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Abstract 

VLSI technology scaling has resulted in the integration of a larger number of cores in a single chip in successive technology nodes, offering a 

great potential to realize task-level redundancy for reliability enhancement in safety-critical applications. However, since battery technology 

no longer advances commensurately with integration density, multi-core platforms may have limited utility in battery-powered embedded 

systems. In this paper, we propose an energy-budget-aware reliability management (enBudRM) method for multi-core embedded systems 

featuring hybrid energy source (with renewable and non-renewable energy sources). Our method is composed of two phases. In the offline 

phase, we only consider battery as the energy source and, according to the available energy-budget and slack time for each execution frame, 

tasks scheduling and voltage-frequency level are determined such that the tasks timing constraints are met while achieving the given reliability 

target. To increase the battery lifetime, in the online phase, we exploit released slack time at runtime for further voltage scaling. To compensate 

for the reliability loss of voltage scaling, we exploit an energy harvester along with the battery to enable executing more task replicas. Our 

experiments show that our energy budgeting method (the offline phase) compared to other approaches reduces the energy consumption on 

average by 57% (up to 80%). Also, by using harvester we can achieve up to 45% (on average 35%) battery energy saving, resulting in a higher 

battery life. 

Keywords: Hard real-time embedded systems, Multi-core platforms, Fault tolerance, Dynamic task replication, Energy budgeting. 

1. Introduction

With the advance of VLSI technology, in order to improve 

performance and energy efficiency, multi-core platforms are 

becoming the mainstream in embedded 

systems [1], [2], [3], [4]. Multi-core platforms provide 

opportunities to implement real-time embedded systems with 

low energy consumption and high reliability 

requirements [5], [6], [7]. However, scaling VLSI technology 

aggravates manufacturing process variations, soft error rate, 

and battery efficiency gap (the growth rate gap between 

application complexity and battery technology) [8]. Process 

variations lead to variations in the frequency and leakage 

power of different cores on a chip or across different 

chips [9], [10], [11], [62]. Scaling VLSI technology also 

aggravates reliability issues of on-chip systems, such as soft 

errors that are transient faults (bit-flips) in the underlying 

hardware due to high energy particle strikes [7], [12]. 

Furthermore, since the battery technology is not keeping in 

pace with integration density, multi-core platforms may have 

limited utility in battery-powered embedded systems [8], [13]. 

One way to conquer the process variation-induced 

performance and power variability is to use multiple voltage-

frequency levels, e.g. through exploiting Dynamic Voltage 

and Frequency Scaling (DVFS) [10], [14], [15]. However, 

scaling supply voltage down further increases soft error rate, 

with a resultant significant reduction in system 

reliability [16], [17]. Beside others, task-level redundancy 

(e.g. redundant multithreading [18], [19], and replication [20]) 

is a predominant technique to mitigate soft errors in multi-core 

processors [21], [22]. However, such techniques may impose 

significant energy overhead to the system, which has to be 

carefully taken into account for system design, especially in 

embedded systems with limited energy sources. 
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In a nutshell, energy management techniques (e.g., DVFS) 

decrease system reliability, and reliability management 

techniques (e.g. task replication) consume extra energy. 

Besides, in the battery-operated devices, such as portable 

surveillance systems, the limited energy source will be 

eventually exhausted, and then, the battery needs to be 

recharged or replaced before the device stops working. 

Moreover, in some applications, recharging or replacing the 

battery is time-consuming or even impossible. In order to 

extend the lifetime of such systems, energy harvesting 

methods, e.g. solar and piezoelectric harvesters [23], [24], can 

be used along with battery [25]. Although the harvesting 

energy obtained from environmental sources such as solar is 

unlimited, it is time-variant, i.e. the amount of harvested 

energy during the operation of the system is not constant and 

also it is not predictable. Therefore, since hard real-time 

applications need to guarantee the energy availability during 

the operation of the system, they necessarily require exploiting 

battery along with energy harvester. 

In this paper, we consider the limitations of battery and energy 

harvester as well as reliability requirements of embedded 

systems, and propose an energy-budget-aware reliability 

management (enBudRM) method for hard real-time 

embedded systems. This method consists of an offline phase 

and an online phase. In the offline phase, battery is considered 

as the sole energy source of the system and based on the 

battery charge and the required lifetime for the system, the 

available energy budget is distributed between the 

applications execution frames. Then, considering the amount 

of the available energy budget for each frame and the required 

reliability level, the application tasks are scheduled. In the 

online phase, to increase the system lifetime we use an energy 

harvester, aiming at using the battery as less as possible. It 

means that if the energy provided by the harvester is enough 

for executing the application, we use the harvester instead of 

the battery, resulting in an energy saving in the battery. The 

other reason for using energy harvester at runtime is to provide 

energy budget for reliability management techniques to 

compensate the reliability degradation due to applying DVFS. 

When DVFS is used, due to decreasing the supply voltage, 

system reliability is degraded. In this case, we should exploit 

more task replicas to improve the reliability. To do this, the 

energy harvester is used to enable executing more replicas. 

The main contributions of this paper are: 

 Presenting an energy-budget-aware reliability 

management (enBudRM) method to meet the given 

reliability target through determining the level of task 

replication based on the amount of energy budget 

assigned to each execution frame. 

 

 Proposing the concept of energy budgeting in a system 

with a hybrid energy source including a limited energy 

budget like battery (that may not be recharged or replaced 

in the operational area) and a rechargeable energy source 

like solar. 

 

 Considering the effects of process variations on 

performance and power consumption of different cores in 

multi-core platforms when mapping and scheduling tasks. 

 

 Demonstrating how energy harvester can help to increase 

battery lifetime while compensating reliability 

degradations at runtime through providing additional 

energy.  

