
Energy-Budget-Aware Reliability Management in Multi-Core

Embedded Systems with Hybrid Energy Source

Sepideh Safari1, Mohsen Ansari1, Mohammad Salehi2, and Alireza Ejlali1

1Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
2Computer Engineering Department, University of Guilan, Rasht, Iran

Abstract

VLSI technology scaling has resulted in the integration of a larger number of cores in a single chip in successive technology nodes, offering a

great potential to realize task-level redundancy for reliability enhancement in safety-critical applications. However, since battery technology

no longer advances commensurately with integration density, multi-core platforms may have limited utility in battery-powered embedded

systems. In this paper, we propose an energy-budget-aware reliability management (enBudRM) method for multi-core embedded systems

featuring hybrid energy source (with renewable and non-renewable energy sources). Our method is composed of two phases. In the offline

phase, we only consider battery as the energy source and, according to the available energy-budget and slack time for each execution frame,

tasks scheduling and voltage-frequency level are determined such that the tasks timing constraints are met while achieving the given reliability

target. To increase the battery lifetime, in the online phase, we exploit released slack time at runtime for further voltage scaling. To compensate

for the reliability loss of voltage scaling, we exploit an energy harvester along with the battery to enable executing more task replicas. Our

experiments show that our energy budgeting method (the offline phase) compared to other approaches reduces the energy consumption on

average by 57% (up to 80%). Also, by using harvester we can achieve up to 45% (on average 35%) battery energy saving, resulting in a higher

battery life.

Keywords: Hard real-time embedded systems, Multi-core platforms, Fault tolerance, Dynamic task replication, Energy budgeting.

1. Introduction

With the advance of VLSI technology, in order to improve

performance and energy efficiency, multi-core platforms are

becoming the mainstream in embedded

systems [1], [2], [3], [4]. Multi-core platforms provide

opportunities to implement real-time embedded systems with

low energy consumption and high reliability

requirements [5], [6], [7]. However, scaling VLSI technology

aggravates manufacturing process variations, soft error rate,

and battery efficiency gap (the growth rate gap between

application complexity and battery technology) [8]. Process

variations lead to variations in the frequency and leakage

power of different cores on a chip or across different

chips [9], [10], [11], [62]. Scaling VLSI technology also

aggravates reliability issues of on-chip systems, such as soft

errors that are transient faults (bit-flips) in the underlying

hardware due to high energy particle strikes [7], [12].

Furthermore, since the battery technology is not keeping in

pace with integration density, multi-core platforms may have

limited utility in battery-powered embedded systems [8], [13].

One way to conquer the process variation-induced

performance and power variability is to use multiple voltage-

frequency levels, e.g. through exploiting Dynamic Voltage

and Frequency Scaling (DVFS) [10], [14], [15]. However,

scaling supply voltage down further increases soft error rate,

with a resultant significant reduction in system

reliability [16], [17]. Beside others, task-level redundancy

(e.g. redundant multithreading [18], [19], and replication [20])

is a predominant technique to mitigate soft errors in multi-core

processors [21], [22]. However, such techniques may impose

significant energy overhead to the system, which has to be

carefully taken into account for system design, especially in

embedded systems with limited energy sources.

The CSI Journal on

Computer Science and Engineering

Vol. 15, No. 2, 2018

Pages 31-43

Regular Paper

The CSI Journal on Computer Science and Engineering, Vol. 15, No. 2, 2018 32

In a nutshell, energy management techniques (e.g., DVFS)

decrease system reliability, and reliability management

techniques (e.g. task replication) consume extra energy.

Besides, in the battery-operated devices, such as portable

surveillance systems, the limited energy source will be

eventually exhausted, and then, the battery needs to be

recharged or replaced before the device stops working.

Moreover, in some applications, recharging or replacing the

battery is time-consuming or even impossible. In order to

extend the lifetime of such systems, energy harvesting

methods, e.g. solar and piezoelectric harvesters [23], [24], can

be used along with battery [25]. Although the harvesting

energy obtained from environmental sources such as solar is

unlimited, it is time-variant, i.e. the amount of harvested

energy during the operation of the system is not constant and

also it is not predictable. Therefore, since hard real-time

applications need to guarantee the energy availability during

the operation of the system, they necessarily require exploiting

battery along with energy harvester.

In this paper, we consider the limitations of battery and energy

harvester as well as reliability requirements of embedded

systems, and propose an energy-budget-aware reliability

management (enBudRM) method for hard real-time

embedded systems. This method consists of an offline phase

and an online phase. In the offline phase, battery is considered

as the sole energy source of the system and based on the

battery charge and the required lifetime for the system, the

available energy budget is distributed between the

applications execution frames. Then, considering the amount

of the available energy budget for each frame and the required

reliability level, the application tasks are scheduled. In the

online phase, to increase the system lifetime we use an energy

harvester, aiming at using the battery as less as possible. It

means that if the energy provided by the harvester is enough

for executing the application, we use the harvester instead of

the battery, resulting in an energy saving in the battery. The

other reason for using energy harvester at runtime is to provide

energy budget for reliability management techniques to

compensate the reliability degradation due to applying DVFS.

When DVFS is used, due to decreasing the supply voltage,

system reliability is degraded. In this case, we should exploit

more task replicas to improve the reliability. To do this, the

energy harvester is used to enable executing more replicas.

The main contributions of this paper are:

 Presenting an energy-budget-aware reliability

management (enBudRM) method to meet the given

reliability target through determining the level of task

replication based on the amount of energy budget

assigned to each execution frame.

 Proposing the concept of energy budgeting in a system

with a hybrid energy source including a limited energy

budget like battery (that may not be recharged or replaced

in the operational area) and a rechargeable energy source

like solar.

 Considering the effects of process variations on

performance and power consumption of different cores in

multi-core platforms when mapping and scheduling tasks.

 Demonstrating how energy harvester can help to increase

battery lifetime while compensating reliability

degradations at runtime through providing additional

energy.

2. RELATED WORK

Criteria for evaluating energy harvesting systems are different

from that for battery powered systems. Harvesting energy is

distinct from battery energy in two ways: i) harvesting energy

is an unlimited supply which can allow the system to last

forever (if appropriately used), unlike the battery which is a

limited resource, ii) availability and measurement of

harvesting energy is uncertain while the energy stored in the

battery can be known deterministically. Therefore, methods

which are used to manage battery energy are not always

applicable to energy harvesting systems. In addition, most

power management schemes for battery-powered systems

only account for the dynamics of the energy consumers (e.g.,

CPU) but not the dynamics of the energy supply. To reduce

energy consumption, battery-powered systems should operate

at the lowest performance level, while energy harvesting

systems do not need necessarily do this and can provide an

enhanced performance depending on the available

energy [26].

2.1 Battery-Powered Devices

Some research works such

as [17], [27], [28], [29], [30], [31], [32] have focused on

energy management in fault-tolerant single-processor real-

time embedded systems. Some research works,

e.g., [6], [33], [34], [35] studied a standby-sparing hardware

redundancy technique to tolerate transient faults while saving

energy. These works have not considered multiple faults per

task execution. Many previous works in the context of multi-

core systems either propose energy reduction management

techniques without considering reliability

(e.g., [36], [37], [38]) or focus on reliability management

without considering energy consumption

(e.g., [39], [40], [41]). Recently, research works have been

focused on both energy and reliability considerations in multi-

core systems. Some works, e.g. [42], [43], [44] have proposed

multi-core architectures target low-energy consumption and

fault tolerance. These works require hardware modification or

redesign, and hence, cannot be used by the current off the-

shelf processors, while our proposed technique is general and

can be exploited by any multi-core processor that supports

DVFS. [45], [46], [47], [48], [49] have proposed energy-

management techniques for task-level redundancy in multi-

core systems. [45] has proposed both individual-recovery and

shared-recovery based reliability aware power management

heuristics. [45] and [46] have considered only one faulty

execution for each task, while for many applications a high

level of reliability can be achieved by tolerating multiple

faulty tasks [47], [48], [50], [51]. [47] considers periodic

independent real-time tasks and determines the degree of

replication (number of replicas) and frequency assignment for

each task, as well as task-to-core allocations, in such a way to

achieve the target reliability levels with minimum energy

consumption. [5] has proposed an N-Modular Redundancy

(NMR) technique where without considering variations in

tasks software vulnerability, assigns same number of copies to

each task. However, in our proposed method by considering

Safari et al.: Energy-Budget-Aware Reliability Management in Hard Real-Time Multi-Core Systems with Hybrid Energy Source (Regular Paper) 33

tasks software vulnerability we assign appropriate number of

replicas to each task (not the same number of replicas for each

task), resulting in a reduced energy consumption.

