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Abstract— Low power consumption and high-reliability are 

often major objectives in the design of embedded systems. To 

reduce power consumption, embedded systems usually employ 

system-level power management techniques, e.g. Dynamic 

Voltage Scaling (DVS) and Dynamic Power Management 

(DPM). To achieve high reliability, embedded systems often 

exploit fault-tolerant techniques. Fault-tolerant techniques are 

in a trade-off with energy consumption, peak-power 

consumption, and temperature. Thus, different methods have 

been introduced that simultaneously consider reliability and 

power consumption as the system constraints. Several novel 

methods have been proposed in previous work to reduce the 

power consumption of fault-tolerant systems, but there are no 

published guidelines to help designers to select the best approach 

for a given application. In this paper, we investigate the 

effectiveness and efficiency of these methods by evaluating them 

in an identical simulation environment for an accurate 

evaluation. 

Index Terms— Embedded Systems, Fault Tolerance, Power 

Management. 

I. INTRODUCTION 

Embedded systems are the most widespread computers 

utilized in many industries such as the automotive industry, 

medical devices, smart city traffic control, and so on [1][2][3]. 

The main requirements of embedded systems are high 

reliability and low power consumption [4][5]. Embedded 

systems must tolerate both transient and permanent faults 

especially in the Internet of Things (IoT) devices [8][19][22]. 

Transient faults are mainly caused by electromagnetic 

interference and cosmic rays and display themselves as Single 

Event Upsets (SEUs) in memories [10]. The transient faults 

are usually resolved by re-execution of the tasks [7][11][42]. 

While, the permanent faults caused by the production time 

failures, aging failures, and environmental conditions which 

require redundancy to tolerate them [10]. However, fault-

tolerant methods increase the power consumption of the 

system due to the use of redundancy [10]. For this reason, 

power/energy management methods are used to reduce 

power/energy consumption [12][13][14]. 

Apart from the reliability concerns, when the level of 

integration at the chip level increases we face problems like 

dark silicon, power density, and peak-power consumption, 

and energy consumption [4][9][15][16]. Power management 

techniques are used to overcome these problems [17][18]. 

However, power management techniques degrade system 

reliability in many cases [4][6][15][19]. The main problem is 

the reconciliation between fault-tolerance and power/energy 

management techniques because these thechniques have a 

negative effect over each other [15][20][21]. There are many 

methods available for reconciliation mentioned above.  

Dynamic Voltage and Frequency Scaling (DVFS) and 

Dynamic Power Management (DPM) are common system-

level methods used to reduce average and peak power 

consumptions [4][10][15]. The DVFS method reduces power 

consumption by scaling the voltage/frequency level. DPM 

also helps to reduce power consumption by shutting down 

unnecessary parts or when power constraint violation occurs. 

Thermal Design Power (TDP) and Thermal Safe Power (TSP) 

are the system-level power constraints in multicore 

embedded systems [4][23]. TDP is a chip-level constraint and 

it is equal to the maximum tolerable power that a chip can 

consume in the safe band [24]. Recently, TSP has been 

defined as a core-level power constraint and provides an 

efficient power constraint. It is necessary to keep the power 

consumption of the cores below TSP to prevent excessive 

temperature rise [25]. It should be noted that experimental 

results show that by exploiting power management 

techniques like DVFS the fault rate increases and to 

compensate for this increase in the fault rate fault-tolerance 

methods are mandatory [4][23]. Thus, methods that consider 

joint power and reliability management are interested.  

In general, fault-tolerance methods can be divided into 

two categories: active redundancy methods and passive 

redundancy methods [26]. Active redundancy methods use 

fault detection to increase system reliability [26][29]. One of 

the most popular active redundancy methods is the standby-

sparing method [14][27][28]. In the standby-sparing method, 

execution is switched to the spare unit when a fault occurs in 

the primary unit [26]. There are three types of options to 

assign tasks to primary and spare units, i.e., Hot Standby-

sparing (HSS), Cold Standby-sparing (CSS), and Warm 

Standby-sparing (WSS) [26][29]. In the HSS method, the 

primary unit and the spare are both set up together, and any 

input to the primary unit is also given to the spare unit. If a 

fault occurs in the primary unit, the spare unit immediately 

begins to execute tasks [26][29]. But in the CSS method, the 
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spare unit is off until a fault happens in the primary unit and 

after that spare unit starts to execute the tasks [26][29]. The 

switching speed between primary and spare units in the CSS 

method is longer than in the HSS method. The WSS method 

(also known as the de-energized state) is almost like the HSS 

method but it executes the initial part of the tasks and leaves 

the part that causes aging. On the other hand, passive methods 

use fault-masking techniques [26][29]. NMR and task 

replication are the most popular passive redundancy methods. 