2. RELATED WORK 

Criteria for evaluating energy harvesting systems are different 

from that for battery powered systems. Harvesting energy is 

distinct from battery energy in two ways: i) harvesting energy 

is an unlimited supply which can allow the system to last 

forever (if appropriately used), unlike the battery which is a 

limited resource, ii) availability and measurement of 

harvesting energy is uncertain while the energy stored in the 

battery can be known deterministically. Therefore, methods 

which are used to manage battery energy are not always 

applicable to energy harvesting systems. In addition, most 

power management schemes for battery-powered systems 

only account for the dynamics of the energy consumers (e.g., 

CPU) but not the dynamics of the energy supply. To reduce 

energy consumption, battery-powered systems should operate 

at the lowest performance level, while energy harvesting 

systems do not need necessarily do this and can provide an 

enhanced performance depending on the available 

energy [26]. 

2.1 Battery-Powered Devices 

Some research works such 

as [17], [27], [28], [29], [30], [31], [32] have focused on 

energy management in fault-tolerant single-processor real-

time embedded systems. Some research works, 

e.g., [6], [33], [34], [35] studied a standby-sparing hardware 

redundancy technique to tolerate transient faults while saving 

energy. These works have not considered multiple faults per 

task execution. Many previous works in the context of multi-

core systems either propose energy reduction management 

techniques without considering reliability 

(e.g., [36], [37], [38]) or focus on reliability management 

without considering energy consumption 

(e.g., [39], [40], [41]). Recently, research works have been 

focused on both energy and reliability considerations in multi-

core systems. Some works, e.g. [42], [43], [44] have proposed 

multi-core architectures target low-energy consumption and 

fault tolerance. These works require hardware modification or 

redesign, and hence, cannot be used by the current off the-

shelf processors, while our proposed technique is general and 

can be exploited by any multi-core processor that supports 

DVFS. [45], [46], [47], [48], [49] have proposed energy-

management techniques for task-level redundancy in multi-

core systems. [45] has proposed both individual-recovery and 

shared-recovery based reliability aware power management 

heuristics. [45] and [46] have considered only one faulty 

execution for each task, while for many applications a high 

level of  reliability can be achieved by tolerating multiple 

faulty tasks [47], [48], [50], [51]. [47] considers periodic 

independent real-time tasks and determines the degree of 

replication (number of replicas) and frequency assignment for 

each task, as well as task-to-core allocations, in such a way to 

achieve the target reliability levels with minimum energy 

consumption. [5] has proposed an N-Modular Redundancy 

(NMR) technique where without considering variations in 

tasks software vulnerability, assigns same number of copies to 

each task. However, in our proposed method by considering 
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tasks software vulnerability we assign appropriate number of 

replicas to each task (not the same number of replicas for each 

task), resulting in a reduced energy consumption.  

2.2 Energy Harvesting Devices 

Several research works have been carried out in power 

minimization techniques for energy harvesting systems. Few 

works such as [54] and [55] have considered task scheduling 

in the context of non-real-time energy harvesting 

systems. [56] has proposed an offline DVFS algorithm where 

it was assumed that harvested energy from the ambient energy 

source is constant. In this work, the variability of the energy 

source is ignored which is not the case in real 

applications. [23] has proposed task scheduling techniques for 

energy harvesting systems. Also the authors in [57] have 

proposed lazy scheduling algorithm that executes task as late 

as possible at full speed, reducing deadline miss rates when 

compared with the classical earliest deadline first (EDF) 

algorithm. In this paper, tasks slack time is not exploited for 

energy savings. In order to utilize the slack times for energy 

saving, [24] has proposed an energy-harvesting-aware DVFS 

algorithm which slows down tasks when the harvested energy 

is not sufficient, otherwise, the tasks are executed at the full 

speed. This work only considers one task instead of 

considering all tasks in the ready task queue. [13] uses an 

adaptive scheduling and DVFS algorithm for real-time energy 

harvesting systems under timing and energy constraints. To do 

this, it distributes workload of all tasks evenly over time. [58] 

has considered a realistic model for the battery charging and 

discharging and presented a load matching task scheduling 

algorithm for energy harvesting real-time embedded 

systems. [59] has proposed an energy management technique 

in the operating system layer and also has proposed an 

adaptive task scheduler to maximize quality of service of 

periodic firm real-time applications. [26] has proposed an 

adaptive duty cycling algorithm that allows energy  harvesting  

sensor  nodes  to  autonomously  adjust  their  duty cycle  

according  to  energy  availability  in  the  environment. [25] 

has considered hard real-time single processor systems with 

two renewable and non-renewable energy sources. In order to 

reduce the costs, they present two DVS controllers to 

minimize the energy attained from the non-renewable energy 

source.  

All above research works target task scheduling and DVFS for 

energy harvesting real-time systems with a single-core 

processor. However, recent research works have started to 

move towards multi-core processor [60], [61]. Also none of 

the previous works consider reliability constraints and multi-

core platforms in their system models. [60] has proposed a 

task mapping, scheduling and power management method for 

multi­core real-time embedded systems with energy harvester. 

This method is based on task utilization and mathematically 

proves that by allocating the new task to the core with the 

lowest utilization, the lowest overall energy dissipation can be 

achieved. How-ever, it has more than 50% deadline miss 

rate. [61] has proposed an algorithm to reduce the deadline 

miss rate in [60].  

In this paper, we address the use of multi-core platforms to 

achieve high reliability with low energy overhead for hard 

real-time embedded systems with hybrid energy source 

consisting of renewable and non-renewable energy sources 

(i.e. battery and energy harvester). 

3. SYSTEM MODELS AND PROBLEM 

FORMULATION 

In this paper, we consider a multi-core system featuring 

homogenous cores where the cores are affected by 

manufacturing process variations (i.e. the maximum 

frequency and static power of cores may vary from core to 

core [62]). In such a multi-core system, due to the variations 

in operational frequency, an identical task has different 

execution time and reliability on different cores. Therefore, in 

our proposed method we consider the effects of process 

variation in hardware and also software vulnerability. Fig. 1 

shows the overview of our system model. Scheduler receives 

different inputs from hardware and software levels and system 

energy and gives tasks scheduling in offline and online phases.    

3.1. Hardware and Application Model 

We focus on a multi-core processor consisting of M 

homogenous cores {C1, C2, …, CM}. The cores can operate 

at multiple voltage and frequency (V-f) levels. Each voltage 

level contains one or more cores and the cores may have 

different maximum frequencies and variant static power due 

to process variations. 