2.2 Energy Harvesting Devices

Several research works have been carried out in power

minimization techniques for energy harvesting systems. Few

works such as [54] and [55] have considered task scheduling

in the context of non-real-time energy harvesting

systems. [56] has proposed an offline DVFS algorithm where

it was assumed that harvested energy from the ambient energy

source is constant. In this work, the variability of the energy

source is ignored which is not the case in real

applications. [23] has proposed task scheduling techniques for

energy harvesting systems. Also the authors in [57] have

proposed lazy scheduling algorithm that executes task as late

as possible at full speed, reducing deadline miss rates when

compared with the classical earliest deadline first (EDF)

algorithm. In this paper, tasks slack time is not exploited for

energy savings. In order to utilize the slack times for energy

saving, [24] has proposed an energy-harvesting-aware DVFS

algorithm which slows down tasks when the harvested energy

is not sufficient, otherwise, the tasks are executed at the full

speed. This work only considers one task instead of

considering all tasks in the ready task queue. [13] uses an

adaptive scheduling and DVFS algorithm for real-time energy

harvesting systems under timing and energy constraints. To do

this, it distributes workload of all tasks evenly over time. [58]

has considered a realistic model for the battery charging and

discharging and presented a load matching task scheduling

algorithm for energy harvesting real-time embedded

systems. [59] has proposed an energy management technique

in the operating system layer and also has proposed an

adaptive task scheduler to maximize quality of service of

periodic firm real-time applications. [26] has proposed an

adaptive duty cycling algorithm that allows energy harvesting

sensor nodes to autonomously adjust their duty cycle

according to energy availability in the environment. [25]

has considered hard real-time single processor systems with

two renewable and non-renewable energy sources. In order to

reduce the costs, they present two DVS controllers to

minimize the energy attained from the non-renewable energy

source.

All above research works target task scheduling and DVFS for

energy harvesting real-time systems with a single-core

processor. However, recent research works have started to

move towards multi-core processor [60], [61]. Also none of

the previous works consider reliability constraints and multi-

core platforms in their system models. [60] has proposed a

task mapping, scheduling and power management method for

multi­core real-time embedded systems with energy harvester.

This method is based on task utilization and mathematically

proves that by allocating the new task to the core with the

lowest utilization, the lowest overall energy dissipation can be

achieved. How-ever, it has more than 50% deadline miss

rate. [61] has proposed an algorithm to reduce the deadline

miss rate in [60].

In this paper, we address the use of multi-core platforms to

achieve high reliability with low energy overhead for hard

real-time embedded systems with hybrid energy source

consisting of renewable and non-renewable energy sources

(i.e. battery and energy harvester).

3. SYSTEM MODELS AND PROBLEM

FORMULATION

In this paper, we consider a multi-core system featuring

homogenous cores where the cores are affected by

manufacturing process variations (i.e. the maximum

frequency and static power of cores may vary from core to

core [62]). In such a multi-core system, due to the variations

in operational frequency, an identical task has different

execution time and reliability on different cores. Therefore, in

our proposed method we consider the effects of process

variation in hardware and also software vulnerability. Fig. 1

shows the overview of our system model. Scheduler receives

different inputs from hardware and software levels and system

energy and gives tasks scheduling in offline and online phases.

3.1. Hardware and Application Model

We focus on a multi-core processor consisting of M

homogenous cores {C1, C2, …, CM}. The cores can operate

at multiple voltage and frequency (V-f) levels. Each voltage

level contains one or more cores and the cores may have

different maximum frequencies and variant static power due

to process variations.

A large number of real-time embedded systems operate on a

cyclic basis, i.e. they execute certain real-time tasks

repetitively (e.g. capturing some sensor data, processing data

and finally generating some control signals [25]). These

applications are executed in a time frame, i.e. the application

tasks should be executed before a deadline. We assume that

Fig. 1. An overview of the proposed system.

Controller

Library of Cores

C1 C2

C4 C5

C3

C6

Hardware Level Parameters

Core-to-Core Process

Variations Map

V-f levels

Software Level Parameters

Solar Panel

Energy Sources

Scheduler

Reliability-Timing-Aware

Scheduling and Energy

Budget Management

Energy Harvesting

Management to compensate

reliability degradation and

increase battery lifetime

Offline Phase

Online Phase

Set of Applications

T1
T2
T3

Ultra-Capacitor

Energy Storage Model

Solar Power Trace

Energy Generation ModelHarvested Energy Tracking

Timing Constraint and
Reliability Requirement

Battery

Tasks

Vulnerability

Tasks

Execution Time

Fig. 2. Solar power trace in continuous scale [57]

The CSI Journal on Computer Science and Engineering, Vol. 15, No. 2, 2018 34

each execution frame consists of a set of independent periodic

real-time tasks ψ, each task τ ϵ ψ has a characteristic triplet (w,

d, T). w is the maximum number of CPU clock cycles that the

task needs for execution. d is the task deadline and T is the

period of the task, in this paper we consider that d=T.

3.2. Reliability Models

We consider transient faults, i.e. bit upsets in the underlying

hardware. Such transient faults occurrences are typically

assumed to follow a Poisson process with the rate λ. The fault

rate varies exponentially with the supply voltage V changes.

Therefore, the raw fault rate λ(V) corresponding to the supply

voltage V can be written as follows:







VV

V

max

10)(0
(1)

where λ0 is the fault rate corresponding to the maximum

voltage (V=Vmax) and Δ is a parameter that determines the

amount of increase in the fault rate when the voltage decreases

by one level. In our evaluations, we consider λ0=10-6 and

Δ=1V [5], [52]. A transient fault in the underlying hardware

may finally result in a software failure. To measure the

software failures due to transient faults, we use a state-of-the-

art software reliability model called the Function

Vulnerability Index (FVI) [52], [53]. This measures the

software failure probability and accounts for both spatial and

temporal vulnerabilities of different instructions (see details in

[53]). Therefore, the software failure rate due to transient

faults can be modeled as λ(V)×FVI. Therefore, following [52],

the reliability of a task execution is computed as:

()

()

w
V FVI

fR e



  



(2)

When n copies of a task are executed, reliability of the task

execution is the probability of that at least one of the task

copies finishes successfully and can be written as:

    , 1 1
n

R n R    (3)

It should be noted that, due to the Function Vulnerability

Index, different applications have different reliability.

Therefore, the given reliability target can be achieved through

using distinct redundancy techniques. Using dissimilar

redundancy techniques reduces the power consumption of

less-vulnerable applications.

3.3. Power and Energy Model

We consider that the power consumption of a core at the

voltage and frequency level V-f is determined using Eq. 4 [6];

where PStatic and PDynamic are the static power (mainly

consumed by sub-threshold leakage current Isub) and dynamic

power (mainly consumed due to circuit switching activities),

𝛼0→1 is the circuit activity factor, and Csw is the average

switched capacitance.
2

0 1
(,)

Static Dynamic sub sw
P V f P P I V C V f


   

(4)

When DVFS is used, each task τ is executed at the voltage-

frequency level V-f that may be less than Vmax-fmax, and hence,

the actual execution time of the task is prolonged from w/fmax

to w/f (w is the task’s clock cycles). Therefore, the total energy

which is consumed to execute the task τ and the V-f level can

be computed as [6]:

(, ,) (,)
w

E w V f P V f
f

 (5)

3.4. Energy Harvesting Model

Energy supply has always been a crucial issue in designing

battery-powered systems because the lifetime and utility of the

systems are limited by how long the batteries are able to

sustain the operation. Since when the system starts running out

of the battery power, the validity of data begins to degrade.

Therefore, harvesting energy from environment has been

proposed to supplement or completely replace battery supplies

to enhance system lifetime and to reduce the maintenance cost

of replacing batteries periodically [26].

In the rest of this section, at first we present a detailed analysis

of different parts of an energy harvesting part in Fig. 1 to

illustrate the harvest modules, including the harvested energy

tracking block, the energy generation model, and the energy

storage model.

Harvested Energy Tracking Block: This block is used to

measure the energy received from the harvesting device, such

as the solar panel. Such information is useful for determining

the energy availability profile and for adapting system

performance based on the profiled energy.

Energy Generation Model: This part provides a model of

energy availability for the system that may be used for power

management techniques. The data measured by the energy

tracking block is used by this block to predict future energy

availability [26]. Fig. 2 shows an energy generation profile

measured by tracking the output current from a solar cell. We

can observe that although the energy profile varies from day

to day, it follows a general pattern over several days [26]. The

trace of the power source PH(t) is generated by a random

number generator as:

)
100

cos()
70

cos()(10)(


tt
tNtPH 

(6)

where N(t) is a normally distributed random variable with the

mean 0 and variance 1. As Fig. 2 shows, the obtained power

trace PH(t) exhibits stochastic, deterministic and periodic

behavior. Since the harvesting energy usually has a stochastic

behavior, the systems that exploit such energy sources have to

adapt to the dynamic nature of the energy attained from the

environment. This obviates the need of appropriate energy

management techniques that efficiently use the harvesting

energy in order to increase battery lifetime.