NMR and task replication methods use redundant hardware 

to tolerate faults and software replicas to satisfy the reliability 

target, respectively. In the task replication method replicas, 

tasks can be executed simultaneously with the main tasks 

[26][29]. Also, there are hybrid systems that use both active 

and passive methods [29]. Fig. 1 shows the standby-sparing, 

NMR, and task replication methods. 

In this paper, the power/energy consumption and 

reliability of different fault-tolerance methods are evaluated. 

For this aim, two popular method standby-sparing and task 

replication are chosen. In Section II, the related work will be 

reviewed. Section III deals with the definition of the problem 

and the assumptions. Section IV shows the results of the 

experimental evaluation. And in the end, Section V will 

present the conclusions of the paper. 

II. RELATED WORK 

As previously mentioned, we will evaluate two prominent 

fault-tolerant methods. i) Task Replication and ii) Standby-

Sparing. The previous works related to these two categories 

are discussed here. Ansari et al. [4] proposed a peak power 

management scheme called TP3M. They have shown that 

although the use of the N-Modular Redundancy (NMR) 

technique can increase the system reliability, it can violate 

TDP constraint. The TP3M method prevents concurrent 

execution of tasks based on the power profile of the 

applications and reduces the overlap of the execution of the 

main tasks and the replica tasks. The proposed method by 

Salehi et al. in [30] is a power-efficient reliability 

management method that uses Dynamic Redundancy and 

Voltage Scaling (DRVS). This method achieved a significant 

improvement in reliability by applying various redundancy 

methods like triple and binary redundancy. The PPARM 

method presented in [15] is a peak-power-aware scheme that 

considers power as a critical resource. The increased power 

causes an increase in temperature which results in fault rate 

exacerbating. This paper exploits task replication and code 

version programming to improve the system reliability while 

at the same time meet the TSP constraint. In [21], the authors 

have proposed a reliability improvement method that defines 

a reliability target for the system. It has shown that task 

replication can improve the reliability of the system but, it has 

a negative impact on energy consumption. Because of this, the 

proposed method determines the minimum number of replicas 

for the reliability target and reduces energy consumption by 

allocating the appropriate frequency to the replicas. Poursafaei 

et al. [31] proposed a method that has two online and offline 

phases. In this method, a reliability target is defined and task 

replication is responsible for achieving this target. This 

method finds the number of replicas and frequency of cores to 

minimize energy consumption. Also, the proposed method 

benefits from the cancelation of replicas when a task finishes 

its jobs successfully. The proposed method in [10] mentioned 

that the fault coverage rate and DVS have a negative impact 

on reliability. Thus, the proposed method considers the core 

frequency, the number of replicas, fault coverage, and energy 

consumption induced by the DVS method simultaneously to 

minimize energy consumption. Static and dynamic solutions 

are proposed in the paper [10]. These methods are responsible 

for minimizing energy consumption by reducing the 

concurrent execution of replicas. Salehi et al. [32] have 

considered the overhead of the N-Modular redundancy 

method and have divided the execution of tasks into two 

necessary and demand-based phases. In the necessary phase, 

only half plus one of the replicas is executed and if the result 

of these replicas is as same as, so the fault did not detect and 

there is no need to execute the rest of replicas. When a fault is 

detected, the rest of the replicas will be executed to achieve 

the correct result. 

