have 
proposed a peak-power-aware reliability management 
method that manages peak power overlays among tasks 
running concurrently such that the system reliability is 
preserved at an acceptable level. Also, in the work [7], the 
authors have tried to meet TDP in the standby-sparing 
systems by proposing two distinct scheduling policies for 
primary and backup tasks. 

However, unlike the presented READY approach, the two 
concepts of reliability and power-budgeting are not 
simultaneously considered for graph-based applications in 
heterogeneous multi-core systems, which are widely used 
today. Previous works either managed these two concepts in 
the homogeneous multi-core systems or only managed power 

and energy in the heterogeneous multi-core systems for this 
type of application. 

III. PRELIMINARIES ON SYSTEM MODEL 
To introduce and evaluate the READY approach, first, 

we need to explain our system model.  In this section we 
declare application model, platform model, power model, and 
fault model. 

A. Application Model  
READY is considered to utilize soft real-time workloads 

that benefits from graph-based applications. Each application 
consists of n tasks Φ= {T1, T2, …, Tn} that has data 
dependency with each other and can be modeled as a graph 
which nodes and edges respectively represent tasks of 
application and their data dependency [6]. Fig. 1a depicts an 
abstract example of this graph. The deadline for all tasks of 
an application is defined commonly and depicted with D. 
Also, the worst-case execution time of the task Ti at the 
maximum frequency is shown with WCETi. 
B. Platform Model 

We considered  READY  to be implemented on top of an 
island-based architecture of heterogeneous multi-core 
processors like [2][3]. In island-based architecture, each 
island benefits from multiple processing cores. We consider 
that each processor has two distinct types of islands: (1) Low 
Power Island (LPI) and (2) High-Performance Island (HPI). 
Each of the islands has several cores, the cores type and their 
voltages are the same in each island. However, due to 
applying the Dynamic Frequency Scaling algorithm (DFS), 
each of the cores of an island can have different frequencies. 
We declare the number of cores in islands LPI and HPI, 
respectively, with N!"# and	N$"#, and the total number of 
processor cores with N=NHPI + NLPI. 

C. Power Model and Analysis  
Power consumption in real-time systems includes 

dynamic power and static power, which is mostly consumed 
by leakage currents and system activity, respectively [8][15].  

(1)  

where Isub is a subthreshold leakage current, α is the system 
activity factor, Vi and fi are supply voltage and operational 
frequency, and CL is the average switched capacitance. 

In order to reduce the power consumption, Dynamic 
Voltage Scaling (DVS) and Dynamic Frequency Scaling 
(DFS) methods are used such that tasks’ timing constraints 
are not violated. However, exploiting any of these methods in 
the systems has its own advantages and disadvantages. DVS 
enables the systems to reduce the power consumption as 
much as possible, but this method is hardware-dependent, and 
for its implementation, each core requires additional circuits 
(i.e. additional hardware overhead) [40][41]. Due to the 
increasing number of cores on the processors and their 
heterogeneity, implementation of these circuits imposes 
unacceptable overhead [6][40][41]. On the other hand, DFS 
is the software-dependent method and, by decreasing the 
frequency, is able to reduce the power consumption to meet 
the power constraint of the system. Also, it should be noted 
that exploiting the DVFS technique has a very negative 
impact on the system reliability in two aspects [30]. First, by 
scaling the supply voltage, the fault rate of the system 
increases exponentially. Second, reducing the frequency 

2( , )total i i static dynamic i L i isubP V f P P I V C V fa= + = +



increases the execution time of tasks and has a negative effect 
on the reliability of the task, as a result degrading the system 
reliability. However, by exploiting the DFS technique, the 
fault rate of the system did not change and just the execution 
time of tasks increases [30].  Hence, in this work, we use the 
dynamic frequency scaling method which is developed for 
heterogeneous multi-core architecture. 