Energy Storage Model: This block represents the model for

the energy storage technology. Naturally, due to the changes

in environmental conditions like temperature, humidity, angle

of sunlight incidence and cloud density, the amount of

Fig. 3. Trade-off between energy consumption and system

life-time (the number of executions).

Fig. 1: Motivational Example

7000

9000

11000

13000

15000

500

600

700

800

900

1000

1100

0.9999 0.99999 0.999999 0.9999999

#
 o

f
E

x
ec

u
ti

o
n

s

E
n

er
g
y
 (

m
J)

Target Reliability

Energy Consumption Order of execution

Safari et al.: Energy-Budget-Aware Reliability Management in Hard Real-Time Multi-Core Systems with Hybrid Energy Source (Regular Paper) 35

harvested power varies over time and solar energy source is

unstable in nature. Also, all the generated energy may not be

used instantaneously. Therefore, to cope with mentioned

problem, the harvesting system will usually have some energy

storage technology (e.g., batteries and ultra-capacitors) which

can be used to buffer solar energy collected by PV cells [26].

In this paper we assume that the energy storage is ideal, i.e. it

is assumed that it can be fully charged and discharged no

matter how many charge/discharge cycles it has gone

through [13].

Considering PH(t) as the power harvested from environment

by the energy harvesting module at time t, the harvested

energy EH(t1,t2) during time a particular interval [t1,t2] is

calculated by Eq. 7. We assume that we have k execution

frames in our system and the amount of energy obtained

during each frame is:






1

)(),(1

i

i

t

t
Hiiframe dttPttEH (7)

In this paper, the capacity of harvesting storage module is

denoted as Ecap. Therefore, the amount of energy which can be

saved during the harvesting period in the super-capacitor is

less than or equal to Ecap, i.e.:

cap

k

frame

frame EEH  
1

0 (8)

In order to ensure that there is no overflow, the initial energy

in the super capacitor (EIframe) at the beginning of a frame

should be smaller than the battery capacity. To compute the

harvester energy consumption in each execution frame we use

Eq. 9. In this equation N and B show the number of primary

and replica tasks respectively. Also assume that the energy

consumption of each task is ei.







BN

i
iiifram e ebxxED

1

)(
(9)

xi is the main task and bxi is task replica. Since the energy

consumption of the system in each execution frame has to be

less than the total available energy, we have:

kframeEEHEIED batteryframeframeframe  0,
(10)

where Ebattery is the amount of the energy in battery that is

assigned to the frame.

4. MOTIVATIONAL ANALYSIS

4.1. Frame-Based Energy Budgeting

Many frame-based embedded applications are mobile and

dependent upon only a limited energy source like battery [56].

Since a system with a limited energy budget should execute

the application for a specified period of time, it is important to

cautiously consume energy. When task replication is used for

fault tolerance, in addition to main tasks, there are task replicas

that consume extra energy. When execution frames including

task replicas are executed for a specified period of time, in

some conditions, the system may exhaust the total available

energy before finishing the job. This causes the system to stop

working or to fail. Also, due to the limited energy budget,

there may not be sufficient energy to provide a high replication

level, e.g. full triple modular redundancy (TMR), for all

applications. Therefore, the total energy source is distributed

among different frames in a way such that each frame has its

own energy budget.

By estimating the available energy budget for each execution

frame, we guarantee that each frame meets its target reliability

according to its own energy budget without exhausting the

total energy budget of the system for a long time operation. As

an example for energy budgeting in frame-based task

execution, let us consider that we have a multi-core platform

with a 9000J of energy (e.g. a NiMH battery).

Fig. 3 shows the energy consumption and the number of

executions for different target reliability values when task

replication is used for fault tolerance. As Fig. 3 shows, when

the system requires lower target reliability, it consumes lower

energy for executing each frame, since it requires executing

fewer number of task replicas. Therefore, the system can

perform for a longer duration. For example, when the target

reliability is 0.9999 each frame consumes 600mJ of energy,

and hence, the system can execute the application for

9000J/600mJ=15000 times (this case is marked in Fig. 3). On

the other hand, when the target reliability is high, each frame

consumes more energy and it executes the frame for a shorter

duration. Therefore, there is a tradeoff between the achievable

reliability target and the number of frame executions (i.e. the

duration of the system operation) under a given energy budget.

(a) (b) (c)

(d)

(e)

Fig. 4. a) Execution of the sample application in Section 4.2.

a) when no fault tolerant technique is used, b) under triple

modular redundancy (TMR), c) under an energy budget-

aware task replication, d) frame-based execution of Fig. 4b,

and e) frame-based execution of Fig. 4c.

C2

C1

T3

T1

T2

C3

Df

t

T4 C2

C1

C3

Df

t

T3

T1 T2

T1 T2

T1 T3

T3

T2

T4

T4

T4

C2

C1

T3

T1

T2

C3

T4

B1

B2

B1

B3

Df

t

C2

C1

T3

T1 T2

C3

T1 T2

T1

Df

t

T3

T3

T2

T4

T4

T4

DD D

T3

T1 T2

T1 T2

T1 T3

T3

T2

T4

T4

T4

Energy

Constraint

T3

T1 T2

T1 T2

T1 T3

T3

T2

T4

T4

T4

C2

C1

T3

T1

T2

C3

T4

B1

B2

B1

B3

Df

t

T3

T1

T2 T4

B1

B2

B1

B3

D

T3

T1

T2 T4

B1

B2

B1

B3

D

Energy

ConstraintD

The CSI Journal on Computer Science and Engineering, Vol. 15, No. 2, 2018 36

4.2. Illustrative Example

We provide an illustrative example to show how our proposed

method works in order to meet target reliability by considering

energy budgeting. To do this, we assign specified energy

budget to each execution frame. This energy budget should be

sufficient for main tasks execution. However, the number of

task replicas depends on the remaining amount of energy in

the hybrid energy source (i.e. battery and harvester). In this

example, we consider a multi-core system with three cores.

For simplicity, it is assumed that cores are homogenous and

the effects of process variations are not considered. Also, we

consider that we have four periodic frame-based tasks T1, T2,

T3 and T4 that have the same period and their period is equal

to their deadline. We assume that the tasks have reliability in

an ascending order as: T1→T2→T3→T4 (i.e. T1 has the

lowest reliability and it is more vulnerable to fault

occurrence). We consider the same tasks ordering in

scheduling.

Fig. 4a shows single-task execution where no fault tolerant

technique is used. For this figure we assume that the total

energy consumption of tasks is below the frame energy

budget. We also assume that the reliability of single task

execution do not satisfy the target reliability. One of the

approaches to improve the reliability is spatial redundancy

(e.g. spatial TMR) which executes three replicas for each task

in parallel. We assume that by the use of TMR (Fig. 4b) the

target reliability is met but each frame consumes more energy

than its assigned energy budget. However, according to Eq. 3,

tasks have different reliability due to their various execution

time and FVI factor. Hence, all tasks in the same frame do not

need the same redundancy level (i.e. it is not necessary to use

TMR for all tasks). Therefore, in our proposed method when

the basic reliability of the system (when no redundancy is

used) is below the target reliability, we cautiously determine

the number of task replicas in order to meet both the reliability

and energy budget constraints. For example in Fig. 4c, we

assume that T1 needs two replicas, T2 and T3 need one replica

and T4 does not need any replica. Since our proposed method

has fewer task replicas in comparison with TMR, it consumes

less energy, and also it meets the reliability target. Fig. 4d

shows consecutive execution of Fig. 4b where each frame

consumes energy more than its energy budget. Hence, it

should borrow energy from its successor frames. Repetition of

this condition leads the total energy budget to be exhausted.

However, our proposed method is energy-budget conservative

which assigns replicas to the tasks until the system has enough

energy budget and timing constraints are not violated.

Therefore, as a result of consecutive execution of frames in

Fig. 4e, not only our proposed method meets the frame’s

energy budget but also each frame saves energy and can give

some energy to other frames.

5. OUR PROPOSED METHOD

The problem of scheduling tasks on a multi-core system under

optimization goals (achieving target reliability) and

constraints (energy-budget and timing constraints) is known

as a NP-hard problem [5], [47]. Therefore, we present a

heuristic to provide a method for energy reduction. Our

proposed enBudRM method consists of an offline phase and

an online phase that are developed in Section 5.1 and Section

5.2, respectively.

5.1. Offline Phase of enBudRM

In the offline phase of our proposed method, we assume that

the system relies only on the battery as the energy source.