In the study [14], an energy-aware standby-sparing 

system for heterogeneous multicore systems is proposed to 

tolerate both transient and permanent faults. Also, in this 

work, the primary core exploits DVFS and the spare core 

exploits only DPM to reduce energy consumption. In [14], 

Roy et al. have shown that the selection of LP (Low Power) 

or HP (High-Performance) core and the conscious allocation 

of frequency on the primary core has a significant impact on 

the power/energy consumption. Haque et al. [33] have 

proposed a standby-sparing method for fixed-priority tasks in 

hard real-time systems. In the proposed method, two queues 

are provided for the execution of the primary and backup tasks 

to delay the execution of the backup tasks as far as possible 

and reduce energy consumption through DPM and DVS 

methods. The proposed scheme in [27] has presented an 

energy-efficient and reliable scheduling method for a 

heterogeneous dual-core system. The proposed method can 

minimize power consumption by automatically canceling 

backup tasks and taking the voltage/frequency of each core to 

a minimum level. Ejlali et al. [7] have asserted that time 

redundancy methods are preferred than hardware methods. 

The proposed method uses a standby-sparing method and 

benefits from dynamic slacks times to minimize energy 

consumption, and also the primary and spare units exploit 

DVS and DPM techniques, respectively. Khavari-Tavana et 

al. [34] have proposed a standby-sparing system that consists 

of a feedback system in the primary unit and balances the 

workload to manage energy consumption, and meet the 

deadline constraint. The mentioned feedback system uses 

slack times to reduce total energy consumption. Gou et al. [35] 
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Fig. 1. Different fault-tolerance techniaues, a) Hot spare, b) Cold Spare, c) 
TMR, and d) Task replication methods. 

 



have proposed a standby-sparing method that tolerates one 

permanent fault and guarantees the reliability of the system for 

transient fault. In the proposed method two schemes have been 

discussed, i.e. Paired-SS and Generalized-SS. These methods 

improve the utilization of the system by exploiting the 

combinational use of primary and backup tasks. Also, the 

proposed method uses Preference-Oriented Earliest Deadline 

(POED) as an (Earliest Deadline First) EDF-based scheduler 

to minimize energy consumption. The authors in [36] state 

that there is a trade -off between reliability and power/energy 

consumption. The proposed method considers this  

contradiction and presents a reliability-aware scheduling 

algorithm to minimize energy consumption. The proposed 

algorithm uses the concept of priority scheduling and 

considers two queues. One of these queues is responsible for 

holding the low priority tasks based on worst-case execution 

time according to the Rate Monotonic scheduling algorithm 

and the second queue is responsible for the execution of high 

priority tasks. To achieve a higher performance in the standby-

sparing method, the proposed method uses energy-speed 

based reliability to meet the reliability target of the standby 

sparing system and reduce energy consumption.  

As discussed, there are lots of works that use task 

replication or standby-sparing methods to reduce  

power/energy concerning the reliability target in the system. 

In this paper, we have a glance at these methods and our 

evaluations will compare these methods to get an estimation 

of the effect of exploiting these methods. We want to evaluate 

the differences between the primary core type and frequency 

selection in the energy/power consumption of standby-sparing 

and the impact of the number of replicas and frequency value 

in the task replication method.  

III. SYSTEM MODEL 

A) System Model 

Homogeneous and heterogeneous system models are utilized 
to evaluate the proposed methods for simultaneous 
management of power/energy consumption and reliability to 
compare the existing methods. We consider a homogeneous 
system model like [5] and a heterogeneous model like 
[14][15]. The homogeneous system allows the cores to be 
mapped easily because of the uniformity of the cores [4][28]. 
The heterogeneous systems face more challenges because 
they have at least two types of low-power and high-
performance cores [15]. For this purpose, the concept of the 
island is used in heterogeneous systems, and the cores within 
each island can be positioned in different modes. Due to 
constraints such as power/energy consumption and 
performance, heterogeneous systems are usually designed as 
islands with different cores, and the number and type of cores 
of each island are different from those of other islands [25]. 
Fig. 2 shows a simple heterogeneous system that consists of 
two low-power and high-performance islands [25][14]. 

B) Task Model 

The task models used in this work are periodic task and frame-
based models like [21] and [14], respectively. The difference 
between these two models is in the task sets deadlines. The 
task set Ϯ = { 𝑇1, 𝑇2, … , 𝑇𝑛}  consists of n tasks where each 

task 𝑇𝑖  has a worst-case execution time 𝑊𝐶𝐸𝑇𝑖, time period 
𝜋𝑖, and start time 𝑡𝑖. In the periodic task model, 𝐷𝑖  represents 
the deadline of the task 𝑖 and D is the shared deadline for all 
tasks in the frame-based task model. Like most studies on real-

time scheduling, we also focus on a set of tasks that are all 
independent of each other. This task model is not as restrictive 
as it seems because there are some methods to transfer a set of 
dependent tasks to independent tasks [37]. 

