
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Power-Aware Checkpointing for Multicore
Embedded Systems

Mohsen Ansari, Sepideh Safari, Heba Khdr, Pourya Gohari-Nazari,

Jörg Henkel, Fellow, IEEE, Alireza Ejlali, and Shaahin Hessabi, Member, IEEE

Abstract—Increasing the number of cores integrated on a single chip offers a great potential for the implementation of fault-
tolerant techniques to achieve high reliability in real-time embedded systems. Checkpointing with rollback-recovery is a well-
established technique to tolerate transient faults in multicore platforms. To consider the worst-case fault occurrence scenario,
checkpointing technique requires to re-execute some parts of the tasks, and that might lead to simultaneous execution of task
parts with high power consumptions, which eventually might result in a peak power increase beyond the thermal design power
(TDP). Exceeding TDP can elevate on-chip temperatures beyond safe limits, and thereby triggering countermeasures that
throttle down the voltage and frequency levels or power gate the cores. Such countermeasures might lead to violating task
deadlines and degrading the system's reliability. To avoid such severe scenarios, it is inevitable to consider the impact of
applying fault-tolerant techniques on the power consumption and prevent violating the power constraint of the chip, i.e., TDP.
This paper presents for the first time, a peak-power-aware checkpointing (PPAC) technique that tolerates a given number of
faults, k, while at the same time meets the power constraint in hard real-time embedded systems. To do this, our proposed
technique (PPAC) adjusts the timing of the checkpoints, which have lower power consumption than the tasks to the execution
time points that have power spikes beyond TDP. Moreover, PPAC exploits the available slack times on the cores to delay the
execution of some tasks to avoid the remaining power spikes beyond TDP, which could not be mitigated by solely adjusting
checkpoints. To evaluate our technique, we extend the state-of-the-art system-level simulator, gem5, with the state-of-the-art
checkpointing module in Linux. Our experimental results show that our proposed technique is able to tolerate a given number of
faults without exceeding the timing and power constraints in hard real-time embedded systems. The resulting peak power
reduction achieved by our technique compared to state-of-the-art techniques is an average of 23%. Moreover, our technique
employs the Dynamic Power Management (DPM) during the slack times resulting at runtime in the case of fault-free scenarios,
which provides energy savings with an average of 17.28% and up to 61.1%.

Index Terms— Peak Power Consumption, Checkpointing, Multicore Platforms, Embedded Systems

—————————— ——————————

1 INTRODUCTION
UE to the continued technology scaling, power densi-
ties on the chip are increasing and thereby, on-chip

temperature is elevating [1][2]. High temperature jeopard-
izes chip reliability through aging mechanisms, e.g., elec-
tromigration, Negative Bias Temperature Instability
(NBTI) [3][4], and it might even lead to permanent damage
on the chip. In order to avoid temperature increases be-
yond safe limits, Dynamic Thermal Management (DTM)
techniques are implemented on the chip [27]. In particular,
DTM monitors the on-chip temperature during opera-

tional mode and takes some countermeasures, e.g., Dy-
namic Voltage and Frequency Scaling (DVFS) and Dy-
namic Power Management (DPM), to throttle down the
chip, once the temperature approaches the thermal thresh-
old [2]. Obviously, these countermeasures might lead to
missing task deadlines, and this is not acceptable in hard
real-time systems [5][8]. Moreover, downscaling the volt-
age and frequency levels degrades the system reliability,
because it increases the fault rate, as demonstrated in [8].
As a remedy, system-level techniques [43] enforce power
constraints on the chip aiming at suppressing power con-
sumption increases and the potential thermal violations
and thereby avoiding the corresponding countermeasures.
TDP, thermal design power, is the most commonly used
power constraint since it is the highest sustainable power
that the cooling system in a computer is designed to dissi-
pate under any workload [1][2].

