
2020 CSI/CPSSI International Symposium on Real-Time and Embedded Systems and Technologies (RTEST), June 10-11,

2020, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

978-1-7281-7551-5/20/$31.00 ©2020 IEEE

A Comparative Study of Joint Power and Reliability

Management Techniques in Multicore Embedded

Systems

Sina Yari-Karin*, Ali Sahraee*, Javad Saber-Latibari*, Mohsen Ansari*‡, Nezam Rohbani†,

and Alireza Ejlali*
 *Department of Computer Engineering, Sharif University of Technology

*‡The Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT)
†School of Computer Science, Institute for Research in Fundamental Sciences (IPM)

Email: {sinayari, asahraee, jsaber}@ce.sharif.edu, mohsen.ansari@kit.edu, rohbani@ipm.ir, and

ejlali@sharif.edu

Abstract— Low power consumption and high-reliability are

often major objectives in the design of embedded systems. To

reduce power consumption, embedded systems usually employ

system-level power management techniques, e.g. Dynamic

Voltage Scaling (DVS) and Dynamic Power Management

(DPM). To achieve high reliability, embedded systems often

exploit fault-tolerant techniques. Fault-tolerant techniques are

in a trade-off with energy consumption, peak-power

consumption, and temperature. Thus, different methods have

been introduced that simultaneously consider reliability and

power consumption as the system constraints. Several novel

methods have been proposed in previous work to reduce the

power consumption of fault-tolerant systems, but there are no

published guidelines to help designers to select the best approach

for a given application. In this paper, we investigate the

effectiveness and efficiency of these methods by evaluating them

in an identical simulation environment for an accurate

evaluation.

Index Terms— Embedded Systems, Fault Tolerance, Power

Management.

I. INTRODUCTION

Embedded systems are the most widespread computers

utilized in many industries such as the automotive industry,

medical devices, smart city traffic control, and so on [1][2][3].

The main requirements of embedded systems are high

reliability and low power consumption [4][5]. Embedded

systems must tolerate both transient and permanent faults

especially in the Internet of Things (IoT) devices [8][19][22].

Transient faults are mainly caused by electromagnetic

interference and cosmic rays and display themselves as Single

Event Upsets (SEUs) in memories [10]. The transient faults

are usually resolved by re-execution of the tasks [7][11][42].

While, the permanent faults caused by the production time

failures, aging failures, and environmental conditions which

require redundancy to tolerate them [10]. However, fault-

tolerant methods increase the power consumption of the

system due to the use of redundancy [10]. For this reason,

power/energy management methods are used to reduce

power/energy consumption [12][13][14].

Apart from the reliability concerns, when the level of

integration at the chip level increases we face problems like

dark silicon, power density, and peak-power consumption,

and energy consumption [4][9][15][16]. Power management

techniques are used to overcome these problems [17][18].

However, power management techniques degrade system

reliability in many cases [4][6][15][19]. The main problem is

the reconciliation between fault-tolerance and power/energy

management techniques because these thechniques have a

negative effect over each other [15][20][21]. There are many

methods available for reconciliation mentioned above.

Dynamic Voltage and Frequency Scaling (DVFS) and

Dynamic Power Management (DPM) are common system-

level methods used to reduce average and peak power

consumptions [4][10][15]. The DVFS method reduces power

consumption by scaling the voltage/frequency level. DPM

also helps to reduce power consumption by shutting down

unnecessary parts or when power constraint violation occurs.

Thermal Design Power (TDP) and Thermal Safe Power (TSP)

are the system-level power constraints in multicore

embedded systems [4][23]. TDP is a chip-level constraint and

it is equal to the maximum tolerable power that a chip can

consume in the safe band [24]. Recently, TSP has been

defined as a core-level power constraint and provides an

efficient power constraint. It is necessary to keep the power

consumption of the cores below TSP to prevent excessive

temperature rise [25]. It should be noted that experimental

results show that by exploiting power management

techniques like DVFS the fault rate increases and to

compensate for this increase in the fault rate fault-tolerance

methods are mandatory [4][23]. Thus, methods that consider

joint power and reliability management are interested.

In general, fault-tolerance methods can be divided into

two categories: active redundancy methods and passive

redundancy methods [26]. Active redundancy methods use

fault detection to increase system reliability [26][29]. One of

the most popular active redundancy methods is the standby-

sparing method [14][27][28]. In the standby-sparing method,

execution is switched to the spare unit when a fault occurs in

the primary unit [26]. There are three types of options to

assign tasks to primary and spare units, i.e., Hot Standby-

sparing (HSS), Cold Standby-sparing (CSS), and Warm

Standby-sparing (WSS) [26][29]. In the HSS method, the

primary unit and the spare are both set up together, and any

input to the primary unit is also given to the spare unit. If a

fault occurs in the primary unit, the spare unit immediately

begins to execute tasks [26][29]. But in the CSS method, the

mailto:jsaber%7d@ce.sharif.edu

spare unit is off until a fault happens in the primary unit and

after that spare unit starts to execute the tasks [26][29]. The

switching speed between primary and spare units in the CSS

method is longer than in the HSS method. The WSS method

(also known as the de-energized state) is almost like the HSS

method but it executes the initial part of the tasks and leaves

the part that causes aging. On the other hand, passive methods

use fault-masking techniques [26][29]. NMR and task

replication are the most popular passive redundancy methods.