D. Fault Model and Reliability Analysis 
In this paper, we consider two common types of faults, (i) 

permanent, and (ii) transient [4][6][7]. The incidence of any 
occurrence that violates the peak power constraints causes 
system failure and is considered as a permanent fault [6][7]. 
Also, any perturbed occurrence on the underlying core 
without permanent damage is considered as a transient fault 
[4][6][34]. The average fault rate can be represented as 
follows [6][7]: 

(2)  

Where V is the supply voltage, λ0 is the transient fault rate at 
the maximum value of V and d determines the system 
sensitivity to voltage scaling. It should be noted that in this 
work since we exploit the DFS method in order to manage 
power consumption, the value of supply voltage is constant. 
Hence, the value of d doesn't have any effect on the fault rate 
and the fault rate is equal to λ. Meanwhile, the reliability 
function of a task can be expressed as follows [6][7]: 

(3)  
Where λ(V)⤬FVI is task failure rate and Function 
Vulnerability Index (FVI) is the susceptibility of software to 
failure owing to transient fault occurrence in hardware-level 
and 𝒘𝒄𝒊 is worst-case execution time of 𝑻𝒊 [6][7]. Given that 
several copies may be considered for each task and these 
copies may have different reliability due to the heterogeneity 
of the cores; the reliability of each task can be written as [6]: 

(4) 
 

Since each application consists of several tasks then it’s 
reliability can be calculated as [6]: 

(5) 
 

Finally, the system workload consists of several applications, 
then the reliability of the system can be written as [6]: 

(
(6)  

IV. HOW DOES READY WORK? 
In this section, we will introduce the READY approach 

in details and explain how READY meets timing, power 
constraints and reliability target and simultaneously improve 
schedulability of the heterogeneous multi-core processors for 
graph-based applications. 

 READY in Details 
In this paper, we seek to provide a timing constraint- and 

reliability-aware power-budgeting method for applications 
mapping and scheduling in heterogeneous multi-core 
systems. Previous studies have shown that existing power 
budgeting on the chip surface are not appropriate for 
heterogeneous multi-core processors. These power budgets 
for preventing temperature violations are often considered 
very pessimistic which can violate the applications deadline. 
The goal of our proposed method is to meet the core-level 

power constraints, preserving the system reliability at an 
acceptable level and meeting the deadlines of applications. 
Hence, two algorithms are presented for the applications 
mapping and scheduling with the desired characteristics and 
the frequency scaling to reduce the power consumption. The 
first step of READY is determining the required number of 
replicas for each task according to the system reliability 
target. It should be noted that READY never eliminates any 
tasks such as low-reliability tasks, however, it improves the 
reliability of them. Indeed, a task with the minimum 
reliability gets more attention from READY. Because the 
reliability improvement algorithm in each iteration finds the 
task with the minimum reliability and introduces the selected 
task as the system bottleneck in the application, and then 
inserts a replica for the selected task. This process continues 
until the reliability of the application satisfies the reliability 
target. Moreover, it should be mention that READY in any 
situation is able to meet the reliability target because we 
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Algorithm 1. READY mapping and scheduling algorithm  
INPUT: readyApps: graph-based applications (each of them consist of n 
tasks with the global deadline) with worst-case execution time, 
resources: Two set of available cores with different types: ΦHPI={C1, …, 
CNHPI}, ΦLPI={C1, …, CNLPI}, power-budget: initial core power constraint 
PinitialTSP,core. 
OUTPUT: applications Mapping to cores of islands and applications 
scheduling. 
Body: 
 1:    Slotssize= max (the deadlines of all readyApps);    #Size of time slots in             
                                                                                                      the frame   
----------------------------------Offline Part--------------------------------------                       
.2:    while (Rsystem < Rsystem_target) do       #Meeting the system reliability target 
 3:          MinR_App= index.min (the reliability of all readyApps); 
 4:          MinR_task= index.min (the reliability of AppMinR_App ‘s all tasks); 
 5:          Insert.replica (MinR_task);             #Insert a replica of taskMinR_task   
                                                                                   to AppMinR_App 
 6:          Rsystem =Update_reliability ();                                 #Based on Eq. 6 
 7:     end 
 8:    while (readyApps is not empty) do            #Mapping ready applications 
 9:           MinD_App= Index.min (the deadlines of all readyApps); 
10:          Parallelization_factor= max_size(levels of AppMinD_App); 
11:         Cores_NumberMinD_App=Cores.number(Parallelization_factor); 
12:         Critical_Path_Tasks= find_Critical_Path(AppMinD-App); 
13:         CMinTSP_HPI =find_Core(TSP of cores - Critical_Path_Tasks     
                                               estimated p-power, Cores_NumberMinD_App); 
14:         CMinTSP_HPI.add (Critical_Path_Tasks);  
                                                    #Finding min value TSP of HPI cores according to                                                                                                                                                                                                                                          
                                               Cores_NumberMinD_App and mapping critical path tasks 
15:         AppMinD_App.remove(Critical_Path_Tasks); 
16:         Non_Critical_Path_Tasks=AppMinD-App - Critical_Path_Tasks; 
17:         while (Non_Critical_Path_Tasks have a task) do 
18:               Longest_Task_First = find_task(Non_Critical_Path_Tasks);     
                                                                    #Finding longest task in terms of WCET 
19:               CMinTSP =find_Core (TSP of cores - Longest_Task_First     
                                               estimated p-power, Cores_NumberMinD-App); 
                 #Finding nearest larger TSP among cores that able to meet the deadline 
20:               CMinTSP.add (Longest_Task_First); 
21:               AppMinD_App.remove (Longest_Task_First); 
22:         end 
23:         readyApps.remove (MinD_App);  
24:   end 
----------------------------------Online Part--------------------------------------        
25:   for (all cores)                                                            #Scheduling part 
26:         while (tasks are able to scheduling) do   #Scheduling tasks in each     
                                                                                             core    
27:               first_task = find_first_task(each core tasks set); 
28:              if all cores TSP constraints will be satisfied  
29:                   schedule (MinD_task); 
30:                   update_TSP (all cores); 
31:              else 
32:                   Shift_forward (remained partitions of first_task); 
33:         end 
34:   end 
35:   if all the tasks are not scheduled then 
36:         return infeasible; 
 