Assuming that the system performs a couple of execution

frames, we share the energy of the battery among the frames

so that each frame has its own energy budget. Then according

to the assigned energy budget to each execution frame, we

select the appropriate number of replicas and voltage-

frequency (V-f) level for each task. Afterwards, considering

variations in performance and power properties of cores due

to process variations and also the cores utilization, the tasks

are scheduled. The overview of the system operations in

offline phase is shown in Fig. 5 and Fig. 6. The offline phase

takes the characteristics of a frame-based task set (ψ) (i.e. tasks

clock cycles (w), tasks vulnerability (FVI)), cores information

(i.e. V-f levels and static power considering process

variations), energy budget of each frame, target reliability of

Fig. 6. Determining the number of replicas and V-f level for

each task (lines 17-54 of Algorithm 1).

Offline Phase (the task scheduling)

Reliability-timing-aware scheduling & energy budget

management

Energy of Battery

Backup assignment queue

Backup Assignment

Checking timing

constraint

Checking reliability

Requirement

Checking energy

budget

Static slack exploitation

Applying DVFS

(considering energy

budget)

Backup shifting (reducing

execution overlap)

Fig. 5. Utilization-based task-to-core assignment (lines 1-16 of Algorithm 1).

Offline Phase (Utilization-based task-to-core assignment)

Tasks

sets

Cores information (considering

process variation)

 Tasks vul.

 Tasks exe. time

Compute the reliability of each task on all

V-f levels of cores

Find minimum reliability of

each task on all cores

Sort tasks according to their

reliability & put them into the

queue

(Tx→Ty→… →Tz)

 Select 1st task of the queue

 Assign the task to the core with

max. freq. and min. utilization

Utilization based task mapping

Construct core free

intervals matrix

Choose the next task

in sorted queue

Assign selected task to

the core with max. free

intervals

Compute reliability of the tasks on

designated cores

Put the tasks w.r.t their reliabilities

into backup assignment queue

Ci

V1, f1, Ps(1)

Vmax, fmax, Ps(max)

C1

V1, f1, Ps(1)

Vmax, fmax, Ps(max)

Cm

V1, f1, Ps(1)

Vmax, fmax, Ps(max)

R1

Rmax

Ti

R1

Rmax

Safari et al.: Energy-Budget-Aware Reliability Management in Hard Real-Time Multi-Core Systems with Hybrid Energy Source (Regular Paper) 37

the system and timing constraints as input, and gives tasks

mapping and scheduling.

Algorithm 1 shows the pseudo-code of the offline phase of our

enBudRM method. In this phase a frame-based task set (ψ) is

scheduled on a multi-core system. At first, the reliability of the

tasks under all V-f levels on all cores are determined in lines

1-7. Then, the tasks are sorted in an ascending order according

to their minimum reliability in line 8. Through lines 9-16 the

algorithm iterates until there is no task in the task set. In each

iteration, it chooses the task with the minimum reliability (line

10) and the finds the core with the lowest utilization and the

maximum frequency to improve the task’s reliability (line 11).

It has been mathematically proven that utilization-based task

mapping achieves the lowest overall energy consumption

[61]. The algorithm assigns the task τ to the selected core c.

Then the operating frequency of the task τ.f is set to the

maximum frequency of the core (line 12). We use the variable

τ.k with the initial value of 1 to determine the number of

replicas for the task τ (at first the main task has no replicas).

Also, in each iteration of the while loop, the algorithm

computes the task reliability on the designated core and put it

into the backup assignment queue (ψBQ) in line 15 (the

overview of these operations is shown in Fig. 5).

After mapping the tasks to the cores, the total energy

consumption of the tasks and the total reliability are computed

in lines 17-18. As we mentioned before, we use task

replication to meet reliability target. However, when the

energy-budget is limited, replicas should be assigned

consciously. Therefore, in assigning replicas we consider

timing constraints, target reliability and energy-budget

simultaneously. To do this, at first the tasks in the backup

assignment queue (ψBQ) are sorted according to their reliability

in ascending order in line 19. Then, the algorithm iterates until

there is no task in the backup assignment queue and the total

reliability becomes higher than the target reliability (lines 20-

32). In each iteration of the while loop, we take the task with

the minimum reliability from the backup assignment queue for

replica assignment (line 21).

In replica assignment, we use the utilization-based policy (line

22) to map the replica to the less-utilized core. Here, if timing

and energy-budget constraints are met in line 23, the replica is

assigned to the selected core. Also, after each replica

assignment in line 24, the variable τ.k increases in line 25 and

the total energy consumption and the total reliability are

updated in lines 26-27. Since the reliability of the tasks is

changed due to the replica assignment, the task is put again

into the backup assignment queue and ψBQ is then sorted

according to the tasks reliability in line 28. In each replica

assignment, if the timing and energy budget constraints are not

met, it means that the algorithm cannot assign a replica to the

task with minimum reliability and as a result, the target

reliability is not met. Therefore it returns infeasible and

terminates in lines 29-30. If the total reliability meets the

reliability target, we exploit the available slack times to apply

DVFS for energy saving through lines 33-53. At first, the

algorithm sorts the tasks with respect to their energy

consumption and put them in the energy queue (ψEQ) in line

33. Then, the algorithm iterates until there is no task in ψEQ

(lines 34-54) and chooses the task with the maximum energy

for applying DVFS in line 35. The algorithm applies DVFS

beginning from the minimum frequency level (line 36) (i.e. it

assigns the minimum frequency to each selected task). Then

the algorithm computes the required execution time for

applying DVFS, i.e. the difference between the task’s

execution time under the current frequency step (τ.w/f) and the

task’s execution time in the maximum frequency step

(τ.w/τ.c.fmax) (line 37). If there is enough time for applying

DVFS (line 37), the task’s new frequency (τ.f) is set to the

current frequency.

Since by applying DVFS, the reliability is decreased due to the

transient fault rate increase [17], [63], extra replica

assignments may be required. If after applying DVFS the total

reliability (RDVFS) satisfies the target reliability, the algorithm

applies DVFS without inserting more replicas and breaks the

for loop and chooses the next task in ψEQ (lines 40-41).

However, after applying DVFS, if the total reliability

Algorithm 1. The Offline Phase of Our enBudRM Method

INPUT: Set of tasks, tasks clock cycles (w), tasks vulnerability (FVI), core-
to-core map, set of free cores CM and their V-f levels, reliability and timing

constraints, energy_budget constraint (battery)

OUTPUT: Task mapping and V-f assignment, determine the number of
replicas, and the tasks scheduling.

BEGIN

1. for all τ ϵ Q do // loop over all ready tasks
2. for all c ϵ CM do // loop over all free cores

3. for all available V-f levels for c do

4. τ.R=R(τ,1); // Eq. 3
5. end for;

6. end for;

7. end for;

8. Q.sort(); // sort tasks w.r.t reliability

9. while Q ≠ Ø do

10. τ=Q.remove(); // remove the task with the lowest reliability
11. c= minutilization{CM} and maxfrequency{CM};
12. τ.f=c.fmax; // operating frrequency

13. τ.k=1; // the number of replicas

14. c.add(τ);

15. BQ.add(τ); // tasks backup assignment queue
16. end while;

17. Etotal= E(τ); // total energy of tasks inBQ (Eq. 4)

18. Rtotal= ΠR(τ, τ.k) ∀τ ϵ BQ; // total reliability of tasks in BQ (Eq. 2)

19. BQ.sort(R); // sort tasks w.r.t reliability

20. while (Rtotal < Rtarget & BQ≠ Ø) do

21. τ=BQ.remove();
22. c=minutilization{CM};

23. if τ.w/c.f<free_interval(c) and E(τ)<EBudget-Etotal then

24. c.add(τ);
25. τ.k=τ.k+1;

26. Etotal= Etotal+E(τ); // update total energy

27. Rtotal=ΠR(τ, τ.k) ∀τ ϵ BQ; // update total reliability

28. BQ.sort(); // sort tasks w.r.t reliability
29. else

30. return infeasible;

31. end if;

32. end while;

33. EQ.sort(E); // sort tasks w.r.t energy consumption
34. while EQ ≠ Ø do

35. τ=EQ.remove(); // task with max. energy consumption

36. for f=τ.c.fmin to τ.c.fmax do

37. if τ.w/f - τ.w/τ.c.fmax< free_interval(τ.c) then

38. τ.f=f;

39. RDVFS= ΠR(τ, τ.k) ∀τ ϵ BQ; // τ is executed under f
40. if RDVFS >Rtarget then break; // break the for loop

41. else // schedule a replica

42. c=minutilization{CM};

43. if τ.w/c.fmax < free_interval(c) and E(τ) < Ebudget-Etotal then

44. c.add(τ); // inser a replica
45. τ.k=τ.k+1;

46. Etotal= Etotal+E(τ); // update total energy

47. Rtotal=ΠR(τ, τ.k) ∀τ ϵ BQ; // update total reliability
48. break; //break the for loop

49. end if;

50. end if;

51. end if;

52. end for;

53. end while;

54. shift the replicas to the end of the frame;

END

The CSI Journal on Computer Science and Engineering, Vol. 15, No. 2, 2018 38

decreases below the target reliability, the algorithm assigns a

replica to the selected task. In order to do this, it chooses the

core with the minimum utilization (c) in line 42. If the timing

and energy budget constraints are met (line 43), the algorithm

inserts a replica to c and then updates the number of task’s

replicas, the total energy consumption and the total reliability,

and finally breaks the for loop in lines 45-48. However, if the

constraints are not met, it scales up the V-f level and continues

with a higher V-f level. At last, when the tasks mapping,

scheduling and replica assignment are finished, the algorithm

shifts replicas to the end of the frame to reduce possible

execution overlaps between the main and replica tasks (line

54). For shifting replicas, at first we should find the length of

the replicas which is the difference between the end time of

the last replica and the start time of the first replica. Then by

computing the shifting length, the new start time of the

replicas after shifting is the difference between the deadline

and the shifting length. Fig. 6 shows the overview of that part

of the offline phase of our proposed method that determines

the number of replicas and applies DVFS.