C) Power Model 

The power consumption of the system consists of two parts: i) 
dynamic power and ii) static power. The power consumption 
of each core with the operating frequency 𝑓𝑖 and the voltage 
𝑉𝑖 is given by Eq.1 [5][10][23]: 

- Vth
2 h VT

L i i 0 itotal i i dynamic staticP (f ,V ) = P P = (a C V f ) (I e V )+ +  (1) 

Where 𝛼 is the average number of switches from zero to one 
and one to zero of the internal signals of the circuit during the 
clock period. 𝐶𝐿 is equal to the total parasitic capacitance of 
the internal nodes of the circuit. 

D) Fault and Reliability Model 

The intended system can tolerate both transient and permanent 
faults. The fault model is also considered as previous studies 
[27][28][38]. The average rate of system faults depends on the 
frequency of the core and is obtained by Eq. 2.  
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Where 𝜆0 = 10−6 is the fault rate at the maximum frequency 
and 𝑑 is the system sensitivity to operating voltage changes. 
The reliability of task 𝑖 according to studies [5][10] is 
consistent with Eq. 3, where 𝑡𝑖 is the execution time. 

( )( ) if t
i iR t e =  (3) 

In this paper, we evaluate two forms of fault-tolerance 
technique. i) standby-sparing and ii) task replication. Unlike 
NMR, these methods can tolerate faults with fewer spare 
units, so we have considered these techniques. Reliability in 
the standby-sparing method depends on the method chosen for 
fault tolerance. For example, the reliability of the CSS 
technique with 0 ≤ fault coverage ≤ 1 and the reliability of 
primary and backup tasks are given by Eq. 4 [10]. 

( ) (1 )i

tR t C t e  −= +  (4) 

If primary and backup tasks are independent, so the reliability 
is computed by Eq. 5. 

(1 )( ) p p siR t R R R+ −=  (5) 

Where 𝑅𝑝  and 𝑅𝑠  are the reliability of primary and backup 

tasks, respectively. And if 𝑅𝑝 = 𝑅𝑠, the reliability of a task 

can be written as Eq. 6. 
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Fig. 2. A simple heterogeneous multicore system with low-power and high-

performance islands [14][25]. 
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Therefore, the reliability of the system with the N task can be 
calculated by Eq. 7. 

( ) ( )system i

N

R t R t=  
(7) 

On the other hand, the reliability of the task replication 
technique with 𝑘 tasks can be calculated by Eq. 8. 

1
( ) 1 (1 )

k

total i jj
R t R

=
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Where in Eq. 8 𝑘  is the number of replicas of the task 
executed on 𝑘 separated  cores. Also, system reliability can be 
written as Eq. 9. 

1
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IV. ALGORITHM DISCUSSION 

In this paper, two of the most popular algorithms applied to 
the systems have been considered to evaluate the 
energy/power consumption of fault-tolerance methods. i) The 
system exploits a spare unit to meet the reliability target 
[10][14][27][33]. The standby-sparing method is used for this 
purpose. Given the different policies outlined in the previous 
sections for the implementation of the primary and spare tasks 
using the SS method, the next issue is how to select the 
primary and spare cores. Heterogeneous systems can also 
have different power/energy outputs by executing the tasks on 
different islands. On the other hand, choosing the proper 
frequency also has a great impact on power/energy 
consumption and reliability. For this reason, the methods 
proposed using the SS technique consider the type of core and 
frequency. To evaluate this method, we use the algorithms 
presented so far to select the type and frequency of the cores 
in the primary and spare units [14]. ii) The algorithm inserts 
one or more replicas for the system to satisfy its reliability 
target [15][28]. Sometimes it is preferable to maintain 
reliability with a stronger mechanism such as task replication. 
For the reliability target to be inconsistent with the 
power/energy consumed, a policy must be chosen to achieve 
the reliability target with the least number of redundancies and 
reduce the energy/power consumption. For this reason, the 
number of replicas and the operating frequency of the cores 
are a challenge for this fault-tolerance method [21]. 