NMR and task replication methods use redundant hardware

to tolerate faults and software replicas to satisfy the reliability

target, respectively. In the task replication method replicas,

tasks can be executed simultaneously with the main tasks

[26][29]. Also, there are hybrid systems that use both active

and passive methods [29]. Fig. 1 shows the standby-sparing,

NMR, and task replication methods.

In this paper, the power/energy consumption and

reliability of different fault-tolerance methods are evaluated.

For this aim, two popular method standby-sparing and task

replication are chosen. In Section II, the related work will be

reviewed. Section III deals with the definition of the problem

and the assumptions. Section IV shows the results of the

experimental evaluation. And in the end, Section V will

present the conclusions of the paper.

II. RELATED WORK

As previously mentioned, we will evaluate two prominent

fault-tolerant methods. i) Task Replication and ii) Standby-

Sparing. The previous works related to these two categories

are discussed here. Ansari et al. [4] proposed a peak power

management scheme called TP3M. They have shown that

although the use of the N-Modular Redundancy (NMR)

technique can increase the system reliability, it can violate

TDP constraint. The TP3M method prevents concurrent

execution of tasks based on the power profile of the

applications and reduces the overlap of the execution of the

main tasks and the replica tasks. The proposed method by

Salehi et al. in [30] is a power-efficient reliability

management method that uses Dynamic Redundancy and

Voltage Scaling (DRVS). This method achieved a significant

improvement in reliability by applying various redundancy

methods like triple and binary redundancy. The PPARM

method presented in [15] is a peak-power-aware scheme that

considers power as a critical resource. The increased power

causes an increase in temperature which results in fault rate

exacerbating. This paper exploits task replication and code

version programming to improve the system reliability while

at the same time meet the TSP constraint. In [21], the authors

have proposed a reliability improvement method that defines

a reliability target for the system. It has shown that task

replication can improve the reliability of the system but, it has

a negative impact on energy consumption. Because of this, the

proposed method determines the minimum number of replicas

for the reliability target and reduces energy consumption by

allocating the appropriate frequency to the replicas. Poursafaei

et al. [31] proposed a method that has two online and offline

phases. In this method, a reliability target is defined and task

replication is responsible for achieving this target. This

method finds the number of replicas and frequency of cores to

minimize energy consumption. Also, the proposed method

benefits from the cancelation of replicas when a task finishes

its jobs successfully. The proposed method in [10] mentioned

that the fault coverage rate and DVS have a negative impact

on reliability. Thus, the proposed method considers the core

frequency, the number of replicas, fault coverage, and energy

consumption induced by the DVS method simultaneously to

minimize energy consumption. Static and dynamic solutions

are proposed in the paper [10]. These methods are responsible

for minimizing energy consumption by reducing the

concurrent execution of replicas. Salehi et al. [32] have

considered the overhead of the N-Modular redundancy

method and have divided the execution of tasks into two

necessary and demand-based phases. In the necessary phase,

only half plus one of the replicas is executed and if the result

of these replicas is as same as, so the fault did not detect and

there is no need to execute the rest of replicas. When a fault is

detected, the rest of the replicas will be executed to achieve

the correct result.

In the study [14], an energy-aware standby-sparing

system for heterogeneous multicore systems is proposed to

tolerate both transient and permanent faults. Also, in this

work, the primary core exploits DVFS and the spare core

exploits only DPM to reduce energy consumption. In [14],

Roy et al. have shown that the selection of LP (Low Power)

or HP (High-Performance) core and the conscious allocation

of frequency on the primary core has a significant impact on

the power/energy consumption. Haque et al. [33] have

proposed a standby-sparing method for fixed-priority tasks in

hard real-time systems. In the proposed method, two queues

are provided for the execution of the primary and backup tasks

to delay the execution of the backup tasks as far as possible

and reduce energy consumption through DPM and DVS

methods. The proposed scheme in [27] has presented an

energy-efficient and reliable scheduling method for a

heterogeneous dual-core system. The proposed method can

minimize power consumption by automatically canceling

backup tasks and taking the voltage/frequency of each core to

a minimum level. Ejlali et al. [7] have asserted that time

redundancy methods are preferred than hardware methods.

The proposed method uses a standby-sparing method and

benefits from dynamic slacks times to minimize energy

consumption, and also the primary and spare units exploit

DVS and DPM techniques, respectively. Khavari-Tavana et

al. [34] have proposed a standby-sparing system that consists

of a feedback system in the primary unit and balances the

workload to manage energy consumption, and meet the

deadline constraint. The mentioned feedback system uses

slack times to reduce total energy consumption. Gou et al. [35]

Primary

Spare

Primary

Spare

time
(b)

Primary

Replica

Replica

Replica

Voter Output

Primary

1
Core 1

Replica

1,1
Core 2

Replica

1,2

(a)

(c)

(d)

time

Primary

2

Replica

2,2

Replica

2,1

System

Input

Spare

System

Input

NMR

Task

ReplicationSystem

Input

Fault

Detection

unti

Fault

Detection

unti

Cold Spare

Hot Spare

Voter

Output

Voter Output

Fig. 1. Different fault-tolerance techniaues, a) Hot spare, b) Cold Spare, c)
TMR, and d) Task replication methods.