5.2. Online Phase

The overview of the system operations in the online phase is

shown in Fig. 7. In this phase we have an adaptive fault

tolerance management that gets tasks scheduling (achieved by

the offline phase) and the hybrid energy source parameters and

determines the number of replicas in runtime along with

applying DVFS and DPM. In the online phase, the adaptive

fault tolerance management decides how to use the hybrid

energy for frame execution to increase battery lifetime. To do

this, whenever the amount of the available harvesting energy

is enough for task execution, the required energy for the task

execution is provided by the harvester which leads to save

more energy in the battery.

At run-time, some replica tasks may be dropped due to

successful execution of the main tasks, resulting in some

dynamic slack times. The system uses the dynamic slack to

apply DVFS for saving more energy in the battery. However,

DVFS may have negative effects on the system reliability

[17], [63], primarily because of the increased transient fault

rates at low supply voltage and frequency levels. This can be

encountered through inserting additional replicas. Allocating

additional replicas consumes excessive energy that may

violate the energy budget of the frames. The energy that is

achieved through energy harvesting can be used for executing

additional replicas in the online phase. Therefore, the hybrid

energy source helps the system to compensate reliability

degradation by executing more replicas. This leads to increase

the battery lifetime and to compensate reliability degradation.

Algorithm 2 shows the pseudo-code of the online phase of our

enBudRM method. In applying DVFS in runtime, due to the

computational and timing overheads, we cannot check all

frequency levels to choose the best level for energy saving.

Therefore, instead of the online phase, the computations are

done in the offline phase as follows. In the offline phase,

without considering timing and energy budget constraints, we

consider assigning one more replica than those that have

already been assigned to each task. Accordingly, we determine

the minimum possible frequency level that satisfies the

reliability requirements. By considering one more replica to

each task, a lower frequency level can be used, while the

reliability requirement is still satisfied. The minimum

frequency values are saved in an array (fMinPossible) that is used

by Algorithm 2 in the online phase. At runtime, due to early

completion of a task or a replica cancellation, some dynamic

slack times may release which can be used to apply DVFS for

energy saving.

In line 1, the next task after the released slack time in

execution queue (ψExe) is chosen for applying DVFS. The

algorithm finds the minimum possible frequency level of the

selected task in fMinPossible array (determined in the offline

phase). Here, considering the minimum possible frequency

level for the task, we check two cases: i) if the offline

frequency level of the selected task (τ.foffline) is equal to its

minimum possible frequency level (τ.fMinPossible). This means

that this frequency level is the minimum value that can be

achieved and it is not required to apply DVFS. ii) if the

minimum possible frequency level of the task is smaller than

the current frequency level. In this case, we can apply DVFS

(line 2). For applying DVFS, the algorithm checks the timing

constraint. For satisfying the timing constraints, the difference

between the task execution time at the minimum frequency

level (τ.w/fMinPssible) and its current execution time (τ.w/τ.foffline)

must be more than the core’s free time interval (line 3). If so,

the algorithm sets the frequency of the task to fMinPssible. Then

the reliability constraint is checked. If the total reliability

Runtime is not violated, it means that DVFS can be applied

without inserting more replicas. However, if the total

reliability after decreasing the frequency becomes bellow the

target reliability, one more replica is assigned. For inserting

the replica, the algorithm follows the utilization-based policy

and chooses the core with the minimum utilization (c) in line

Algorithm 2. The Online Phase of Our enBudRM Method

INPUT: Offline scheduling, reliability and timing requirements,

cores V-f levels, energy budget constraint (battery and harvester),

task’s offline V-f level, MinPossible_V-f.

OUTPUT: Tasks scheduling and V-f level.

BEGIN //Upon finishing a task or cancelling a replica on a

core c

1. τ=Exe.remove(c); //select the next task in the schedule

of c

2. if τ.foffline>τ.fMinPossible then

3. if τ.w/fMinPssible - τ.w/τ.foffline ≤ free_interval(τ.c) then
4. τ.f=τ.fMinPossible;

5. Rruntime= ΠR(τ, τ.k) ∀τ ϵ Exe; // τ is executed under τ.fMinPossible

6. if Rruntimr < Rtarget then // insert a replica

7. c=minutilization{CM};

8. if τ.w/c.fmax<free_interval(c) and E(τ) < EHarvester then
9. c.add(τ);

10. else

11. τ.f=τ.foffline;

12. end if;

13. end if;

14. end if;

15. end if;

END

Fig. 7. Overview of the system operations in online phase.

Online Phase

Offline scheduling

C1

C2

C3

Actual execution time

Adaptive fault tolerance

management

 Battery or Harvest

 # of replicas

 DVFS & DPM

Hybrid energy source

Super capacitor Battery

Scheduling

Compensated reliability

degradation

Improved battery lifetime

C4

Safari et al.: Energy-Budget-Aware Reliability Management in Hard Real-Time Multi-Core Systems with Hybrid Energy Source (Regular Paper) 39

7. After checking the timing and energy constraints in line 8,

the algorithm inserts one more replica and applies DVFS to

save more energy in the battery and updates the total reliability

and energy in line 9. Otherwise, we do not apply DVFS since

the energy for the extra replica is provided by battery. Indeed,

we do not want to use the energy of the battery for inserting

one more replica in the online phase. In this case, the

frequency level of the task is scaled up to the foffline. Finally the

output of this phase leads to increase lifetime of battery by

saving more energy in the battery.

6. EXPERIMENTAL RESULTS AND

DISCUSSION

6.1. Experimental Setup

We evaluated our proposed enBudRM method for various

benchmark applications executed on a system-level multi-core

simulator, which uses precise power and performance

characteristics of LEON3 processor [64] obtained through

detailed ASIC synthesis. We used the information of

synthesizing a LEON3 processor using VHDL

implementation in Synopsys Design Compiler with TSMC

45nm low-power standard cell library and junction

temperature of 125°C. Also, by considering that the system

supports DVFS under five different voltage and frequency

levels between [0.72Volt, 490MHz] and [1.23Volt, 970MHz],

the power results are shown in Table 1.

We conducted experiments on different real-life applications

of the embedded MiBench benchmark suite [65]. Also, we

assumed that the FVI factor varies between 0.1 to 0.3 [52], and

the clock cycles vary between 2K and 20K at the maximum V-

f level.

Harvester Parameters: We denote the length of a harvesting

period as HP. Let frame be the number of execution frames in

a harvesting period. In our implementation, HP is one day and

the duration of each frame is one second that is the short term

prediction. For each frame, the prediction algorithm provides

EHframe which is the amount of harvested energy in that frame

(Eq. 7). The long term prediction predicts the total harvested

energy for the whole day. However, we want the exact

information for the next time slot (each one second). Therefore

we used short term prediction that predicts the exact amount

of harvesting energy for the next one second [59].

Varying Solar Profile: In another set of experiments, we

show the performance of our method under different energy

harvesting profiles. These profiles are obtained from [66] and

show different power profiles on different days at the same

location as weather condition changes starting at midnight

(Fig. 8).

6.2. Comparison with State-of-the-Art Methods

To the best of our knowledge, this paper is the first one that

describes the concept of energy budgeting in hard-real time

multi-core systems. We compared our proposed enBudRM

method with a TMR technique where tasks are scheduled

based on [67] and DVFS is used to achieve energy saving. We

compared our enBudRM method with [67] -TMR for: i) the

worst-case execution condition where all tasks become faulty

and no harvester is used which is the offline phase of our

proposed method; ii) the average-case execution condition

including fault-free scenario by considering the energy

harvester where the harvester helps the system to improve

battery lifetime and compensate reliability degradation. This

is the online phase of our proposed method.

6.2.1. Worst-Case Execution Condition Analysis

In the worst-case execution scenario all replica tasks are

considered to be executed as well as the main tasks due to

faults in all the main tasks. Although this condition is

pessimistic, it leads to consuming the maximum possible

energy by the system. Also in this scenario we do not use

harvester to verify that the system meets the energy-budget

constraint of battery in design time.