Roy et al. [14] have divided the type of primary cores and 
frequency value selection into six categories. This study states 
that the cautious choice of the type of primary core and 
overlap between task execution can help to reduce energy 
consumption. To this end, the methods used in the mentioned 
paper have been evaluated. These methods can answer two 
basic questions.   

1. Which type of cores should be selected as the primary 

core? Low power or high-performance? 

2. How to consider the frequency of the primary cores to 

reduce energy consumption? 

There are six possible approaches to answer the mentioned 

questions [14]: 

• Faster/Slower-Static: The frequency is considered 
static and the High-performance/Low power cores 
are considered as the primary cores. In this scheme, 
the frequency of task 𝑖 is 𝑓𝑖 = max (𝑓𝑖

𝑒𝑒 , 𝑓𝑢). Where 

𝑓𝑖
𝑒𝑒  is the energy-efficient frequency and is defined 

as the minimum frequency that energy consumption 
is reduced by DVFS [20]. Also, 𝑓𝑢 is related to the 
tasks’ execution time and the deadline and can 

define as 𝑓𝑢 =  
∑ 𝑒𝑥𝑒_𝑡𝑖𝑚𝑒𝑖

𝐷
.  

• Faster/Slower-Minimize Overlap (MO): This 
scheme adjusts the frequency of the primary cores so 
that the primary and backup tasks are executed with 
the least possible overlap. For this purpose, the 
frequency of the primary cores is selected such that 
the execution of the primary task ends before the start 
of the backup task. 

• Faster/Slower-Overlap-aware (OA): Unlike the 
MO scheme, this scheme states that it is possible to 
reduce energy consumption by overlapping the 
execution of the primary and backup tasks. This 
overlap is obtained by solving the optimization 
problem in Eq. 10 and Eq. 11: 

:
i i

primary spare

f fMinimize E E+  (10) 
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The authors in [21] have proposed a task replication 
method. In this paper, the energy consumption is minimized 
by considering a reliability target and the frequency scaling 
effect. The optimization problem can be expressed as Eq. 12:  

1

: ( )
n

core i

core
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=
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Eq. 13 states that it minimizes the energy consumption and the 
number of replicas, and the execution of replica 𝑘 and 𝑗 from 
task 𝑖 should not be on the same core and simultaneous.  

, ,

:
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# :
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Minimize replicas
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(13) 

Various heuristic schemes can be considered to select the tasks 
for mapping [21]: 

• Largest Energy First (LEF): Choose a task that has 
the largest energy-saving at first. 

• Largest Power First (LPF): Choose a task that has 
the largest power-saving at first. 

• Largest Utilization First (LUF): Choose a task that 
has the largest utilization at first.  

The concept of Energy-Frequency-Reliability table (EFR) 
in [21] is used to implement the above heuristics. This table 
helps to find the proper number of replicas and frequencies to 
maintain reliability and reduce power/energy consumption. It 
has also been pointed out that allocating uniform frequency to 
replicas is not an optimal method. It may degrade the 
reliability by decreasing the frequency of one replica, but 
overall, by choosing a higher frequency for the other replicas, 
it can be achieved lower power/energy consumption and keeps 
the reliability target. In the rest of the paper, we will evaluate 
these methods. 

V. EXPERIMENTAL RESULTS AND EVALUATION 

In our evaluation, gem5 [39] and McPAT [40] simulators 

were used to evaluate the mentioned proposed methods. The 

gem5 simulator is responsible for defining the system model. 

As shown in the Table. 1, we considered the ARM-based 



platform and used ARM-Cortex A7 and ARM-Cortex A15 as 

widely used cores in embedded systems to evaluate the 

proposed methods. We suppose that our system has equipped 

with DVFS and DPM techniques. When it is needed, we can 

use these techniques to manage power/energy consumption. 

McPAT has also been used to obtain the information needed 

such as power consumption and execution time on the target 

system. The task set is also selected from the MiBench 

benchmark, designed for embedded system applications [41]. 

Table. 2 shows the results of simulating the execution of tasks 

on the target system. The Python programming language is 

also used to implement the proposed algorithms. 