have proposed a standby-sparing method that tolerates one

permanent fault and guarantees the reliability of the system for

transient fault. In the proposed method two schemes have been

discussed, i.e. Paired-SS and Generalized-SS. These methods

improve the utilization of the system by exploiting the

combinational use of primary and backup tasks. Also, the

proposed method uses Preference-Oriented Earliest Deadline

(POED) as an (Earliest Deadline First) EDF-based scheduler

to minimize energy consumption. The authors in [36] state

that there is a trade -off between reliability and power/energy

consumption. The proposed method considers this

contradiction and presents a reliability-aware scheduling

algorithm to minimize energy consumption. The proposed

algorithm uses the concept of priority scheduling and

considers two queues. One of these queues is responsible for

holding the low priority tasks based on worst-case execution

time according to the Rate Monotonic scheduling algorithm

and the second queue is responsible for the execution of high

priority tasks. To achieve a higher performance in the standby-

sparing method, the proposed method uses energy-speed

based reliability to meet the reliability target of the standby

sparing system and reduce energy consumption.

As discussed, there are lots of works that use task

replication or standby-sparing methods to reduce

power/energy concerning the reliability target in the system.

In this paper, we have a glance at these methods and our

evaluations will compare these methods to get an estimation

of the effect of exploiting these methods. We want to evaluate

the differences between the primary core type and frequency

selection in the energy/power consumption of standby-sparing

and the impact of the number of replicas and frequency value

in the task replication method.

III. SYSTEM MODEL

A) System Model

Homogeneous and heterogeneous system models are utilized
to evaluate the proposed methods for simultaneous
management of power/energy consumption and reliability to
compare the existing methods. We consider a homogeneous
system model like [5] and a heterogeneous model like
[14][15]. The homogeneous system allows the cores to be
mapped easily because of the uniformity of the cores [4][28].
The heterogeneous systems face more challenges because
they have at least two types of low-power and high-
performance cores [15]. For this purpose, the concept of the
island is used in heterogeneous systems, and the cores within
each island can be positioned in different modes. Due to
constraints such as power/energy consumption and
performance, heterogeneous systems are usually designed as
islands with different cores, and the number and type of cores
of each island are different from those of other islands [25].
Fig. 2 shows a simple heterogeneous system that consists of
two low-power and high-performance islands [25][14].

B) Task Model

The task models used in this work are periodic task and frame-
based models like [21] and [14], respectively. The difference
between these two models is in the task sets deadlines. The
task set Ϯ = { 𝑇1, 𝑇2, … , 𝑇𝑛} consists of n tasks where each

task 𝑇𝑖 has a worst-case execution time 𝑊𝐶𝐸𝑇𝑖, time period
𝜋𝑖, and start time 𝑡𝑖. In the periodic task model, 𝐷𝑖 represents
the deadline of the task 𝑖 and D is the shared deadline for all
tasks in the frame-based task model. Like most studies on real-

time scheduling, we also focus on a set of tasks that are all
independent of each other. This task model is not as restrictive
as it seems because there are some methods to transfer a set of
dependent tasks to independent tasks [37].

C) Power Model

The power consumption of the system consists of two parts: i)
dynamic power and ii) static power. The power consumption
of each core with the operating frequency 𝑓𝑖 and the voltage
𝑉𝑖 is given by Eq.1 [5][10][23]:

- Vth
2 h VT

L i i 0 itotal i i dynamic staticP (f ,V) = P P = (a C V f) (I e V)+ + (1)

Where 𝛼 is the average number of switches from zero to one
and one to zero of the internal signals of the circuit during the
clock period. 𝐶𝐿 is equal to the total parasitic capacitance of
the internal nodes of the circuit.

D) Fault and Reliability Model

The intended system can tolerate both transient and permanent
faults. The fault model is also considered as previous studies
[27][28][38]. The average rate of system faults depends on the
frequency of the core and is obtained by Eq. 2.

min

(1)

1
0() 10

d f

f
f 

−

−
= (2)

Where 𝜆0 = 10−6 is the fault rate at the maximum frequency
and 𝑑 is the system sensitivity to operating voltage changes.
The reliability of task 𝑖 according to studies [5][10] is
consistent with Eq. 3, where 𝑡𝑖 is the execution time.

()() if t
i iR t e = (3)

In this paper, we evaluate two forms of fault-tolerance
technique. i) standby-sparing and ii) task replication. Unlike
NMR, these methods can tolerate faults with fewer spare
units, so we have considered these techniques. Reliability in
the standby-sparing method depends on the method chosen for
fault tolerance. For example, the reliability of the CSS
technique with 0 ≤ fault coverage ≤ 1 and the reliability of
primary and backup tasks are given by Eq. 4 [10].

() (1)i

tR t C t e  −= + (4)

If primary and backup tasks are independent, so the reliability
is computed by Eq. 5.

(1)() p p siR t R R R+ −= (5)

Where 𝑅𝑝 and 𝑅𝑠 are the reliability of primary and backup

tasks, respectively. And if 𝑅𝑝 = 𝑅𝑠, the reliability of a task

can be written as Eq. 6.

Cortex-A15

core

Cortex-A15

core

Cortex-A7

core

Cortex-A7

core

Cache Cache

Cache Interface & Low Power Layer Bus

DRAM

Fig. 2. A simple heterogeneous multicore system with low-power and high-

performance islands [14][25].