Fig. 9 shows the energy consumption and the reliability of our

enBudRM method compared to [67]-TMR when the target

reliability is 0.99999. Fig. 9a shows the normalized energy

consumption of our enBudRM method and [67]-TMR when

the execution frame includes 10 tasks to 100 tasks in a multi-

core system with four cores. In this case, we assign specified

energy-budget to each execution frame that is normalized to 1

(normalized energy is shown by the dash line).

When the system runs fewer number of tasks (under a lower

workload), due to our consciously replica assignment, the

application needs fewer number of task replicas. However

[67]-TMR executes three equal tasks for each task. Therefore,

our enBudRM method consumes fewer energy in comparison

with [67]-TMR (it meets the energy-budget constraint).

Also, as Fig. 9b shows, our proposed method meets the

reliability target that is shown by dot line. When the number

of tasks growths, e.g. the system runs 100 tasks (in higher

workloads), the enBudRM method needs more replicas to

satisfy the reliability target, which leads to consume more

energy.

Table 1: Power and performance characteristics of the LEON3

processor

 Voltage and Frequency Level
[Volt, MHz]

Power Consumption (mW)

Static Dynamic Total

[0.72, 490] 13,34 140,62 153,96

[0.85, 650] 14,44 228,78 243,22

[0.97, 730] 15,08 336,81 351,89

[1.10, 850] 15,69 463,17 478,86

[1.23, 970] 16,47 641,39 657,86

Fig. 8. Varying solar profiles [59]

The CSI Journal on Computer Science and Engineering, Vol. 15, No. 2, 2018 40

Although our enBudRM method consumes more energy, but

it also meets the energy-budget constraint and reliability target

in Fig. 9b. [67]-TMR violates the energy-budget. Considering

the energy consumption and reliability results in Fig. 9, we can

conclude that as our expectation, our proposed enBudRM

method meets the reliability and energy-budget constraints in

all condition by consuming fewer energy in comparison with

[67]-TMR.

We follow the experiments by considering higher reliability

targets, i.e. 0.999999 and 0.9999999 in Fig. 10 and Fig. 11,

respectively. In all experiments, our enBudRM method meets

the reliability target by consuming lower energy in

comparison with [67]-TMR, while [67]-TMR achieves higher

reliability level (more than that is needed) which leads to

consuming more energy.

6.2.2. Average-Case Execution Condition with Using

Harvester

We study the average-case execution condition where both

faulty and fault-free execution scenarios were considered.

Also in both scenarios we used energy harvester. In our

experiments, transient faults were generated by a Poisson

process where to simulate transient fault rates in different

voltage levels we used the model of Eq. 1 with λ0=10-6 and

Δ=1V [6]. Since transient faults are rare in nature, the online

part of our enBudRM method achieves further energy

reduction beyond what is achieved through the offline phase

at design time.

We considered that tasks actual execution time vary between

their worst-case execution time (WC) and the best-case

execution time (BC). The ratio BC/WC for each task was

generated randomly using the uniform distribution in the range

[0.5, 1] to investigate the impact of tasks early completion.

Also, the actual execution time of each task is uniformly

distributed from BC and WC.

In order to show the effectiveness of using energy harvester in

the online phase, we conducted other experiments. In our

experiments we assumed that each execution frame includes

100 tasks and the system has four cores and the target

reliability is equal to 0.99999. Fig. 12 shows the energy

consumption of a fault-free frame execution (replica

cancellation) during one day beginning from midnight in the

online phase. In Fig. 12 the energy consumption of offline

phase is normalized to one and is shown by dot line. We

compared the results of online phase with offline normalized

(a) Energy consumption (b) Reliability

Fig. 9. Energy consumption and reliability in a system with R_target=0.99999

(a) Energy consumption (b) Reliability

Fig. 10. Energy consumption and reliability in a system with R_target=0.999999

(a) Energy consumption (b) Reliability

Fig. 11. Energy consumption and reliability in a system with R_target=0.9999999

0

0.5

1

1.5

2

10 20 30 40 50 60 70 80 90 100

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

number of tasks

[Qi et al. 2011]-TMR
enBudRM
Normalized Energy

0.999984

0.999986

0.999988

0.99999

0.999992

0.999994

0.999996

0.999998

1

10 20 30 40 50 60 70 80 90 100

R
el

ia
b

il
it

y

number of tasks

0

0.5

1

1.5

2

10 20 30 40 50 60 70 80 90 100

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

number of tasks

[Qi et al. 2011]-TMR
enBudRM
Normalized Energy

0.9999984

0.9999986

0.9999988

0.999999

0.9999992

0.9999994

0.9999996

0.9999998

1

10 20 30 40 50 60 70 80 90 100

R
el

ia
b

il
it

y

number of tasks

0

0.5

1

1.5

2

10 20 30 40 50 60 70 80 90 100

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

number of tasks

[Qi et al. 2011]-TMR
enBudRM
Normalized Energy

0.99999984

0.99999986

0.99999988

0.9999999

0.99999992

0.99999994

0.99999996

0.99999998

1

10 20 30 40 50 60 70 80 90 100

R
el

ia
b

il
it

y

number of tasks

Safari et al.: Energy-Budget-Aware Reliability Management in Hard Real-Time Multi-Core Systems with Hybrid Energy Source (Regular Paper) 41

energy to show the improvement in battery energy

consumption of our proposed method. Fig. 12 shows the

normalized energy consumption of frame execution in

different conditions including sunny, cloudy and rainy days.

In our simulations we used the results of Fig. 8 which shows

the varying solar profile in sunny, cloudy and rainy days. By

considering the provided energy during a sunny day, as Fig.

12 shows, in the beginning of the day (at midnight) the system

receives fewer energy from harvester. In this figure the energy

consumption of a frame in online phase is less than the offline

phase, that is because of early or successful completion of the

main tasks which leads to battery energy saving. However, at

noontime, the harvester can provide more energy and as Fig.

12 shows most of the required energy for frame execution can

be provided through harvester and the energy consumption of

the battery decreases which leads to an increased battery

lifetime. Also, at the end of the day, the harvester provides

lower energy for the system. Therefore battery should provide

most of the energy for frame execution and results follow the

same scenario as the first of the day (morning), i.e. lower

energy saving in the battery.

We repeated our experiments by harvested energy of cloudy

and rainy days. As Fig. 8 shows the received energy in a

cloudy or rainy days are less than a sunny day. Therefore, in

Fig. 12 the energy saving of battery is less than a sunny day.

It means that for example in a cloudy day, the system should

receive most of its energy for frame execution through the

battery. In conclusion by using harvester in online phase, our

enBudRM method provides up to 43% (on average 35%)

improvement in battery energy consumption in compared with

the offline phase.

7. CONCLUSIONS

In this paper, we presented an energy-budget-aware reliability

management (enBudRM) method in a multi-core platform

with hybrid energy source consisting of battery and energy

harvester. Our proposed method has an offline and online

phases. For the offline phase of enBudRM, we explained

energy budgeting concept. In the offline phase, at first, based

on the total energy in the battery and the required number of

frame executions, the energy is distributed among all

execution frames so that each frame has its own energy-

budget. Then by considering the timing and energy-budget

constraints, the appropriate number of replicas, tasks

scheduling and V-f level of tasks are determined in a way that

achieves reliability target. In the online phase we use energy

harvester along with battery to increase the battery lifetime

and also to provide energy for compensating reliability

degradation by inserting more replicas. Our proposed method

can increase the battery lifetime by 45%.

References

[1] J. Lee, B. Yun, and K. G. Shin, “Reducing Peak Power Consumption in
Multi-Core Systems without Violating Real-Time Constraints,” IEEE
Trans. on Parall. and Distr. Syst., vol. 25, no. 4, pp. 1024-1033, April
2014.

[2] A. Munir, S. Ranka, and A. Gordon-Ross, “High-Performance Energy-
Efficient Multicore Embedded Computing,” IEEE Trans. on Parall. and
Distr. Syst., vol. 23, no. 4, pp. 684-700, 2012.

[3] J. Henkel, V. Narayanan, S. Parameswaran, and J. Teich, “Run-Time
Adaption for Highly-Complex Multi-Core Systems,” Int’l Conf. on
Hardware/Software Codesign and Syst. Synthesis (CODES+ISSS), pp.
1-8, 2013.

[4] A. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
Multi/Many-Core Systems: Survey of current and emerging trends,”
50th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1-
10, 2013.

[5] M. Salehi, A. Ejlali, and B. Al-Hashimi, “Two-Phase Low-Energy N-
Modular Redundancy for Hard Real-Time Multi-Core Systems,” IEEE
Trans. on Parall. and Distr. Syst., no. 99, 2015.