In our evaluation, we make our task set by generating 200 

random tasks to evaluate the mentioned methods. To evaluate 

the proposed standby-sparing methods, the heterogeneous 

system model is considered to be an ARM big.LITTLE 

system [14][25]. Also, we considered a homogeneous 

multicore system to evaluate the task replication method. We 

obtained energy and power consumption for different 

utilizations in the mentioned systems to evaluate the 

proposed methods and compare the differences between these 

two methods. Also, the reliability target value is calculated 

through Eq. 1 and Eq. 2 for standby-sparing and task 

replication techniques at different frequencies, respectively.  

At any given moment, the system reliability at any frequency 

should not be less than the reliability target. In the following, 

we will examine each of the proposed methods. 

Standby-Sparing: To evaluate the standby-sparing 

algorithms, we implemented Static, MO and OA algorithms 

in fast-primary (FP) and slow-primary (SP) modes and 

executed the mentioned task set on a heterogeneous system. 

We considered different utilization value between 

utilization=0.2 to utilization=1. It is well to mention that 

according to the optimization issues and frequency 

assignment scheme, the SP-OA and SP-MO are almost in the 

same behavior, and we just show the SP-OA in our 

evaluations. Fig. 3 shows the power profile of six methods 

under per-chip utilization=0.8. The mentioned algorithms 

have been evaluated with different per-chip utilizations. The 

experimental results show that the execution time of Static 

methods is more than MO and OA methods and this is one of 

the reasons for increased energy consumption and reduced 

performance. As shown in Fig. 3 and Fig. 4, methods that 

consider dynamic frequency for standby-sparing techniques 

and perform overlapping between primary and backup tasks 

can reduce energy consumption relative to the static selection 

method by an average of 31.44% and up to 40.63%. Also, as 

shown in Fig. 5 workload has a significant impact on deciding 

which method should be selected. For example, in 

utilization=0.2, it is better to minimize the overlap by the OA 

method instead of using MO to schedule the tasks that have 

some overlaps between primary and backup execution. On 

the other hand, Fig. 5 shows when the utilization-level 

increases, choosing the core type is more effective. For 

example, in utilization=1, when we use the FP-MO scheme, 

we can achieve 19.95% saving in average power 

consumption. This is while, in utilization=0.6, this saving is 

13.3%. Therefore, we can assert that when a standby-sparing 

method is applied, we should consider workload, primary 

core type, and primary core frequency. According to our 

constraints and system specification, to achieve a low 

power/energy system, we can add some overlaps between the 

execution of tasks and thereby reach our goal.  
Task Replication: The homogeneous system is 

considered to evaluate the task replication method. This is 

because we want to run equally the primary and replicas, and 

there is no need to synchronize tasks and replicas. We 

 
Fig. 3. The power profile of standby-sparing methods. 

 

     Table 1. System Configuration details 

System 

Architecture 

ARM Cortex-A7 and ARM Cortex-A15 

V/F: [0.85 V to 2 V] / [1.5 GHz to 3.5 GHz] 

Memory 

Main 

4GB, 8 bank per rank,  

Access time = 100 cycle 
DRAM 

Cache 

L1 

32KB 

4-way 
SRAM 

L2 
1MB 

16-way 

STT-RAM 

 

Table 2. Simulation Results 

Task 

Execution Time 

(ms) 

Average 

Power (W) 
Energy (mJ) 

A7 A15 A7 A15 A7 A15 

basicmath 242.37 86.188 0.412 0.690 99.9515 59.54 

bitcount 35.314 11.56 0.423 0.708 14.96 8.19 

crc32 2635.87 1273.69 0.413 0.618 1090.93 787.67 

dijkstra 43.74 16.36 0.414 0.677 18.15 11.08 

fft 259.01 88.88 0.412 0.695 106.86 61.80 

jpeg 39.24 12.99 0.422 0.749 16.59 9.73 

lame 1514.84 540.18 0.411 0.698 623.75 377.53 

patricia 145.90 43.54 0.414 0.634 60.51 27.615 

qsort 33.15 9.73 0.413 0.640 13.69 6.23 

susan 26.26 8.62 0.414 0.720 10.87 6.21 
 

 

 

Fig. 4. Impact of frequency, primary core type, and utilization in energy of 

standby-sparing methods. 
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consider the utilization of the cores based on the maximum 

number of the running task without any adding replicas. We 

evaluate the impact of frequency and the minimum number 

of replicas on energy consumption by increasing utilization 

from utilization=0.2 to utilization=1.6 and by increasing the 

number of cores from 2 to 8 under a given reliability target. 