2() 2i RR t R += (6)

Therefore, the reliability of the system with the N task can be
calculated by Eq. 7.

() ()system i

N

R t R t=
(7)

On the other hand, the reliability of the task replication
technique with 𝑘 tasks can be calculated by Eq. 8.

1
() 1 (1)

k

total i jj
R t R

=
= − − (8)

Where in Eq. 8 𝑘 is the number of replicas of the task
executed on 𝑘 separated cores. Also, system reliability can be
written as Eq. 9.

1
()

n

system total ii
R R t

=
= (9)

IV. ALGORITHM DISCUSSION

In this paper, two of the most popular algorithms applied to
the systems have been considered to evaluate the
energy/power consumption of fault-tolerance methods. i) The
system exploits a spare unit to meet the reliability target
[10][14][27][33]. The standby-sparing method is used for this
purpose. Given the different policies outlined in the previous
sections for the implementation of the primary and spare tasks
using the SS method, the next issue is how to select the
primary and spare cores. Heterogeneous systems can also
have different power/energy outputs by executing the tasks on
different islands. On the other hand, choosing the proper
frequency also has a great impact on power/energy
consumption and reliability. For this reason, the methods
proposed using the SS technique consider the type of core and
frequency. To evaluate this method, we use the algorithms
presented so far to select the type and frequency of the cores
in the primary and spare units [14]. ii) The algorithm inserts
one or more replicas for the system to satisfy its reliability
target [15][28]. Sometimes it is preferable to maintain
reliability with a stronger mechanism such as task replication.
For the reliability target to be inconsistent with the
power/energy consumed, a policy must be chosen to achieve
the reliability target with the least number of redundancies and
reduce the energy/power consumption. For this reason, the
number of replicas and the operating frequency of the cores
are a challenge for this fault-tolerance method [21].

Roy et al. [14] have divided the type of primary cores and
frequency value selection into six categories. This study states
that the cautious choice of the type of primary core and
overlap between task execution can help to reduce energy
consumption. To this end, the methods used in the mentioned
paper have been evaluated. These methods can answer two
basic questions.

1. Which type of cores should be selected as the primary

core? Low power or high-performance?

2. How to consider the frequency of the primary cores to

reduce energy consumption?

There are six possible approaches to answer the mentioned

questions [14]:

• Faster/Slower-Static: The frequency is considered
static and the High-performance/Low power cores
are considered as the primary cores. In this scheme,
the frequency of task 𝑖 is 𝑓𝑖 = max (𝑓𝑖

𝑒𝑒 , 𝑓𝑢). Where

𝑓𝑖
𝑒𝑒 is the energy-efficient frequency and is defined

as the minimum frequency that energy consumption
is reduced by DVFS [20]. Also, 𝑓𝑢 is related to the
tasks’ execution time and the deadline and can

define as 𝑓𝑢 =
∑ 𝑒𝑥𝑒_𝑡𝑖𝑚𝑒𝑖

𝐷
.

• Faster/Slower-Minimize Overlap (MO): This
scheme adjusts the frequency of the primary cores so
that the primary and backup tasks are executed with
the least possible overlap. For this purpose, the
frequency of the primary cores is selected such that
the execution of the primary task ends before the start
of the backup task.

• Faster/Slower-Overlap-aware (OA): Unlike the
MO scheme, this scheme states that it is possible to
reduce energy consumption by overlapping the
execution of the primary and backup tasks. This
overlap is obtained by solving the optimization
problem in Eq. 10 and Eq. 11:

:
i i

primary spare

f fMinimize E E+ (10)

: (,)MO

U i i MaxSubject to f f Min f f  (11)

The authors in [21] have proposed a task replication
method. In this paper, the energy consumption is minimized
by considering a reliability target and the frequency scaling
effect. The optimization problem can be expressed as Eq. 12:

1

: ()
n

core i

core

Minimize E f
=


(12)

Eq. 13 states that it minimizes the energy consumption and the
number of replicas, and the execution of replica 𝑘 and 𝑗 from
task 𝑖 should not be on the same core and simultaneous.

, ,

:

() ()

:

i j i i k i

system target

Subject to

Mapping Task f Mapping Task f

Minimize replicas

Reliability Reliability





(13)

Various heuristic schemes can be considered to select the tasks
for mapping [21]:

• Largest Energy First (LEF): Choose a task that has
the largest energy-saving at first.

• Largest Power First (LPF): Choose a task that has
the largest power-saving at first.

• Largest Utilization First (LUF): Choose a task that
has the largest utilization at first.

The concept of Energy-Frequency-Reliability table (EFR)
in [21] is used to implement the above heuristics. This table
helps to find the proper number of replicas and frequencies to
maintain reliability and reduce power/energy consumption. It
has also been pointed out that allocating uniform frequency to
replicas is not an optimal method. It may degrade the
reliability by decreasing the frequency of one replica, but
overall, by choosing a higher frequency for the other replicas,
it can be achieved lower power/energy consumption and keeps
the reliability target. In the rest of the paper, we will evaluate
these methods.

V. EXPERIMENTAL RESULTS AND EVALUATION

In our evaluation, gem5 [39] and McPAT [40] simulators

were used to evaluate the mentioned proposed methods. The

gem5 simulator is responsible for defining the system model.