A large number of real-time embedded systems operate on a 

cyclic basis, i.e. they execute certain real-time tasks 

repetitively (e.g. capturing some sensor data, processing data 

and finally generating some control signals [25]). These 

applications are executed in a time frame, i.e. the application 

tasks should be executed before a deadline. We assume that 

 

Fig. 1. An overview of the proposed system. 
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each execution frame consists of a set of independent periodic 

real-time tasks ψ, each task τ ϵ ψ has a characteristic triplet (w, 

d, T). w is the maximum number of CPU clock cycles that the 

task needs for execution. d is the task deadline and T is the 

period of the task, in this paper we consider that d=T. 

3.2. Reliability Models 

We consider transient faults, i.e. bit upsets in the underlying 

hardware. Such transient faults occurrences are typically 

assumed to follow a Poisson process with the rate λ. The fault 

rate varies exponentially with the supply voltage V changes. 

Therefore, the raw fault rate λ(V) corresponding to the supply 

voltage V can be written as follows: 







VV

V

max

10)( 0 
(1) 

where λ0 is the fault rate corresponding to the maximum 

voltage (V=Vmax) and Δ is a parameter that determines the 

amount of increase in the fault rate when the voltage decreases 

by one level. In our evaluations, we consider λ0=10-6 and 

Δ=1V [5], [52]. A transient fault in the underlying hardware 

may finally result in a software failure. To measure the 

software failures due to transient faults, we use a state-of-the-

art software reliability model called the Function 

Vulnerability Index (FVI) [52], [53]. This measures the 

software failure probability and accounts for both spatial and 

temporal vulnerabilities of different instructions (see details in 

[53]). Therefore, the software failure rate due to transient 

faults can be modeled as λ(V)×FVI. Therefore, following [52], 

the reliability of a task execution is computed as: 

( )

( )

w
V FVI

fR e



  


 

(2) 

When n copies of a task are executed, reliability of the task 

execution is the probability of that at least one of the task 

copies finishes successfully and can be written as: 

    , 1 1
n

R n R    (3) 

It should be noted that, due to the Function Vulnerability 

Index, different applications have different reliability. 

Therefore, the given reliability target can be achieved through 

using distinct redundancy techniques. Using dissimilar 

redundancy techniques reduces the power consumption of 

less-vulnerable applications. 

3.3. Power and Energy Model 

We consider that the power consumption of a core at the 

voltage and frequency level V-f is determined using Eq. 4 [6]; 

where PStatic and PDynamic are the static power (mainly 

consumed by sub-threshold leakage current Isub) and dynamic 

power (mainly consumed due to circuit switching activities), 

𝛼0→1 is the circuit activity factor, and Csw is the average 

switched capacitance.  
2

0 1
( , )

Static Dynamic sub sw
P V f P P I V C V f


    

(4) 

When DVFS is used, each task τ is executed at the voltage-

frequency level V-f that may be less than Vmax-fmax, and hence, 

the actual execution time of the task is prolonged from w/fmax 

to w/f (w is the task’s clock cycles). Therefore, the total energy 

which is consumed to execute the task τ and the V-f level can 

be computed as [6]: 

( , , ) ( , )
w

E w V f P V f
f

 (5) 

3.4. Energy Harvesting Model 

Energy supply has always been a crucial issue in designing 

battery-powered systems because the lifetime and utility of the 

systems are limited by how long the batteries are able to 

sustain the operation. Since when the system starts running out 

of the battery power, the validity of data begins to degrade.  

Therefore, harvesting energy from environment has been 

proposed to supplement or completely replace battery supplies 

to enhance system lifetime and to reduce the maintenance cost 

of replacing batteries periodically [26]. 

In the rest of this section, at first we present a detailed analysis 

of different parts of an energy harvesting part in Fig. 1 to 

illustrate the harvest modules, including the harvested energy 

tracking block, the energy generation model, and the energy 

storage model.  

Harvested Energy Tracking Block: This block is used to 

measure the energy received from the harvesting device, such 

as the solar panel. Such information is useful for determining 

the energy availability profile and for adapting system 

performance based on the profiled energy.  

Energy Generation Model: This part provides a model of 

energy availability for the system that may be used for power 

management techniques. The data measured by the energy 

tracking block is used by this block to predict future energy 

availability [26]. Fig. 2 shows an energy generation profile 

measured by tracking the output current from a solar cell. We 

can observe that although the energy profile varies from day 

to day, it follows a general pattern over several days [26]. The 

trace of the power source PH(t) is generated by a random 

number generator as: 

)
100

cos()
70

cos()(10)(


tt
tNtPH  

(6) 

where N(t) is a normally distributed random variable with the 

mean 0 and variance 1. As Fig. 2 shows, the obtained power 

trace PH(t) exhibits stochastic, deterministic and periodic 

behavior. Since the harvesting energy usually has a stochastic 

behavior, the systems that exploit such energy sources have to 

adapt to the dynamic nature of the energy attained from the 

environment. This obviates the need of appropriate energy 

management techniques that efficiently use the harvesting 

energy in order to increase battery lifetime. 

Energy Storage Model: This block represents the model for 

the energy storage technology. Naturally, due to the changes 

in environmental conditions like temperature, humidity, angle 

of sunlight incidence and cloud density, the amount of 

 

Fig. 3. Trade-off between energy consumption and system 

life-time (the number of executions).  
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harvested power varies over time and solar energy source is 

unstable in nature. Also, all the generated energy may not be 

used instantaneously. Therefore, to cope with mentioned 

problem, the harvesting system will usually have some energy 

storage technology (e.g., batteries and ultra-capacitors) which 

can be used to buffer solar energy collected by PV cells [26]. 

In this paper we assume that the energy storage is ideal, i.e. it 

is assumed that it can be fully charged and discharged no 

matter how many charge/discharge cycles it has gone 

through [13].  