consider the replica insertion in the offline phase (design 
time) but we don't claim that READY is able to meet a tight 
deadline in any condition. If there is an application with high 
utilization and the deadline of the application be very tight, 
READY may miss the deadline of the application. In this 
paper, we will illustrate that in the comparison with the state-
of-the-art methods, READY is able to improve the 
PPA_Sceduablity (i.e. READY executes more tasks by 
considering deadlines, peak power constraint, and reliability 
target). Considering a feasible solution, it should be 
mentioned that the proposed problem is an NP-hard problem 
[15][32]. Therefore, we cannot find an optimal solution for 
tasks mapping and scheduling (by considering several 
constraints) in the polynomial-time in runtime. As a result, 
we have proposed READY as a heuristic method that meets 
the power constraint, the reliability target, and the deadlines. 

Here, we focus on applications mapping to the cores of the 
islands and tasks scheduling on the cores. In order to solve 
the mentioned problem, we have presented a heuristic 
algorithm in Algorithm 1. First, it should be noted that the 
value of a time slot depends on the simulation tool and the 
accuracy of it1. Algorithm 1 has two parts: (i) the offline part, 
and (ii) the online part. In the offline part, at first, in order to 
reach the system’s reliability target, we find the application 
with the lowest reliability which is the bottleneck of the 
system. Then, we find the task of this application with the 
minimum reliability, and then, a replication of the selected 
task is inserted into the application to improve the system’s 
reliability. This process is repeated until the system’s 
reliability target is met (lines 2-7). In order to map the 
applications, the mapping operations start with an application 
that has the closest deadline to meet the timing constraints 
(line 9). For mapping the selected application, the algorithm 
considers a parallelization factor (line 10). In order to allocate 
appropriate numbers of cores to each application, we have 
determined this factor for each application. The way to 
determine this factor is that the algorithm for each application 
finds the maximum number of tasks that can be executed 
concurrently (based on the application’s task graph). Based 
on the mentioned factor, the number of cores considered for 
one application is calculated in line 11. The application 
mapping operation is followed in two steps. In the first step, 
tasks that are in the critical path of the application are 
identified and then mapped to the cores on the high-
performance island to meet the application deadlines (line 
12). In order to achieve system power efficiency, the cores on 
the high-performance island are selected that have the nearest 
larger TSP than the estimated peak power consumption of the 
application (lines 13-14). It should be noted that in the offline 
 
1 In this work, we have exploited the gem5 architecture simulator 
and in our simulation, we have captured the system profile every 
1ms. 