[6] A. Ejlali, B. Al-Hashimi, and P. Eles, “Low-Energy Standby-Sparing
for Hard Real-Time Systems,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 31, no. 3, pp. 329 - 342, March
2012.

[7] R. Melhem, D. Mosse, and E. Elnozahy, “The Interplay of Power
Management and Fault Recovery in Real-Time Systems,” IEEE Trans.
on Computers, vol. 53, no. 2, pp. 217-231, Feb 2004.

[8] A. Hemani, “Charting the EDA Roadmap,” IEEE Circuits and Devices
Magazine, pp. 5-10, November/December 2004.

[9] K.K. Rangan, M. Powell, G.-Y. Wei, and D. Brooks, “Achieving
Uniform Performance and Maximizing Throughput in the Presence of
Heterogeneity," IEEE HPCA, pp. 3-14, 2011.

[10] S. Dighe, S. Vangal, P. Aseron, and S. Kumar, “Within-Die Variation-
Aware Dynamic-VoltageFrequency-Scaling with Optimal Core
Allocation and Thread Hopping,” IEEE J. of Solid-State Circuits, vol.
46, no. 1, pp. 184-193, Jan. 2011.

[11] M.K. Tavana, A. Kulkarni, A. Rahimi, T. Mohsenin, and H. Homayoun,
“Energy-Efficient Mapping of Biomedical Applications on Domain-
Specific Accelerator under Process Variation,” IEEE ISLPED, 2014.

[12] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M.
Tahoori, and N. Wehn, “Reliable On-Chip Systems in the Nano-Era:
Lesson Learnt and Future Trends,” IEEE DAC, 2013.

[13] S. Liu, Q. Wu, and Q. Qiu, “An Adaptive Scheduling and
Voltage/Frequency Selection Algorithm for Real-time Energy
Harvesting Systems,” DAC, 2009.

[14] J. Luo and N. K. Jha, “Static and Dynamic Variable Voltage Scheduling
Algorithms for Real-Time Heterogeneous Distributed Embedded
Systems,” Int.’l Conf. on VLSI Design, 2002 .

[15] M.R. Guthaus, J. S. Ringenberg, and D. Erns, “Power Optimization of
Variable-Voltage Core-Based systems,” IEEE Trans. On Computer-
Aided Design, 1999.

[16] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner, “Razor: Circuit-Level Correction of Timing Errors for
Low Power Operation,” IEEE Micro, vol. 6, pp. 10-20, 2004.

[17] D. Zhu, R. Melhem, and D. Mossé, “The Effects of Energy Management
on Reliability in Real-Time Embedded Systems,” IEEE/ACM Int. Conf.
on Computer Aided Design, 7-11 Nov. 2004.

[18] A. Shye, T. Moseley, V. Janapa Reddi, J. Blomstedt, and D. A. Connors,
“Using Process-Level Redundancy to Exploit Multiple Cores for
Transient Fault Tolerance,” IEEE DSN, pp. 297– 306, 2007.

Fig. 12. Energy consumption in fault-free scenario using

harvester

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
ed

 E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

One day (86400s)

Frame 's energy consumption in the offline phase
Normalized energy consumption of battery in a sunny day
Normalized energy consumption of battery in a cloudy day
Normalized energy consumption of battery in a rainy day

Morning Noon Night

The CSI Journal on Computer Science and Engineering, Vol. 15, No. 2, 2018 42

[19] S.S. Mukherjee, M. Kontz, and S.K. Reinhardt, “Detailed Design and

Evaluation of Redundant Multithreading Alternatives,” IEEE ISCA,
2002.

[20] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware Task Replication
to Manage Reliability for Periodic Real-Time Applications on Multicore
Platforms,” Int'l Green Computing Conf. (IGCC), 2013.

[21] E. Normand, “Single Event Upset at Ground Level,” IEEE Trans. on
Nuclear Science, vol. 43, no. 6, pp. 2742-2750, Dec. 1996.

[22] T. Langley, R. Koga, and T. Morris, “Single-Event Effects Test Results
of 512MB SDRAMs,” IEEE Radiation Effects Data Workshop, pp. 98-
101, Jul. 2003.

[23] C. Moser, D. Brunelli, L. Thiele, L. Benini, “Real-Time Scheduling for
Energy Harvesting Sensor Nodes,” MICS Scientific Conf. and SNF
Panel Review, 2006.

[24] S. Liu, Q. Qiu, and Q. Wu, “Energy Aware Dynamic Voltage and
Frequency Selection for Real-Time Systems with Energy Harvesting,”
DATE, 2008.

[25] M. Mohaqeqi, M. Kargahi, and M. Dehghan, “Adaptive Scheduling of
Real-Time Systems Cosupplied by Renewable and Nonrenewable
Energy Sources,” ACM Trans. on Embedded Computing Syst. (TECS)
- Special Section on ESTIMedia, vol. 13, no. 1, Nov. 2013 .

[26] J. Hsu, S. Zahedi, A. Kansal, M. Srivastava and V. Raghunathan,
“Adaptive Duty Cycling for Energy Harvesting Systems,” int’l
symposium on Low power electronics and design (ISLPED), New York,
2006.

[27] Y. Liu, H. Liang, and K. Wu, “Scheduling for Energy Efficiency and
Fault Tolerance in Hard Real-Time Systems,” Design, Automation
(DATE), pp. 1444-1449, 2010.

[28] B. Zhao, H. Aydin, D. Zhu, “Enhanced Reliability-Aware Power
Management through Shared Recovery Technique,” Int’l Conf. on
Computer Aided Design, 2009.

[29] D. Zhu, “Reliability-Aware Dynamic Energy Management in
Dependable Embedded Real-Time Systems,” IEEE Real-Time and
Embedded Technology and Applications Symposium, pp. 04-07, April
2006.

[30] D. Zhu, and H. Aydin, “Reliability-Aware Energy Management for
Periodic Real-Time Tasks,” IEEE Trans. on Computers, vol. 58, no. 10,
pp. 1382-1397, 2009.

[31] B. Zhao, H. Aydin, and D. Zhu, “Shared Recovery for Energy Efficiency
and Reliability Enhancements in Real-Time Applications with
Precedence Constraints,” ACM Trans. on Design Automation of
Electronic Syst., vol. 18, no. 2, 2013.

[32] B. Zhao, H. Aydin, and D. Zhu, “Energy Management under General
Task-Level Reliability Constraints,” 18th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2012.

[33] M. Khavari Tavana, M. Salehi, A. Ejlali, “Feedback-Based Energy
Management in a Standby-Sparing Scheme for Hard Real-Time
Systems," IEEE Real-Time Syst. Symposium, RTSS, 2011.

[34] M.A. Haque, H. Aydin, and D. Zhu, “Energy-Aware Standby-Sparing
Technique for Periodic Real-Time Applications,” IEEE Int’l Conf. on
Computer Design (ICCD), pp. 9-12 Oct. 2011.

[35] M.A. Haque, H. Aydin, and D. Zhu, “Energy Management of Standby-
Sparing Systems for Fixed-Priority Real-Time Workloads,” Green
Computing Conf. (IGCC), pp. 27-29 June 2013.

[36] J. Cong, and K. Gururaj, “Energy Efficient Multiprocessor Task Energy
Efficient Multiprocessor Task," Design, Automation and Test in Europe
Conf. and Exhibition (DATE), April 2009.

[37] X. Qi, and D. Zhu, “Energy Efficient Block-Partitioned Multicore
Processors for Parallel Applications," J. Comput. Science Tech., vol. 26,
no. 3, p. 418–433, May 2011.

[38] S. Saha, J. S. Deogun, and Y. Lu, “Adaptive Energy-Efficient Task
Partitioning for Heterogeneous Multi-Core Multiprocessor Real-Time
Systems," Int’l Conf. High Performance Computing and Simulation
(HPCS), July 2012.

[39] H. Su, D. Zhu, and D. Mosse, “Scheduling Algorithms for Elastic
Mixed-Criticality Tasks in Multicore Systems,” IEEE 19th Int’l Conf.
Embed. Real-Time Computing Syst. and Applications (RTCSA), Aug.
2013.

[40] S.-H. Kang, H. Yang, K. Sungchan, I. Bacivarov, S. Ha, and L. Thiele,
“Reliability-Aware Mapping Optimization of Multi-Core Systems with
Mixed-Criticality,” Design, Automation and Test in Europe Conf. and
Exhibition (DATE), March 2014.

[41] S. Rehman, F. Kriebel, M. Shafique, and J. Henkel, “Reliability Driven
Software Transformations for Unreliable Hardware,” IEEE Trans.
Comput.-Aid. Des. Integr. Circuits Syst., vol. 33, no. 11, pp. 1597-1610,
Nov. 2014.