As shown in the Table. 1, we considered the ARM-based

platform and used ARM-Cortex A7 and ARM-Cortex A15 as

widely used cores in embedded systems to evaluate the

proposed methods. We suppose that our system has equipped

with DVFS and DPM techniques. When it is needed, we can

use these techniques to manage power/energy consumption.

McPAT has also been used to obtain the information needed

such as power consumption and execution time on the target

system. The task set is also selected from the MiBench

benchmark, designed for embedded system applications [41].

Table. 2 shows the results of simulating the execution of tasks

on the target system. The Python programming language is

also used to implement the proposed algorithms.

In our evaluation, we make our task set by generating 200

random tasks to evaluate the mentioned methods. To evaluate

the proposed standby-sparing methods, the heterogeneous

system model is considered to be an ARM big.LITTLE

system [14][25]. Also, we considered a homogeneous

multicore system to evaluate the task replication method. We

obtained energy and power consumption for different

utilizations in the mentioned systems to evaluate the

proposed methods and compare the differences between these

two methods. Also, the reliability target value is calculated

through Eq. 1 and Eq. 2 for standby-sparing and task

replication techniques at different frequencies, respectively.

At any given moment, the system reliability at any frequency

should not be less than the reliability target. In the following,

we will examine each of the proposed methods.

Standby-Sparing: To evaluate the standby-sparing

algorithms, we implemented Static, MO and OA algorithms

in fast-primary (FP) and slow-primary (SP) modes and

executed the mentioned task set on a heterogeneous system.

We considered different utilization value between

utilization=0.2 to utilization=1. It is well to mention that

according to the optimization issues and frequency

assignment scheme, the SP-OA and SP-MO are almost in the

same behavior, and we just show the SP-OA in our

evaluations. Fig. 3 shows the power profile of six methods

under per-chip utilization=0.8. The mentioned algorithms

have been evaluated with different per-chip utilizations. The

experimental results show that the execution time of Static

methods is more than MO and OA methods and this is one of

the reasons for increased energy consumption and reduced

performance. As shown in Fig. 3 and Fig. 4, methods that

consider dynamic frequency for standby-sparing techniques

and perform overlapping between primary and backup tasks

can reduce energy consumption relative to the static selection

method by an average of 31.44% and up to 40.63%. Also, as

shown in Fig. 5 workload has a significant impact on deciding

which method should be selected. For example, in

utilization=0.2, it is better to minimize the overlap by the OA

method instead of using MO to schedule the tasks that have

some overlaps between primary and backup execution. On

the other hand, Fig. 5 shows when the utilization-level

increases, choosing the core type is more effective. For

example, in utilization=1, when we use the FP-MO scheme,

we can achieve 19.95% saving in average power

consumption. This is while, in utilization=0.6, this saving is

13.3%. Therefore, we can assert that when a standby-sparing

method is applied, we should consider workload, primary

core type, and primary core frequency. According to our

constraints and system specification, to achieve a low

power/energy system, we can add some overlaps between the

execution of tasks and thereby reach our goal.
Task Replication: The homogeneous system is

considered to evaluate the task replication method. This is

because we want to run equally the primary and replicas, and

there is no need to synchronize tasks and replicas. We

Fig. 3. The power profile of standby-sparing methods.

 Table 1. System Configuration details

System

Architecture

ARM Cortex-A7 and ARM Cortex-A15

V/F: [0.85 V to 2 V] / [1.5 GHz to 3.5 GHz]

Memory

Main

4GB, 8 bank per rank,

Access time = 100 cycle
DRAM

Cache

L1

32KB

4-way
SRAM

L2
1MB

16-way

STT-RAM

Table 2. Simulation Results

Task

Execution Time

(ms)

Average

Power (W)
Energy (mJ)

A7 A15 A7 A15 A7 A15

basicmath 242.37 86.188 0.412 0.690 99.9515 59.54

bitcount 35.314 11.56 0.423 0.708 14.96 8.19

crc32 2635.87 1273.69 0.413 0.618 1090.93 787.67

dijkstra 43.74 16.36 0.414 0.677 18.15 11.08

fft 259.01 88.88 0.412 0.695 106.86 61.80

jpeg 39.24 12.99 0.422 0.749 16.59 9.73

lame 1514.84 540.18 0.411 0.698 623.75 377.53

patricia 145.90 43.54 0.414 0.634 60.51 27.615

qsort 33.15 9.73 0.413 0.640 13.69 6.23

susan 26.26 8.62 0.414 0.720 10.87 6.21

Fig. 4. Impact of frequency, primary core type, and utilization in energy of

standby-sparing methods.

0

5

10

15

20

25

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n

e
r
g

y
 (

J
)

Utilization (per chip)

Static-FP MO-FP OA-FP Static-SP OA-SP

consider the utilization of the cores based on the maximum

number of the running task without any adding replicas. We

evaluate the impact of frequency and the minimum number

of replicas on energy consumption by increasing utilization

from utilization=0.2 to utilization=1.6 and by increasing the

number of cores from 2 to 8 under a given reliability target.

We assume three 2-Core, 4-Core, and 8-Core systems. On the

other hand, we should note that to be able to show the effect

of increasing the number of replicas. The amount of

utilization mentioned here is equal to the sum of the

productivity of all cores, which can have a value greater than

one.