phase there are the peak power consumption estimations table 
of tasks when running on the available processors. After 
mapping the tasks on the critical path, the second step of the 
mapping operation continues with the remaining tasks of the 
application, where the priority of mapping is with the longest 
tasks in terms of WCET (lines 16-22). The philosophy of 
using this policy is that, when we select the priority of the 
tasks with the longest worst-case execution time, the 
probability of executing the tasks in the critical path increase. 
Indeed, by applying this policy, we increase the probability 
of meeting the application deadline. After completing the 
mapping of an application, we are looking for the next 
application that has the closest deadline. The mapping section 
of Algorithm 1 (lines 8-24) ends with the mapping of all 
applications. In the online part (lines 25-36), the priority of 
the tasks scheduling on each core is with the longest 
unscheduled task whose predecessors have all been 
scheduled. If the cores do not violate their TSP, we schedule 
the tasks and then update all TSP values. Otherwise, 
Algorithm 1 calls Shift_forward function and the execution 
of task shifts to the next time slots (line 32). Indeed, for 
meeting the TSP constraint at each time slot, we check the 
power consumption of the mentioned task on the designated 
core at each time slot. If shifting is required, the current time 
slot of the selected task is moved to the next time slot that 
TSP is met. These shifting increases meeting the deadline 
because if we shift the whole of the mentioned task to the next 
time slots, we should re-schedule its other dependent tasks. 
Therefore, in order to increase the deadline meeting and 
utilize the core efficiently, we use this shift. Finally, after the 
end of the online part, if not all the tasks are scheduled, the 
algorithm returns infeasible (lines 35-36).  

In order to further reduce power consumption, READY 
utilizes the sub-frame based DFS algorithm which is 
illustrated in Algorithm 2. If there are time slots on a core that 
are not used for any tasks, we consider these time slots as 
slack time. The algorithm can use these slack times to further 
reduce power consumption (scaling the frequency). In the 
graph-based applications, the tasks of an application have 
data dependency with each other. It should be noted that 
according to this data dependency the finish time of a task 
may be the start time of another task. Hence, we cannot apply 
EVEN DFS algorithm in all slack times. As we mentioned in 
the description of Algorithm 1, we consider the numbers of 
cores for each application. In the assigned cores to one 
application, we find sub-frames that tasks of the application 
do not have data dependency with each other. Algorithm 2 
divides the whole of the system’s frame (execution time-bar) 
into a number of sub-frames (line 1). In each sub-frame, the 
execution of all the tasks is independent of each other. Then, 
Algorithm 2 executes the EVEN DFS function for all sub-
frames (lines 2-4). The EVEN-DFS technique [42] distributes 
slacks evenly among all tasks that are able to exploit these 
slack time (according to the application deadline and other 
constraints).  In this function (lines 5-8), Algorithm 2 finds 
the slack time of each sub-frame and then assigns them to the 
tasks that their deadlines and TSP constraints are not violated 
by allocating these slack times. Also, it should be noted that 
the algorithm after scaling the frequency checks the reliability 
of the system with the reliability target. If system reliability 

Algorithm 2. READY Sub-Frame-Based DFS algorithm 
Body: 
----------------------------------Online Part--------------------------------------        
 1:    (Subframes , NumberofSets) = Find_Subframes(Time-Frame); 
 2:    for i=1: NumberofSets 
 3:          DFS(Subframesi); 
 4:    end 
Function DFS(Sf) 
 5:    Slack_Time ← Extract_Slack(Sf);                        
 6:    Taskij = Find_Scalable(tasks in Sf); 
 7:    freqij = max (fee,

!"!"
!"!"#	%&'"(_*+,-

); 

 8:    Perform Taskij at freqij; 
 

 



does not meet the target our algorithm increases the 
frequency in order to meet the target. Finally, we repeat the 
mentioned steps for the cores of another application until all 
cores are covered. By assigning these slack times, Algorithm 
2 can decrease the execution frequency of the tasks, and 
hence, the power consumption of the system is further 
reduced.  

 Complexity Analysis 
To explore the complexity of the READY’s Algorithm, 

first we define a set of notations. We showed the number of 
applications with A, the tasks of each application with Ti 
(i denotes the identification number of the task), the most 
time consuming task with Tmax which is defined as max(T1, 
T2, ..., TA), the number of core in HP island with CHPI, the 
number of core in LP island with CLPI, the total number of 
cores with C and the slot size with T. In order to find slot size, 
the maximum values of application deadlines can be found in 
O(A). Also, in the reliability improvement while loop, the 
minimum value of applications' reliability founded in O(A) 
and also the tasks' reliability minimum value of selected 
application can be found in O(Ti). It’s should be noted that in 
the worst case our algorithm considers 3 replicas for each task 
of each application (according to reliability target and initial 
reliability of tasks). Therefore, in the worst case the reliability 
while loop executed in O(A*Tmax) * max(O(A),O(Tmax)). 
In the next step (offline part) in Algorithm 1, in order to map 
the tasks of applications to the cores of islands, the minimum 