Considering PH(t) as the power harvested from environment 

by the energy harvesting module at time t, the harvested 

energy EH(t1,t2) during time a particular interval [t1,t2] is 

calculated by Eq. 7. We assume that we have k execution 

frames in our system and the amount of energy obtained 

during each frame is: 






1

)(),( 1

i

i

t

t
Hiiframe dttPttEH (7) 

In this paper, the capacity of harvesting storage module is 

denoted as Ecap. Therefore, the amount of energy which can be 

saved during the harvesting period in the super-capacitor is 

less than or equal to Ecap, i.e.: 

cap

k

frame

frame EEH  
1

0 (8) 

In order to ensure that there is no overflow, the initial energy 

in the super capacitor (EIframe) at the beginning of a frame 

should be smaller than the battery capacity. To compute the 

harvester energy consumption in each execution frame we use 

Eq. 9. In this equation N and B show the number of primary 

and replica tasks respectively. Also assume that the energy 

consumption of each task is ei. 







BN

i
iiifram e ebxxED

1

)( 
(9) 

xi is the main task and bxi is task replica. Since the energy 

consumption of the system in each execution frame has to be 

less than the total available energy, we have: 

kframeEEHEIED batteryframeframeframe  0, 
(10) 

where Ebattery is the amount of the energy in battery that is 

assigned to the frame. 

4. MOTIVATIONAL ANALYSIS  

4.1. Frame-Based Energy Budgeting  

Many frame-based embedded applications are mobile and 

dependent upon only a limited energy source like battery [56]. 

Since a system with a limited energy budget should execute 

the application for a specified period of time, it is important to 

cautiously consume energy. When task replication is used for 

fault tolerance, in addition to main tasks, there are task replicas 

that consume extra energy. When execution frames including 

task replicas are executed for a specified period of time, in 

some conditions, the system may exhaust the total available 

energy before finishing the job. This causes the system to stop 

working or to fail. Also, due to the limited energy budget, 

there may not be sufficient energy to provide a high replication 

level, e.g. full triple modular redundancy (TMR), for all 

applications. Therefore, the total energy source is distributed 

among different frames in a way such that each frame has its 

own energy budget. 

By estimating the available energy budget for each execution 

frame, we guarantee that each frame meets its target reliability 

according to its own energy budget without exhausting the 

total energy budget of the system for a long time operation. As 

an example for energy budgeting in frame-based task 

execution, let us consider that we have a multi-core platform 

with a 9000J of energy (e.g. a NiMH battery). 

Fig. 3 shows the energy consumption and the number of 

executions for different target reliability values when task 

replication is used for fault tolerance. As Fig. 3 shows, when 

the system requires lower target reliability, it consumes lower 

energy for executing each frame, since it requires executing 

fewer number of task replicas. Therefore, the system can 

perform for a longer duration. For example, when the target 

reliability is 0.9999 each frame consumes 600mJ of energy, 

and hence, the system can execute the application for 

9000J/600mJ=15000 times (this case is marked in Fig. 3). On 

the other hand, when the target reliability is high, each frame 

consumes more energy and it executes the frame for a shorter 

duration. Therefore, there is a tradeoff between the achievable 

reliability target and the number of frame executions (i.e. the 

duration of the system operation) under a given energy budget. 

   

(a) (b) (c) 

 

(d) 

 

(e) 

Fig. 4. a) Execution of the sample application in Section 4.2. 

a) when no fault tolerant technique is used, b) under triple 

modular redundancy (TMR), c) under an energy budget-

aware task replication, d) frame-based execution of Fig. 4b, 

and e) frame-based execution of Fig. 4c. 
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4.2. Illustrative Example 

We provide an illustrative example to show how our proposed 

method works in order to meet target reliability by considering 

energy budgeting. To do this, we assign specified energy 

budget to each execution frame. This energy budget should be 

sufficient for main tasks execution. However, the number of 

task replicas depends on the remaining amount of energy in 

the hybrid energy source (i.e. battery and harvester). In this 

example, we consider a multi-core system with three cores. 

For simplicity, it is assumed that cores are homogenous and 

the effects of process variations are not considered. Also, we 

consider that we have four periodic frame-based tasks T1, T2, 

T3 and T4 that have the same period and their period is equal 

to their deadline. We assume that the tasks have reliability in 

an ascending order as: T1→T2→T3→T4 (i.e. T1 has the 

lowest reliability and it is more vulnerable to fault 

occurrence). We consider the same tasks ordering in 

scheduling. 

Fig. 4a shows single-task execution where no fault tolerant 

technique is used. For this figure we assume that the total 

energy consumption of tasks is below the frame energy 

budget. We also assume that the reliability of single task 

execution do not satisfy the target reliability. One of the 

approaches to improve the reliability is spatial redundancy 

(e.g. spatial TMR) which executes three replicas for each task 

in parallel. We assume that by the use of TMR (Fig. 4b) the 

target reliability is met but each frame consumes more energy 

than its assigned energy budget. However, according to Eq. 3, 

tasks have different reliability due to their various execution 

time and FVI factor. Hence, all tasks in the same frame do not 

need the same redundancy level (i.e. it is not necessary to use 

TMR for all tasks). Therefore, in our proposed method when 

the basic reliability of the system (when no redundancy is 

used) is below the target reliability, we cautiously determine 

the number of task replicas in order to meet both the reliability 

and energy budget constraints. For example in Fig. 4c, we 

assume that T1 needs two replicas, T2 and T3 need one replica 

and T4 does not need any replica. Since our proposed method 

has fewer task replicas in comparison with TMR, it consumes 

less energy, and also it meets the reliability target. Fig. 4d 

shows consecutive execution of Fig. 4b where each frame 

consumes energy more than its energy budget. Hence, it 

should borrow energy from its successor frames. Repetition of 

this condition leads the total energy budget to be exhausted. 

However, our proposed method is energy-budget conservative 

which assigns replicas to the tasks until the system has enough 

energy budget and timing constraints are not violated. 

Therefore, as a result of consecutive execution of frames in 

Fig. 4e, not only our proposed method meets the frame’s 

energy budget but also each frame saves energy and can give 

some energy to other frames. 