When we increase the utilization of a dual-core system

up to 0.8 and for a system with four cores up to 1.6, based on

our simulations, we cannot add any replicas to the system.

Thus, we consider the amount of utilization that can be added

to the system. It was noted earlier that we have three methods

for selecting tasks and frequency of cores: LEF, LPF, and

LUF [21]. In our simulations, we choose the best scheme to

achieve low power/energy consumption in Fig. 6. Fig. 6a

shows the average increase in the power consumption is 25%

(up to 36.40%) as the core number and utilization increase.

Fig. 6b shows the average increase in energy consumption of

task replication is 22.48% (up to 36.39%) based on the

number of cores and utilization. According to the simulation

results, we can assert that in the task replication technique we

are looking for the minimum number of replicas to minimize

energy/power consumption. For this purpose, the reliability

target specifies the replication level. Also, in a specific

utilization, we can minimize the number of replicas to get

more performance and low power/energy consumption by

deciding the best policy of task selection according to energy,

power, and utilization.

Standby Sparing vs. Task Replication: To have a fair

comparison between standby-sparing and task replication

methods, we suppose a dual-core system and we consider the

same utilization for all methods. The system is considered to

be a dual-core system because we consider the SS methods

as a method for heterogeneous systems that require at least

two cores to utilize the low-power and high-performance

characteristics simultaneously. For this reason, we should

also consider the dual-core for the task replication system so

that we can run tasks and replicas at the same time. We

evaluate the methods under two different utilization-level, i.e.

utilization=0.4 and utilization=0.8. In Fig. 7, the effect of

heterogeneity on both power consumption and execution time

can be seen. Fig. 7a shows that generally the standby sparing

methods, especially those that consider the overlap between

primary and backup tasks (MO and OA), have a better

execution time than task replication. It has also been shown

that using SS methods can reduce average power by 29.77%

on average (up to 52.77%) compared to task replication

methods. Fig. 7b shows increasing the number of replicas in

some cases can act similarly or better than standby-sparing

method especially when the frequency scaling is not allowed.

Our estimates show that the standby-sparing method can

perform energy saving on average 13.31% and up to 49.09%

better than the task replication method.

In conclusion, standby-spring and task replication are

traditional methods that consider both reliability and

power/energy consumption simultaneously and can design a

low power (energy efficient) fault-tolerant system. The

frequency and type of core (LP or HP) used today have a great

impact on power/energy and reliability. Therefore, when

using the methods mentioned above the challenge of the type

of core and its frequency must be taken into account. The

Fig. 5. Average power of standby-sparing method with different policies and different utilizations.

0

0.1

0.2

0.3

0.4

0.5

A
v
e
r
a

g
e
 P

o
w

e
r

(W
)

(a)

 (b)

Fig. 6. a) Average power, b) Energy, of task replication method with different utilization-levels.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 Core

0.4

4 Core

0.4

8 Core

0.4

2 Core

0.8

4 Core

0.8

8 Core

0.8

4 Core

1.2

8 Core

1.2

4 Core

1.6

8 Core

1.6

A
v
er

g
e

P
o

w
er

 (
W

)

Utilization (per chip)
0

20

40

60

80

0.4 0.8 1.2 1.6

E
n

er
g

y
 (

J
)

Utilization (per chip)

2 Core 4 Core 8 Core

results of the simulations have shown that in general to

discuss the power/energy consumption the choice of a

dynamic frequency has better effects than the static

frequency. The task replication method can achieve higher

reliability than the reliability target, facing increased

power/energy consumption. So if the power/energy challenge

is more important, the standby-sparing technique can work

better.

VI. CONCLUSIONS

Low power consumption and high-reliability are two main

objectives in designing hard real-time embedded systems.

Most of the embedded systems which are utilized in safety-

critical applications employ fault-tolerant techniques to

achieve the required reliability level. However, fault-tolerant

techniques incur considerable power overhead. Several novel

methods have been proposed in previous work to reduce the

power consumption of fault-tolerant systems, but there are no

published guidelines to help designers to select the best

approach for a given application. In this paper, we compare

different fault-tolerant management methods used for

reducing the power consumption of embedded systems.

REFERENCES

[1] E.A. Lee and S.A. Seshia, “Introduction to Embedded

Systems, A Cyber-Physical Systems Approach”, Second

Edition, MIT Press, ISBN 978-0-262-53381-2, 2017.

[2] G. Buttazzo, “Hard Real-Time Computing Systems:

Predictable Scheduling Algorithms and Applications” in

Springer US, vol. 24, pp. XVI-524, 2011.

[3] P. Marwedel, “Embedded system design”, in Springer, vol.

1, 2006.

[4] M. Ansari, S. Safari, A. Yeganeh-Khaksar, M. Salehi and

A. Ejlali, “Peak Power Management to Meet Thermal

Design Power in Fault-Tolerant Embedded Systems”, in

IEEE Transactions on Parallel and Distributed Systems,

vol. 30, no. 1, pp. 161-173, 1 Jan. 2019.

[5] M. Ansari, A. Yeganeh-Khaksar, S. Safari, and A. Ejlali,

“Peak-Power-Aware Energy Management for Periodic

Real-Time Applications,” in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems

(TCAD), 2019.