values of applications deadlines found in O(A), also the worst 
case the maximum values of parallelization factor can be 
found in O(Tmax), in the worst case the critical path of one 
application can be found in O(Tmax), finding core for tasks 
in the critical path can be done in O(CHPI), similarly the 
algorithm can find non-critical tasks and core respectively in 
O(Tmax) and O(C). Mapping the tasks of one application can 
be done in O (Tmax * C) and also the mapping of all tasks 
can be done in O(A*Tmax*C). In the next step (online part) 
in Algorithm 1, in order to schedule each task, the scheduling 
operation in each core can be done in O(T) and the scheduling 
of all tasks can be done in O(T*C). Finally, in order to further 
reduce power consumption, applying the sub-frame-based 
DFS can be finished for each time in O(C) and overall, in 
O(T*C). Therefore, the time complexity of READY is the 
max( O(A*Tmax)* max(O(A), O(Tmax)), O(A*Tmax*C) , 
O(T*C),O(T*C)) that is equal to the max(O(A*Tmax)* 
max(O(A),O(Tmax)),O(A*Tmax*C),O(T*C)). In 
comparison with the two mentioned methods, the time 
complexity of TMR and TP3M is 
max(O(A*Tmax),O(A*Tmax*C), O(T*C)). 

Considering READY’s space overhead during the 
runtime, it should be noted that in order to manage peak 
power consumption, we have employed TPS [8] in READY. 
The TSP computes the number of simultaneously active cores 
and determines their positions in the chip with each other. We 
have calculated all the possible combinations that cores may 
be active (2^CHPI + 2^CLPI) in the design time and then 
used the results in runtime. As we mentioned, we have 
2^CHPI + 2^CLPI possible combinations and each value of 
the power constraint needs a byte. Therefore, we need 
2^CHPI + 2^CLPI Byte in order to work with peak power 
consumption in runtime. Moreover, we have a power profile 
for each task. In our simulation we have exploited 7 types of 
benchmark, with average execution time 4420ms, therefore 
we need 30KB (7*4420) space to work with Benchmarks. 
Also, we had CHPI and CLPI cores in our architecture. 
Hence, based on system slot size, C*T Bytes are needed for 
having a power trace on all cores. 

V. EXPERIMENTAL SETUPS AND RESULTS 
In this section, we evaluate the efficiency of READY in 
comparison with state-of-the-art approaches. Fig. 2 illustrates 
the overview  of READY by exploiting several simulation 
tools. To this end, we implemented READY in gem5 
simulator [26]. As the workloads of our experiments, we 
utilized the PARSEC benchmark suite [29]. The power, area, 
and timing information which is used in this study are 
retrieved from McPAT [27]. To model the temperature in this 
study we utilized HotSpot [28], and TSP [8] simulators. Other 
useful tools such as [43] can also be considered for our 

    
                              (a)                               (b)                            (c)                              (d) 

Fig. 3. PARSEC benchmark characterization running on ARM Cortex-A15 and Alpha21264 processors. a) Execution time, b) Reliability, c) Peak power, and d) 
Energy. 
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         Fig. 2. The design flow of READY  
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approach in our future works. The hardware configuration of 
the simulation is a processor with two heterogeneous islands 
(each of them including 9 homogeneous cores) which 
executes different number of tasks (between 36 to 90 tasks). 
The cores on High-performance Island are considered to be 
Alpha21264 type, in which execution of tasks have less 
execution time and more reliability. On the other hand, the 
cores on Low Power Island, are considered ARM Cortex-A15 
which execute tasks with more execution time and less power 
consumption. In the following, the reliability target and 
power constraint are introduced, and then the execution 
scenario is explained to highlight the aspects that are 
evaluated in the experiments. The results are included in the 
analysis of the schedulability and feasibility of the system. 
Finally, we investigate and discuss the insights behind the 
experimental results. 

 Reliability Target and Power Constraint 
Regarding the system reliability target, our target is 

defined according to the avionics DO-178B standard that 
defines five reliability levels from A with highest to E with 
lowest reliability levels. Safety requirements of each 
reliability level are shown in [24] and [45]. In this paper based 
on the mentioned references, we consider 0.99999 as our 
reliability target. About considering the deadlines of 
applications, in the graph-based applications, we consider 20-
40 percent more than the execution times of tasks in the 
critical path as the application deadline [6][31][46]. Finally, 
about peak power constrains, based on our simulation result 

from TSP, the peak power constraint in the low power and 
high-performance island varies between, 4-8.2 watt and 55.9-
87.3 watt, respectively. 