[42] T. Miller, N. Surapaneni, and R. Teodorescu, “Flexible Error Protection
for Energy Efficient Reliable Architectures,” 22nd Int’l Symp. Comput.
Arch. and High Performance Comput. (SBAC-PAD), Oct. 2010.

[43] R. Jeyapaul, F. Hong, A. Rhisheekesan, A. Shrivastava, and K. Lee,
“UnSync-CMP: Multicore CMP Architecture for Energy-Efficient Soft-
Error Reliability,” IEEE Trans. Parall. Distr. Syst., vol. 25, no. 1, pp.
254-263, Jan. 2014.

[44] R. Vadlamani, J. Zhao, W. Burleson, and R. Tessier, “Multicore Soft
Error Rate Stabilization Using Adaptive Dual Modular Redundancy,”
Design, Automation and Test in Europe Conf. and Exhibition (DATE),
March 2010.

[45] Y. Guo, D. Zhu, and H. Aydin, “Reliability-Aware Power Management
for Parallel Real-Time Applications with Precedence Constraints,” Int’l
Green Computing Conf. and Workshops (IGCC), July 2011.

[46] X. Qi, D. Zhu, and H. Aydin, “Global Scheduling Based Reliability-
Aware Power Management for Multiprocessor Real-Time Systems,” J.
Real-Time Syst., vol. 47, no. 2, pp. 109-142, March 2011.

[47] M.A. Haque, H. Aydin, and D. Zhu, “Energy-Aware Task Replication
to Manage Reliability for Periodic Real-Time Applications on Multicore
Platform," Int’l Green Computing Conf. (IGCC), June 2013.

[48] D. Zhu, R. Melhem, and D. Mosse, “Energy Efficient Redundant
Configurations for Real-Time Parallel Reliable Servers,” J. Real-Time
Syst., vol. 41, no. 3, pp. 195-221, April 2009.

[49] T. Wei, P. Mishra, K. Wu, and H. Liang, “Fixed-Priority Allocation and
Scheduling for Energy-Efficient Fault Tolerance in Hard Real-Time
Multiprocessor Systems,” IEEE Trans. Parall. Distr. Syst., vol. 19, no.
11, pp. 1511-1526, Nov. 2008.

[50] D. Pradhan, “Fault Tolerant Computer System Design,” Prentice-Hall,
1996.

[51] I. Koren, and C.M. Krishna, “Fault-Tolerant Systems,” Morgan
Kaufman, 2007.

[52] M. Salehi, M. K. Tavana, S. Rehman, F. Kriebel, M. Shafique, A. Ejlali,
and J. Henkel, “DRVS: Power-Efficient Reliability Management
through Dynamic Redundancy and Voltage Scaling under Variations,”
IEEE/ACM Int’l Symposium on Low Power Electronics and Design
(ISLPED), pp. 22-24, July, 2015.

[53] S. Rehman. A. Toma, F. Kriebel, M. Shafique, J.-J. Chen, J. Henkel.
Reliable Code Generation and Execution on Unreliable Hardware under
Joint Functional and Timing Reliability Considerations, In IEEE Real-
Time Embed. Tech. App. Symp. (RTAS), pp. 273-282, 2013.

[54] V. Gutnik and A. Chandrakasan, “An Efficient Controller for Variable
Supply-Voltage Low Power Processing,” Symposium on VLSI Circuits,
pp. 158-159, 1996.

[55] P. Koch, “How to Interface Energy Harvesting Models with
Multiprocessor Scheduling Paradigms,” 1st Int’l Conf. on Wireless
Communication, 2009.

[56] A. Allavena, and D. Mosse, “Scheduling of Frame-Based Embedded
Systems with Rechargeable Batteries,” Workshop on Power
Management for Real-time and Embedded Syst., 2001.

[57] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Lazy Scheduling for
Energy-Harvesting Sensor Ndoes," 5th Working Conf. Distr. and
Parall. Embedded Syst., 2007.

[58] S. Liu, J. Lu, Q. Wu, and Q. Qiu, “Load-Matching Adaptive Task
Scheduling for Energy Efficiency in Energy Harvesting Real-Time
Embedded Systems,” 16th ACM/IEEE Int’l Symposium on Low Power
Electronics and Design, 2010.

[59] H. Kooti, N. Dang, D. Mishra, and E. Bozorgzadeh “Energy Budget
Management for Energy Harvesting Embedded Systems,” IEEE Int’l
Conf. on Embedded and Real-Time Computing Syst. and Applications,
2012.

[60] J. Lu, and Q. Qiu, “Scheduling and Mapping of Periodic Tasks on Multi-
Core Embedded Systems with eEnergy Harvesting,” Int’l Green
Computing Conf. and Workshops (IGCC), 2011.

[61] Y. Xiang and S. Pasricha, “Run-Time Management for Multicore
Embedded Systems with Energy Harvesting," IEEE trans. Very Large
Scale Integration (VLSI) Syst., vol. 23, no. 12, pp. 2876-2889,
December, 2015.

Safari et al.: Energy-Budget-Aware Reliability Management in Hard Real-Time Multi-Core Systems with Hybrid Energy Source (Regular Paper) 43

[62] E. Humenay, D. Tarjan, and K. Skadron, “Impact of Process Variation

on Multicore Performance Symmetry,” Conf. Design, Autom. Test, Apr.
2007.

[63] V. Degalahal, L. Li, V. Narayanan, M. Kandemir, and M.J. Irwin, “Soft
Errors Issues in Low-Power Caches,” IEEE Trans. Very Large Scale
Integr. (VLSI), vol. 13, no. 10, pp. 1157–1166, 2005.

[64] http://www.gaisler.com/doc/leon3_product_sheet.pdf. [Online].

[65] M.R. Guthaus, J. S. Ringenberg, and D. Ernst, “MiBench: A free,
Commercially Representative Embedded Benchmark Suite,” IEEE Int’l
Workshop Workload Characterization (WWC), pp. 3-14, Dec. 2001.

[66] “National Renewable Energy Lab.,” Apri 2011. [Online]. Available:
http://www.nrel.gov.

[67] X. Qi, D. Zhu, and H. Aydin, “Global scheduling based reliability-aware
power management for multiprocessor real-time syst., vol. 47, no. 2, pp.
109–142, March 2011.

[68] J. Liu, P . Chou, N. Bagherzadeh, and F . Kurdahi, “Power-Aware
Scheduling under Timing Constraints for Mission-Critical Embedded
Systems,” 38th Design Automation Conf. (DAC), June, 2001.

Sepideh Safari received the M.Sc.

degree in computer engineering from

Sharif University of Technology,

Tehran, Iran, in 2016. She is currently

pursuing her PhD degree with Sharif

University of Technology, Tehran, Iran.

She is now the member of VLSI

Laboratory at the department of

computer engineering, Sharif University

of Technology. Her research interests include low-power

design, multi-/many-core systems, and energy management in

fault-tolerant real-time systems.

Email: ssafari@ce.sharif.edu

Mohsen Ansari received the M.Sc.

degree in computer engineering from

Sharif University of Technology, Tehran,

Iran, in 2016. He is currently working

toward the PhD degree in computer

engineering form Sharif University,

Tehran, Iran. He is now the member of

Embedded Systems Research Laboratory

(ESR-LAB) at the department of

computer engineering, Sharif University of Technology. His

research interests include low-power design of embedded

systems, peak power management in fault-tolerant embedded

systems, and multi-/many-core systems with a focus on

dependability/reliability.

Email: mansari@ce.sharif.edu

Mohammad Salehi received the PhD

degree in computer engineering from

Sharif University of Technology,

Tehran, Iran, in 2016. He is currently an

assistant professor of computer

engineering at University of Guilan,

Rasht, Iran. From 2014 to 2015, he was

a visiting researcher in the Chair for

Embedded Systems (CES), Karlsruhe

Institute of Technology (KIT), Germany. His research

interests include design of low-power, reliable and real-time

embedded systems with a focus on dependability and energy

efficiency in cyber-physical systems and Internet of Things

(IoT).

Email: mohammad.salehi@guilan.ac.ir

Alireza Ejlali received the PhD degree in

computer engineering from Sharif

University of Technology in, Tehran,

Iran, in 2006. He is currently an associate

professor of computer engineering at

Sharif University of Technology. From

2005 to 2006, he was a visiting researcher

in the Electronic Systems Design Group,

University of Southampton,

Southampton, United Kingdom. In 2006, he joined Sharif

University of Technology as a faculty member in the

department of computer engineering and from 2011 to 2015

he was the director of Computer Architecture Group in this

department. His research interests include low power design,

real-time embedded systems, and fault-tolerant embedded

systems.

Email: ejlali@sharif.edu

Paper Handling Data:

Submitted: 15.12.2017

Received in revised form: 10.05.2018

Accepted: 05.07.2018

Corresponding author: Dr. Alireza Ejlali,

Department of Computer Engineering, Sharif University

of Technology, Tehran, Iran