5. OUR PROPOSED METHOD 

The problem of scheduling tasks on a multi-core system under 

optimization goals (achieving target reliability) and 

constraints (energy-budget and timing constraints) is known 

as a NP-hard problem [5], [47]. Therefore, we present a 

heuristic to provide a method for energy reduction. Our 

proposed enBudRM method consists of an offline phase and 

an online phase that are developed in Section 5.1 and Section 

5.2, respectively.  

5.1. Offline Phase of enBudRM 

In the offline phase of our proposed method, we assume that 

the system relies only on the battery as the energy source. 

Assuming that the system performs a couple of execution 

frames, we share the energy of the battery among the frames 

so that each frame has its own energy budget. Then according 

to the assigned energy budget to each execution frame, we 

select the appropriate number of replicas and voltage-

frequency (V-f) level for each task. Afterwards, considering 

variations in performance and power properties of cores due 

to process variations and also the cores utilization, the tasks 

are scheduled. The overview of the system operations in 

offline phase is shown in Fig. 5 and Fig. 6. The offline phase 

takes the characteristics of a frame-based task set (ψ) (i.e. tasks 

clock cycles (w), tasks vulnerability (FVI)), cores information 

(i.e. V-f levels and static power considering process 

variations), energy budget of each frame, target reliability of 

 

Fig. 6. Determining the number of replicas and V-f level for 

each task (lines 17-54 of Algorithm 1). 
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Fig. 5. Utilization-based task-to-core assignment (lines 1-16 of Algorithm 1). 
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the system and timing constraints as input, and gives tasks 

mapping and scheduling.   

Algorithm 1 shows the pseudo-code of the offline phase of our 

enBudRM method. In this phase a frame-based task set (ψ) is 

scheduled on a multi-core system. At first, the reliability of the 

tasks under all V-f levels on all cores are determined in lines 

1-7. Then, the tasks are sorted in an ascending order according 

to their minimum reliability in line 8. Through lines 9-16 the 

algorithm iterates until there is no task in the task set. In each 

iteration, it chooses the task with the minimum reliability (line 

10) and the finds the core with the lowest utilization and the 

maximum frequency to improve the task’s reliability (line 11). 

It has been mathematically proven that utilization-based task 

mapping achieves the lowest overall energy consumption 

[61]. The algorithm assigns the task τ to the selected core c. 

Then the operating frequency of the task τ.f is set to the 

maximum frequency of the core (line 12). We use the variable 

τ.k with the initial value of 1 to determine the number of 

replicas for the task τ (at first the main task has no replicas). 

Also, in each iteration of the while loop, the algorithm 

computes the task reliability on the designated core and put it 

into the backup assignment queue (ψBQ) in line 15 (the 

overview of these operations is shown in Fig. 5). 

After mapping the tasks to the cores, the total energy 

consumption of the tasks and the total reliability are computed 

in lines 17-18. As we mentioned before, we use task 

replication to meet reliability target. However, when the 

energy-budget is limited, replicas should be assigned 

consciously. Therefore, in assigning replicas we consider 

timing constraints, target reliability and energy-budget 

simultaneously. To do this, at first the tasks in the backup 

assignment queue (ψBQ) are sorted according to their reliability 

in ascending order in line 19. Then, the algorithm iterates until 

there is no task in the backup assignment queue and the total 

reliability becomes higher than the target reliability (lines 20-

32). In each iteration of the while loop, we take the task with 

the minimum reliability from the backup assignment queue for 

replica assignment (line 21). 

In replica assignment, we use the utilization-based policy (line 

22) to map the replica to the less-utilized core. Here, if timing 

and energy-budget constraints are met in line 23, the replica is 

assigned to the selected core. Also, after each replica 

assignment in line 24, the variable τ.k increases in line 25 and 

the total energy consumption and the total reliability are 

updated in lines 26-27. Since the reliability of the tasks is 

changed due to the replica assignment, the task is put again 

into the backup assignment queue and ψBQ is then sorted 

according to the tasks reliability in line 28. In each replica 

assignment, if the timing and energy budget constraints are not 

met, it means that the algorithm cannot assign a replica to the 

task with minimum reliability and as a result, the target 

reliability is not met. Therefore it returns infeasible and 

terminates in lines 29-30. If the total reliability meets the 

reliability target, we exploit the available slack times to apply 

DVFS for energy saving through lines 33-53.  At first, the 

algorithm sorts the tasks with respect to their energy 

consumption and put them in the energy queue (ψEQ) in line 

33. Then, the algorithm iterates until there is no task in ψEQ 

(lines 34-54) and chooses the task with the maximum energy 

for applying DVFS in line 35. The algorithm applies DVFS 

beginning from the minimum frequency level (line 36) (i.e. it 

assigns the minimum frequency to each selected task). Then 

the algorithm computes the required execution time for 

applying DVFS, i.e. the difference between the task’s 

execution time under the current frequency step (τ.w/f) and the 

task’s execution time in the maximum frequency step 

(τ.w/τ.c.fmax) (line 37). If there is enough time for applying 

DVFS (line 37), the task’s new frequency (τ.f) is set to the 

current frequency. 

Since by applying DVFS, the reliability is decreased due to the 

transient fault rate increase [17], [63], extra replica 

assignments may be required. If after applying DVFS the total 

reliability (RDVFS) satisfies the target reliability, the algorithm 

applies DVFS without inserting more replicas and breaks the 

for loop and chooses the next task in ψEQ (lines 40-41). 

However, after applying DVFS, if the total reliability 

Algorithm 1. The Offline Phase of Our enBudRM Method 

INPUT: Set of tasks, tasks clock cycles (w), tasks vulnerability (FVI), core-
to-core map, set of free cores CM and their V-f levels, reliability and timing 

constraints, energy_budget constraint (battery) 

OUTPUT: Task mapping and V-f assignment, determine the number of 
replicas, and the tasks scheduling. 