[6] Z. Shirmohammadi, M. Ansari, S. K. Abharian, S. Safari,

and S. G. Miremadi, “PAM: A Packet Manipulation

Mechanism for Mitigating Crosstalk Faults in NoCs,” in

IEEE International Conference on Computer and

Information Technology; Ubiquitous Computing and

Communications; Dependable, Autonomic and Secure

Computing; Pervasive Intelligence and Computing,

Liverpool, UK, pp. 1895-1902, 2015.

[7] A. Ejlali, B.M. Al-Hashimi, and P. Eles, “A Standby-

Sparing Technique with Low Energy-Overhead for Fault-

Tolerant Hard Real-Time Systems,” in Proc. International

Conference on Hard-ware-Software Codesign and System

Synthesis (CODES+ISSS 2009), Grenoble, France, pp. 193-

202, October 2009.

[8] B. Safaei, A. M. H. Monazzah, T. Shahroodi, and A. Ejlali,

“Objective function: A key contributor in Internet of Things

primitive properties,” in Proceedings of the Real-Time and

Embedded Systems and Technologies (RTEST), Tehran,

Iran, pp. 39-46, 2018.

[9] R. Narimani, B. Safaei, A. Ejlali, “A comprehensive

analysis on the resilience of adiabatic logic families against

transient faults,” in Integration, 2020.

[10] M. A. Haque, H. Aydin and D. Zhu, “On Reliability

Management of Energy-Aware Real-Time Systems

Through Task Replication,” in IEEE Transactions on

Parallel and Distributed Systems, vol. 28, no. 3, pp. 813-

825, 2017.

[11] S. Safari, S. Hessabi, and G. Ershadi, “LESS-MICS: A Low

Energy Standby-Sparing Scheme for Mixed-Criticality

Systems,” in IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (TCAD), 2020.

(Early access)

[12] S. Safari, M. Ansari, G. Ershadi and S. Hessabi, “On the

Scheduling of Energy-Aware Fault-Tolerant Mixed-

Criticality Multicore Systems with Service Guarantee

Exploration” in IEEE Transactions on Parallel and

Distributed Systems, vol. 30, no. 10, pp. 2338-2354. 2019.

[13] M. Ansari, S. Safari, F. R. Poursafaei, M. Salehi, and A.

Ejlali, “AdDQ: Low-Energy Hardware Replication for

Real-Time Systems through Adaptive Dual Queue

Scheduling,” in The CSI Journal on Computer Science and

Engineering (JCSE), vol. 15, no. 1, pp. 31-38, 2017.

[14] A. Roy, H. Aydin, and D. Zhu, “Energy-aware standby-

sparing on heterogeneous multicore systems,” 2017 54th

ACM/EDAC/IEEE Design Automation Conference (DAC),

Austin, TX, pp. 1-6, 2017.

[15] M. Ansari, J. Saberlatibari, S. M. Pasandideh and, A. Ejlali,

“Simultaneous Management of Peak-Power and Reliability

in Heterogeneous Multicore Embedded Systems,” in IEEE

Transactions on Parallel and Distributed Systems, vol. 31,

no. 3, pp. 623-633, 1 March 2020.

[16] S. Safari, M. Ansari, M. Salehi, and A. Ejlali, “Energy-

Budget-Aware Reliability Management in Multi-Core

 (a)

 (b)

Fig. 7. Comparison between spare and task replication. a) Power Consumption. b) Energy Consumption.

0

5

10

15

20

25

30

35

FP-MO FP-OA FP-Static SP-Static SP-OA 2 Core

E
n

e
r
g

y
 (

J
)

Utilization (per chip)

0.4 0.8

Embedded Systems with Hybrid Energy Source,” The CSI

Journal on Computer Science and Engineering (JCSE), vol.

15, no. 2, pp. 31-43, 2018.

[17] B. Safaei, A. A. M. Salehi, M. Shirbeigi, A. M. H.

Monazzah, and A. Ejlali, “PEDAL: power-delay product

objective function for internet of things applications,” in

Proceedings of the 34th ACM/SIGAPP Symposium on

Applied Computing (SAC), pp. 892-895, ACM, 2019.

[18] M. Khatir, A. Moradi, A. Ejlali, M. T. Manzuri Shalmani,

and M. Salmasizadeh, “A secure and low-energy logic style

using charge recovery approach,” Proceeding of the 13th

international symposium on Low power electronics and

design (ISLPED ‘08), Bangalore, 2008, pp. 259-264.

[19] B. Safaei, A. M. H. Monazzah, M. B. Bafroei, and A. Ejlali,

“Reliability side-effects in internet of things application

layer protocols,” in Proceedings of the 2nd IEEE

International Conference on System Reliability and Safety

(ICSRS), pp. 207-212, IEEE, 2017.

[20] D. Zhu, R. Melhem and D. Mosse, “The effects of energy

management on reliability in real-time embedded systems,”

in IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), CA, USA, pp. 35-40, 2004.

[21] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware task

replication to manage reliability for periodic real-time

applications on multicore platforms,” 2013 International

Green Computing Conference Proceedings, Arlington, VA,

pp. 1-11, 2013.

[22] B. Safaei, A. A. M. Salehi, A. M. H. Monazzah, and A.

Ejlali, “Effects of RPL Objective Functions on the Primitive

Characteristics of Mobile and Static IoT Infrastructures,” in

Microprocessors and Microsystems, vol. 69, pp. 79-91,

Elsevier, 2019.