We assume three 2-Core, 4-Core, and 8-Core systems. On the 

other hand, we should note that to be able to show the effect 

of increasing the number of replicas. The amount of 

utilization mentioned here is equal to the sum of the 

productivity of all cores, which can have a value greater than 

one. 

When we increase the utilization of a dual-core system 

up to 0.8 and for a system with four cores up to 1.6, based on 

our simulations, we cannot add any replicas to the system. 

Thus, we consider the amount of utilization that can be added 

to the system. It was noted earlier that we have three methods 

for selecting tasks and frequency of cores: LEF, LPF, and 

LUF [21]. In our simulations, we choose the best scheme to 

achieve low power/energy consumption in Fig. 6. Fig. 6a 

shows the average increase in the power consumption is 25% 

(up to 36.40%) as the core number and utilization increase. 

Fig. 6b shows the average increase in energy consumption of 

task replication is 22.48% (up to 36.39%) based on the 

number of cores and utilization. According to the simulation 

results, we can assert that in the task replication technique we 

are looking for the minimum number of replicas to minimize 

energy/power consumption. For this purpose, the reliability 

target specifies the replication level. Also, in a specific 

utilization, we can minimize the number of replicas to get 

more performance and low power/energy consumption by 

deciding the best policy of task selection according to energy, 

power, and utilization. 

Standby Sparing vs. Task Replication: To have a fair 

comparison between standby-sparing and task replication 

methods, we suppose a dual-core system and we consider the 

same utilization for all methods. The system is considered to 

be a dual-core system because we consider the SS methods 

as a method for heterogeneous systems that require at least 

two cores to utilize the low-power and high-performance 

characteristics simultaneously. For this reason, we should 

also consider the dual-core for the task replication system so 

that we can run tasks and replicas at the same time. We 

evaluate the methods under two different utilization-level, i.e. 

utilization=0.4 and utilization=0.8. In Fig. 7, the effect of 

heterogeneity on both power consumption and execution time 

can be seen. Fig. 7a shows that generally the standby sparing 

methods, especially those that consider the overlap between 

primary and backup tasks (MO and OA), have a better 

execution time than task replication. It has also been shown 

that using SS methods can reduce average power by 29.77% 

on average (up to 52.77%) compared to task replication 

methods. Fig. 7b shows increasing the number of replicas in 

some cases can act similarly or better than standby-sparing 

method especially when the frequency scaling is not allowed. 

Our estimates show that the standby-sparing method can 

perform energy saving on average 13.31% and up to 49.09% 

better than the task replication method.  

In conclusion, standby-spring and task replication are 

traditional methods that consider both reliability and 

power/energy consumption simultaneously and can design a 

low power (energy efficient) fault-tolerant system. The 

frequency and type of core (LP or HP) used today have a great 

impact on power/energy and reliability. Therefore, when 

using the methods mentioned above the challenge of the type 

of core and its frequency must be taken into account. The 

 
Fig. 5. Average power of standby-sparing method with different policies and different utilizations. 
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Fig. 6.  a) Average power, b) Energy, of task replication method with different utilization-levels. 
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results of the simulations have shown that in general to 

discuss the power/energy consumption the choice of a 

dynamic frequency has better effects than the static 

frequency. The task replication method can achieve higher 

reliability than the reliability target, facing increased 

power/energy consumption. So if the power/energy challenge 

is more important, the standby-sparing technique can work 

better. 

VI. CONCLUSIONS 

Low power consumption and high-reliability are two main 

objectives in designing hard real-time embedded systems. 

Most of the embedded systems which are utilized in safety-

critical applications employ fault-tolerant techniques to 

achieve the required reliability level. However, fault-tolerant 

techniques incur considerable power overhead. Several novel 

methods have been proposed in previous work to reduce the 

power consumption of fault-tolerant systems, but there are no 

published guidelines to help designers to select the best 

approach for a given application. In this paper, we compare 

different fault-tolerant management methods used for 

reducing the power consumption of embedded systems. 
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