BEGIN 

1.   for all τ ϵ Q do                                             // loop over all ready tasks                                   
2.      for all c ϵ CM do                                              // loop over all free cores 

3.          for all available V-f levels for c do      

4.              τ.R=R(τ,1);                                                                              // Eq. 3                                                      
5.           end for; 

6.       end for; 

7.   end for; 

8.  Q.sort();                                                         // sort tasks w.r.t reliability 

9.   while Q ≠ Ø do 

10.      τ=Q.remove();           // remove the task with the lowest reliability 
11.      c= minutilization{CM} and maxfrequency{CM};   
12.      τ.f=c.fmax;                                                           // operating frrequency 

13.      τ.k=1;                                                              // the number of replicas 

14.      c.add(τ); 

15.     BQ.add(τ);                                     // tasks backup assignment queue 
16. end while; 

17.  Etotal= E(τ);                                    // total energy of tasks inBQ (Eq. 4) 

18.  Rtotal= ΠR(τ, τ.k) ∀τ ϵ BQ;      // total reliability of tasks in BQ (Eq. 2) 

19.  BQ.sort(R);                                                   // sort tasks w.r.t reliability 

20.  while (Rtotal < Rtarget & BQ≠ Ø) do 

21.          τ=BQ.remove(); 
22.          c=minutilization{CM}; 

23.          if τ.w/c.f<free_interval(c) and E(τ)<EBudget-Etotal then 

24.             c.add(τ); 
25.             τ.k=τ.k+1; 

26.             Etotal= Etotal+E(τ);                                           // update total energy 

27.             Rtotal=ΠR(τ, τ.k) ∀τ ϵ BQ;                 // update total reliability 

28.            BQ.sort();                                        // sort tasks w.r.t reliability 
29.          else  

30.             return infeasible; 

31.          end if; 

32. end while; 

33. EQ.sort(E);                                 // sort tasks w.r.t energy consumption 
34. while EQ ≠ Ø do 

35.         τ=EQ.remove();                  // task with max. energy consumption 

36.         for f=τ.c.fmin to τ.c.fmax do          

37.             if τ.w/f - τ.w/τ.c.fmax< free_interval(τ.c) then  

38.                τ.f=f; 

39.                RDVFS= ΠR(τ, τ.k) ∀τ ϵ BQ;                  // τ is executed under f 
40.                if RDVFS >Rtarget then  break;                       // break the for loop 

41.                else                                                               // schedule a replica 

42.                     c=minutilization{CM}; 

43.                     if τ.w/c.fmax < free_interval(c) and E(τ) < Ebudget-Etotal then 

44.                          c.add(τ);         // inser a replica 
45.                          τ.k=τ.k+1; 

46.                          Etotal= Etotal+E(τ);                              // update total energy 

47.                          Rtotal=ΠR(τ, τ.k) ∀τ ϵ BQ;        // update total reliability 
48.                         break;                                                  //break the for loop            

49.                     end if; 

50.                  end if; 

51.             end if; 

52.       end for; 

53. end while; 

54. shift the replicas to the end of the frame; 

END 
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decreases below the target reliability, the algorithm assigns a 

replica to the selected task. In order to do this, it chooses the 

core with the minimum utilization (c) in line 42. If the timing 

and energy budget constraints are met (line 43), the algorithm 

inserts a replica to c and then updates the number of task’s 

replicas, the total energy consumption and the total reliability, 

and finally breaks the for loop in lines 45-48. However, if the 

constraints are not met, it scales up the V-f level and continues 

with a higher V-f level. At last, when the tasks mapping, 

scheduling and replica assignment are finished, the algorithm 

shifts replicas to the end of the frame to reduce possible 

execution overlaps between the main and replica tasks (line 

54). For shifting replicas, at first we should find the length of 

the replicas which is the difference between the end time of 

the last replica and the start time of the first replica. Then by 

computing the shifting length, the new start time of the 

replicas after shifting is the difference between the deadline 

and the shifting length. Fig. 6 shows the overview of that part 

of the offline phase of our proposed method that determines 

the number of replicas and applies DVFS. 

5.2. Online Phase  

The overview of the system operations in the online phase is 

shown in Fig. 7. In this phase we have an adaptive fault 

tolerance management that gets tasks scheduling (achieved by 

the offline phase) and the hybrid energy source parameters and 

determines the number of replicas in runtime along with 

applying DVFS and DPM. In the online phase, the adaptive 

fault tolerance management decides how to use the hybrid 

energy for frame execution to increase battery lifetime. To do 

this, whenever the amount of the available harvesting energy 

is enough for task execution, the required energy for the task 

execution is provided by the harvester which leads to save 

more energy in the battery. 

At run-time, some replica tasks may be dropped due to 

successful execution of the main tasks, resulting in some 

dynamic slack times. The system uses the dynamic slack to 

apply DVFS for saving more energy in the battery. However, 

DVFS may have negative effects on the system reliability 

[17], [63], primarily because of the increased transient fault 

rates at low supply voltage and frequency levels. This can be 

encountered through inserting additional replicas. Allocating 

additional replicas consumes excessive energy that may 

violate the energy budget of the frames. The energy that is 

achieved through energy harvesting can be used for executing 

additional replicas in the online phase. Therefore, the hybrid 

energy source helps the system to compensate reliability 

degradation by executing more replicas. This leads to increase 

the battery lifetime and to compensate reliability degradation. 

Algorithm 2 shows the pseudo-code of the online phase of our 

enBudRM method. In applying DVFS in runtime, due to the 

computational and timing overheads, we cannot check all 

frequency levels to choose the best level for energy saving. 

Therefore, instead of the online phase, the computations are 

done in the offline phase as follows. In the offline phase, 

without considering timing and energy budget constraints, we 

consider assigning one more replica than those that have 

already been assigned to each task. Accordingly, we determine 

the minimum possible frequency level that satisfies the 

reliability requirements. By considering one more replica to 

each task, a lower frequency level can be used, while the 

reliability requirement is still satisfied. The minimum 

frequency values are saved in an array (fMinPossible) that is used 

by Algorithm 2 in the online phase. At runtime, due to early 

completion of a task or a replica cancellation, some dynamic 

slack times may release which can be used to apply DVFS for 

energy saving. 