[23] M. Ansari, M. Pasandideh, J. Saber-Latibari, and A. Ejlali,

“Meeting Thermal Safe Power in Fault-Tolerant

Heterogeneous Embedded Systems,” in IEEE Embedded

Systems Letters, vol. 12, no. 1, 2020.

[24] Intel Corporation, “Dual-core intel Xeon processor 5100

series datasheet, revision 003,” August 2007.

[25] S. Pagani, H. Khdr, J. Chen, M. Shafique, M. Li, and J.

Henkel, “Thermal Safe Power (TSP): Efficient Power

Budgeting for Heterogeneous Manycore Systems in Dark

Silicon,” in IEEE Transactions on Computers, vol. 66, no.

1, pp. 147-162, Jan 2017.

[26] E. Dubrova, “Fault-Tolerant Design” in Springer, 2013.

[27] A. Roy, H. Aydin and D. Zhu, “Energy-efficient

primary/backup scheduling techniques for heterogeneous

multi-core systems,” Eighth International Green and

Sustainable Computing Conference (IGSC), Orlando, FL,

pp. 1-8, 2017.

[28] M. A. Haque, H. Aydin, and D. Zhu, “Energy-Aware

Standby- Sparing Technique for Periodic Real-Time

Applications,” in Proceedings of the IEEE 29th

International Conference on Computer Design (ICCD’11),

pp. 190-197, Oct. 2011.

[29] K. S. Trivedi, “Probability and Statics with Reliability,

Queuing, and Computer Science Application” in John

Wiley and Sons Ltd, 2016.

[30] M. Salehi, M. Khavari Tavana, S. Rehman, F. Kriebel, M.

Shafique, A. Ejlali, and J. Henkel, “DRVS: Power-efficient

reliability management through Dynamic Redundancy and

Voltage Scaling under variations,” 2015 IEEE/ACM

International Symposium on Low Power Electronics and

Design (ISLPED), Rome, 2015, pp. 225-230.

[31] F. R. Poursafaei, S. Safari, M. Ansari, M. Salehi, and A.

Ejlali, “Offline replication and online energy management

for hard real-time multicore systems,” 2015 CSI Symposium

on Real-Time and Embedded Systems and Technologies

(RTEST), Tehran, 2015, pp. 1-7.

[32] M. Salehi, A. Ejlali and B. M. Al-Hashimi, “Two-Phase

Low-Energy N-Modular Redundancy for Hard Real-Time

Multi-Core Systems,” in IEEE Transactions on Parallel

and Distributed Systems, vol. 27, no. 5, pp. 1497-1510, May

2016.

[33] M. A. Haque, H. Aydin, and D. Zhu, “Energy management

of standby sparing systems for fixed-priority real-time

work-loads,” 2013 International Green Computing

Conference Proceedings, Arlington, VA, pp. 1-10, 2013.

[34] M. K. Tavana, M. Salehi and A. Ejlali, “Feedback-Based

Energy Management in a Standby-Sparing Scheme for Hard

Real-Time Systems,” 2011 IEEE 32nd Real-Time Systems

Symposium, Vienna, pp. 349-356, 2011.

[35] Y. Guo, D. Zhu, H. Aydin, J.J. Han, L.T. Yan, “Exploiting

primary/backup mechanism for energy efficiency in

dependable real-time systems,” in Journal of Systems

Architecture, vol 78, pp. 349-356, 2017.

[36] V. Moghaddas, M. Fazeli, and A. Patooghy, “Reliability-

oriented scheduling for static-priority real-time tasks in

standby-sparing systems,” in Microprocessors and

Microsystems, vol 45, pp. 208-215, 2016.

[37] S. Kodase, S. Wang, Z. Gu, and K.G. Shin, “Improving

Scalability of Task Allocation and Scheduling in Large

Distributed Real-Time Systems Using Shared Buffers,” in

Proceedings of the IEEE 9th Real-Time Technology and

Applications Symp. (RTAS), pp. 181-188, 2003.

[38] M. Salehi, M. Khavari Tavana, S. Rehman, M. Shafique, A.

Ejlali and J. Henkel, “Two-State Checkpointing for Energy-

Efficient Fault Tolerance in Hard Real-Time Systems,”

in IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 24, no. 7, pp. 2426-2437, July 2016.

[39] Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R.

Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.

Wood, “The gem5 simulator, “ in ACM SIGARCH

Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[40] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.

Tullsen and N. P. Jouppi, “McPAT: An integrated power,

area, and timing modeling framework for multicore and

manycore architectures,” 2009 42nd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO),

New York, pp. 469-480, 2009.

[41] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.

Mudg, and R. B. Brown, “MiBench: A free, commercially

representative embedded benchmark suite,” in Proceedings

of the Fourth Annual IEEE International Workshop on

Workload Characterization. WWC-4 (Cat. No.01EX538),

Austin, TX, USA, pp. 3-14, 2001.

[42] A. Hoseinghorban, A. M. H. Hosseini Monazzah, M.

Bazzaz, B. Safaei and A. Ejlali, “COACH: Consistency

Aware Check-pointing for Nonvolatile Processor in Energy

Harvesting Systems,” in IEEE Transactions on Emerging

Topics in Computing, 2019.