To clarify our motivation for exploiting heterogeneous 
platform, we have measured the worst-case execution time, 
reliability, peak power, and energy consumption values by 
using the mentioned simulation tools on ARM Cortex-A15 
and Alpha21264 processor. The mentioned information is 
shown in Fig. 3. The measured values represent how 
heterogeneity can help designers to achieve the desired goals 
in multi-core real-time systems. Therefore, it is important to 
provide an efficient power budgeting algorithm in these 
systems. 

 Execution Scenario 
We evaluated READY in the realistic-case execution 

scenario on a processor consisting of two islands, low power, 
and high-performance islands. Each of the islands includes 9 
cores. In this scenario, based on the rare nature of the fault 
occurrence (fault rate λ=10-6) during a task execution, if each 
of the tasks' copies is performed correctly, the execution of 
the remaining copies will be canceled. Fig. 4 shows the power 
consumption profile and TSP power constraint adaptation on 
the cores of Alpha21264 and ARM Cortex-A15 when 
READY is applied to them. The simulation results in Fig. 4 
show that our method performs task scheduling by 
considering a fair peak-power constraint on each core so that 
neither peak power violation occurs nor reduce system 
performance loss. 

We compared the simulation results of the proposed 
algorithm in realistic-case execution scenario with the 
following approaches: 

• TP3M: This work presents a  peak-power-aware 
reliability management approach, which removes 
the overlaps of the peak power of concurrently 
executing tasks to keep the maximum power 
consumption below the chip TDP.  

• TMR: The conventional Triple Modular 
Redundancy (TMR) approach attempts to increase 
the system reliability by considering three replicas 
for each task executed in parallel. 

 Analysis of Schedulability 
TP3M approach meets the chip-level constraint but the 

simulation results in Fig. 5 show that it reduces tasks 
schedulability by considering a pessimistic power constraint. 
On the other hand, although the TMR approach has better 
schedulability relative to TP3M, this approach violates the 
chip-level and core-level power consumption constraints. 
READY, by exploiting adaptive power constraint and 
considering the priority of tasks and system heterogeneity, 
has been able to have a much better system schedulability. 
Since READY considers and exploits the features of system  
heterogeneity, it executes the tasks as soon as possible to 
meet their deadlines. Hence, the schedulability of READY is 
higher than other schemes, i.e. TP3M and TMR. 

  Analysis of Feasibility 
In order to evaluate READY, from meeting power 

constraints and improving the task schedulability 
perspectives simultaneously we have defined peak-power-
aware schedulability factor. PPA_Schedulability factor is the 
ratio of the number of time slots, which the peak power 
constraint is met, to the total execution time slots of the frame 

 
a) Alpha21264 

 
b) ARM Cortex-A15 

Fig. 4. Power consumption profile and TSP power constraint adaptation on 
the cores of Alpha21264 and ARM Cortex-A15 when READY is applied 
to them. 

 

 
Fig. 5. Schedulability factor analysis. 
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multiplied by the ratio of the number of tasks which meet 
their deadline to the total number of tasks. 

(7) 
 

PPA_Schedulability can decline 0, in the worst-case 
power-aware schedulability, and can achieve 1 in the best 
case. 

In Fig. 6, a comparison of the simulation results of 
READY with the two mentioned approaches in 
PPA_Schedulability factor is shown. Fig. 6 shows that 
READY performs better in PPA_Schedulability factor. 
READY has been able to improve PPA_Schedulability by 
23.77 percent (up to 40.69 percent). Note that READY and 
TP3M consider the power constraint for the system, but 
READY considers the core-level power constraint instead of 
the chip-level power constraint. Since considering the chip-
level power constraint is pessimistic and reduces the 
performance of the system, READY considers the core-level 
power constraint, and hence, it performs better in 
PPA_Schedulability factor. i.e. READY is higher than other 
schemes in terms of feasibility. 

VI. CONCLUSION 
In this paper, we presented READY “reliability- and 

deadline-aware power budgeting” method. Additionally, we 
have also proposed a Sub-Frame-Based DFS mechanism to 
further reduce the power and energy consumption in 
heterogeneous multi-core systems. READY employs a 
heuristic algorithm for mapping and scheduling the graph-
based applications. Our experimental results show that, in 
comparison with state-of-the-art approaches, READY has 
succeeded to improve the peak-power-aware system 
schedulability by 23.77 percent (up to 40.69 percent) such 
that the applications’ timing constraints, the core-level power 
constraint, and the system’s reliability target are met. 
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