In line 1, the next task after the released slack time in 

execution queue (ψExe) is chosen for applying DVFS. The 

algorithm finds the minimum possible frequency level of the 

selected task in fMinPossible array (determined in the offline 

phase). Here, considering the minimum possible frequency 

level for the task, we check two cases: i) if the offline 

frequency level of the selected task (τ.foffline) is equal to its 

minimum possible frequency level (τ.fMinPossible). This means 

that this frequency level is the minimum value that can be 

achieved and it is not required to apply DVFS. ii) if the 

minimum possible frequency level of the task is smaller than 

the current frequency level. In this case, we can apply DVFS 

(line 2). For applying DVFS, the algorithm checks the timing 

constraint. For satisfying the timing constraints, the difference 

between the task execution time at the minimum frequency 

level (τ.w/fMinPssible) and its current execution time (τ.w/τ.foffline) 

must be more than the core’s free time interval (line 3).  If so, 

the algorithm sets the frequency of the task to fMinPssible. Then 

the reliability constraint is checked. If the total reliability 

Runtime is not violated, it means that DVFS can be applied 

without inserting more replicas. However, if the total 

reliability after decreasing the frequency becomes bellow the 

target reliability, one more replica is assigned. For inserting 

the replica, the algorithm follows the utilization-based policy 

and chooses the core with the minimum utilization (c) in line 

Algorithm 2. The Online Phase of Our enBudRM Method  

INPUT: Offline scheduling, reliability and timing requirements, 

cores  V-f levels, energy budget constraint (battery and harvester), 

task’s offline V-f level, MinPossible_V-f.  

OUTPUT: Tasks scheduling and V-f level. 

BEGIN              //Upon finishing a task or cancelling a replica on a 

core c 

1.      τ=Exe.remove(c);                 //select the next task in the schedule 

of c 

2.      if τ.foffline>τ.fMinPossible then 

3.          if τ.w/fMinPssible - τ.w/τ.foffline ≤ free_interval(τ.c) then 
4.              τ.f=τ.fMinPossible; 

5.              Rruntime= ΠR(τ, τ.k) ∀τ ϵ Exe;      // τ is executed under τ.fMinPossible 

6.              if Rruntimr < Rtarget then                                            // insert a replica 

7.                  c=minutilization{CM}; 

8.                  if τ.w/c.fmax<free_interval(c) and E(τ) < EHarvester then    
9.                      c.add(τ);                             

10.                else 

11.                    τ.f=τ.foffline;    

12.                end if; 

13.            end if; 

14.        end if;    

15.    end if; 

END 

 

 

 

 

 

Fig. 7. Overview of the system operations in online phase. 
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7. After checking the timing and energy constraints in line 8, 

the algorithm inserts one more replica and applies DVFS to 

save more energy in the battery and updates the total reliability 

and energy in line 9. Otherwise, we do not apply DVFS since 

the energy for the extra replica is provided by battery. Indeed, 

we do not want to use the energy of the battery for inserting 

one more replica in the online phase. In this case, the 

frequency level of the task is scaled up to the foffline. Finally the 

output of this phase leads to increase lifetime of battery by 

saving more energy in the battery. 

6. EXPERIMENTAL RESULTS AND 

DISCUSSION 

6.1. Experimental Setup  

We evaluated our proposed enBudRM method for various 

benchmark applications executed on a system-level multi-core 

simulator, which uses precise power and performance 

characteristics of LEON3 processor [64] obtained through 

detailed ASIC synthesis. We used the information of 

synthesizing a LEON3 processor using VHDL 

implementation in Synopsys Design Compiler with TSMC 

45nm low-power standard cell library and junction 

temperature of 125°C. Also, by considering that the system 

supports DVFS under five different voltage and frequency 

levels between [0.72Volt, 490MHz] and [1.23Volt, 970MHz], 

the power results are shown in Table 1. 

We conducted experiments on different real-life applications 

of the embedded MiBench benchmark suite [65]. Also, we 

assumed that the FVI factor varies between 0.1 to 0.3 [52], and 

the clock cycles vary between 2K and 20K at the maximum V-

f level.  

Harvester Parameters: We denote the length of a harvesting 

period as HP. Let frame be the number of execution frames in 

a harvesting period. In our implementation, HP is one day and 

the duration of each frame is one second that is the short term 

prediction. For each frame, the prediction algorithm provides 

EHframe which is the amount of harvested energy in that frame 

(Eq. 7). The long term prediction predicts the total harvested 

energy for the whole day. However, we want the exact 

information for the next time slot (each one second). Therefore 

we used short term prediction that predicts the exact amount 

of harvesting energy for the next one second [59].  

Varying Solar Profile: In another set of experiments, we 

show the performance of our method under different energy 

harvesting profiles. These profiles are obtained from [66] and 

show different power profiles on different days at the same 

location as weather condition changes starting at midnight 

(Fig. 8).  

6.2. Comparison with State-of-the-Art Methods 

To the best of our knowledge, this paper is the first one that 

describes the concept of energy budgeting in hard-real time 

multi-core systems. We compared our proposed enBudRM 

method with a TMR technique where tasks are scheduled 

based on [67] and DVFS is used to achieve energy saving. We 

compared our enBudRM method with [67] -TMR for: i) the 

worst-case execution condition where all tasks become faulty 

and no harvester is used which is the offline phase of our 

proposed method; ii) the average-case execution condition 

including fault-free scenario by considering the energy 

harvester where the harvester helps the system to improve 

battery lifetime and compensate reliability degradation. This 

is the online phase of our proposed method.  

6.2.1. Worst-Case Execution Condition Analysis 

In the worst-case execution scenario all replica tasks are 

considered to be executed as well as the main tasks due to 

faults in all the main tasks. Although this condition is 

pessimistic, it leads to consuming the maximum possible 

energy by the system. Also in this scenario we do not use 

harvester to verify that the system meets the energy-budget 

constraint of battery in design time. 

Fig. 9 shows the energy consumption and the reliability of our 

enBudRM method compared to [67]-TMR when the target 

reliability is 0.99999. Fig. 9a shows the normalized energy 

consumption of our enBudRM method and [67]-TMR when 

the execution frame includes 10 tasks to 100 tasks in a multi-

core system with four cores. In this case, we assign specified 

energy-budget to each execution frame that is normalized to 1 

(normalized energy is shown by the dash line). 

When the system runs fewer number of tasks (under a lower 

workload), due to our consciously replica assignment, the 

application needs fewer number of task replicas. However 

[67]-TMR executes three equal tasks for each task. Therefore, 

our enBudRM method consumes fewer energy in comparison 

with [67]-TMR (it meets the energy-budget constraint). 

Also, as Fig. 9b shows, our proposed method meets the 

reliability target that is shown by dot line. When the number 

of tasks growths, e.g. the system runs 100 tasks (in higher 

workloads), the enBudRM method needs more replicas to 

satisfy the reliability target, which leads to consume more 

energy. 

Table 1: Power and performance characteristics of the LEON3 

processor 

 Voltage and Frequency Level 
[Volt, MHz] 

Power Consumption (mW) 

Static Dynamic Total 

[0.72, 490] 13,34 140,62 153,96 

[0.85, 650] 14,44 228,78 243,22 

[0.97, 730] 15,08 336,81 351,89 

[1.10, 850] 15,69 463,17 478,86 

[1.23, 970] 16,47 641,39 657,86 

 
 

Fig.  8. Varying solar profiles [59] 
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Although our enBudRM method consumes more energy, but 

it also meets the energy-budget constraint and reliability target 

in Fig. 9b. [67]-TMR violates the energy-budget. Considering 

the energy consumption and reliability results in Fig. 9, we can 

conclude that as our expectation, our proposed enBudRM 

method meets the reliability and energy-budget constraints in 

all condition by consuming fewer energy in comparison with 

[67]-TMR. 

We follow the experiments by considering higher reliability 

targets, i.e. 0.999999 and 0.9999999 in Fig. 10 and Fig. 11, 

respectively. In all experiments, our enBudRM method meets 

the reliability target by consuming lower energy in 

comparison with [67]-TMR, while [67]-TMR achieves higher 

reliability level (more than that is needed) which leads to 

consuming more energy.  

6.2.2. Average-Case Execution Condition with Using 

Harvester  

We study the average-case execution condition where both 

faulty and fault-free execution scenarios were considered. 

Also in both scenarios we used energy harvester. In our 

experiments, transient faults were generated by a Poisson 

process where to simulate transient fault rates in different 

voltage levels we used the model of Eq. 1 with λ0=10-6 and 

Δ=1V [6]. Since transient faults are rare in nature, the online 

part of our enBudRM method achieves further energy 

reduction beyond what is achieved through the offline phase 

at design time.  

We considered that tasks actual execution time vary between 

their worst-case execution time (WC) and the best-case 

execution time (BC). The ratio BC/WC for each task was 

generated randomly using the uniform distribution in the range 

[0.5, 1] to investigate the impact of tasks early completion. 

Also, the actual execution time of each task is uniformly 

distributed from BC and WC.  

In order to show the effectiveness of using energy harvester in 

the online phase, we conducted other experiments. In our 

experiments we assumed that each execution frame includes 

100 tasks and the system has four cores and the target 

reliability is equal to 0.99999. Fig. 12 shows the energy 

consumption of a fault-free frame execution (replica 

cancellation) during one day beginning from midnight in the 

online phase. In Fig. 12 the energy consumption of offline 

phase is normalized to one and is shown by dot line. We 

compared the results of online phase with offline normalized 

  
(a) Energy consumption (b) Reliability 

Fig. 9. Energy consumption and reliability in a system with R_target=0.99999 

  
(a) Energy consumption (b) Reliability 

Fig. 10. Energy consumption and reliability in a system with R_target=0.999999 

  
(a) Energy consumption (b) Reliability 

Fig. 11. Energy consumption and reliability in a system with R_target=0.9999999 
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energy to show the improvement in battery energy 

consumption of our proposed method. Fig. 12 shows the 

normalized energy consumption of frame execution in 

different conditions including sunny, cloudy and rainy days. 

In our simulations we used the results of Fig. 8 which shows 

the varying solar profile in sunny, cloudy and rainy days. By 

considering the provided energy during a sunny day, as Fig. 

12 shows, in the beginning of the day (at midnight) the system 

receives fewer energy from harvester. In this figure the energy 

consumption of a frame in online phase is less than the offline 

phase, that is because of early or successful completion of the 

main tasks which leads to battery energy saving. However, at 

noontime, the harvester can provide more energy and as Fig. 

12 shows most of the required energy for frame execution can 

be provided through harvester and the energy consumption of 

the battery decreases which leads to an increased battery 

lifetime. Also, at the end of the day, the harvester provides 

lower energy for the system. Therefore battery should provide 

most of the energy for frame execution and results follow the 

same scenario as the first of the day (morning), i.e. lower 

energy saving in the battery. 

We repeated our experiments by harvested energy of cloudy 

and rainy days. As Fig. 8 shows the received energy in a 

cloudy or rainy days are less than a sunny day. Therefore, in 

Fig. 12 the energy saving of battery is less than a sunny day. 

It means that for example in a cloudy day, the system should 

receive most of its energy for frame execution through the 

battery. In conclusion by using harvester in online phase, our 

enBudRM method provides up to 43% (on average 35%) 

improvement in battery energy consumption in compared with 

the offline phase.  

7. CONCLUSIONS 

In this paper, we presented an energy-budget-aware reliability 

management (enBudRM) method in a multi-core platform 

with hybrid energy source consisting of battery and energy 

harvester. Our proposed method has an offline and online 

phases. For the offline phase of enBudRM, we explained 

energy budgeting concept. In the offline phase, at first, based 

on the total energy in the battery and the required number of 

frame executions, the energy is distributed among all 

execution frames so that each frame has its own energy-

budget. Then by considering the timing and energy-budget 

constraints, the appropriate number of replicas, tasks 

scheduling and V-f level of tasks are determined in a way that 

achieves reliability target. In the online phase we use energy 

harvester along with battery to increase the battery lifetime 

and also to provide energy for compensating reliability 

degradation by inserting more replicas. Our proposed method 

can increase the battery lifetime by 45%. 
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