Apart from power and thermal issues, transient faults,
which are typically resulting due to high-energy particle
strikes in hardware [12], are considered as severe reliabil-
ity concerns. To ensure a reliable operation for the system,
many system-level techniques, referred to as fault-tolerant
techniques, have been typically proposed to tolerate a given
number of faults. These techniques, however, incur signif-
icant time and power overheads, and therefore, most of

xxxx-xxxx/0x/$xx.00 © 2020 IEEE Published by the IEEE Computer Society

D

————————————————
• M. Ansari, P. Gohari-Nazari, A. Ejlali and S. Hessabi are with the De-

partment of Computer Engineering, Sharif University of Technology, Teh-
ran 14588, Iran (e-mails: {ansari, ejlali, hessabi}@sharif.edu, go-
hary@ce.sharif.edu).

• S. Safari is with the School of Computer Science, Institute for Research in
Fundamental Sciences (IPM), Tehran, Iran (e-mail: sepideh.sa-
fari@ipm.ir).

• H. Khdr and J. Henkel are with the Karlsruhe Institute of Technology,
Karlsruhe 76131, Germany (e-mails: {heba.khdr; henkel}@kit.edu).

Manuscript received 16 Oct. 2021; revised 26 June 2022; accepted x m y.
Date of publication X Y Z; date of current version X Y Z.
(Corresponding author: Mohsen Ansari and Alireza Ejlali.)
Recommended for acceptance by X. X.
Object Identifier no. x/TPDS.y.z

mailto:gohary@ce.sharif.edu
mailto:gohary@ce.sharif.edu

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

these mechanisms may not be feasible and applicable in
hard real-time embedded systems [5][12]. Checkpointing
with rollback recovery is a fault-tolerant technique that can
result in lower power and time overheads, if intelligently
used, compared to re-execution, replication, triple modu-
lar redundancy (TMR), standby-sparing, and
etc. [12][25][28][29]. In particular, when a fault occurs,
there is no need to replicate or re-execute the whole task,
and only the part of the task, which begins from the last
safe checkpoint, is required to be executed again [12]. Ob-
viously, this strategy will reduce time and power over-
heads, compared to re-executing or duplicating the whole
task. Although checkpointing has less power overhead but
it requires to re-execute some parts of the tasks. That might
lead to simultaneous execution of task parts with high
power consumption, which eventually might result in a
peak power increase beyond thermal design power (TDP).

In order to solve this problem, this paper proposes for
the first time a peak-power-aware checkpointing tech-
nique that tolerates k faults in hard real-time embedded
systems, while at the same time meets the TDP constraint.
There are two types of checkpointing techniques proposed
in the literature; uniform checkpointing and non-uniform
checkpointing. The former inserts checkpoints regularly at
a specific time period, while the latter allows selecting un-
even timing periods between the checkpoints. Our pro-
posed technique employs non-uniform checkpointing to
be able to adjust the timing of the checkpoints so that the
TDP constraint is satisfied. In particular, inserting a check-
point for a task will suspend the task and execute a set of
instructions to save the state of the task into the memory.

Normally, the power consumption during the checkpoint
is much less than the power consumption of the task [12],
as will be demonstrated later in Section 5. Therefore, our
proposed technique inserts the checkpoints at time points,
at which TDP violation is expected. The following motiva-
tional example shows how adjusting the checkpoint timing
helps to satisfy the TDP constraint.

1.1 Motivational Example
In this example, a triple-core chip with 2.5W of TDP (this
assumption is similar to the TDP values in real embedded
systems, e.g., ARM processor [20]) is considered that exe-
cutes seven frame-based tasks T1-T7. All the tasks arrive at
time t=0ms and have the same deadline D=85ms. The exe-
cution time of T1, T2, T6, and {T3, T4, T5, T7} are 28ms, 15ms,
18ms, and 8ms, respectively. The worst-case power profile
of each task is shown in Fig. 1a. To be reliable, it is assumed
that this system needs to tolerate 2 faults. The tasks have
been scheduled using the scheduling policy presented
in [12]. As shown in Fig. 1b, the tasks T1, {T2, T3, T4}, and
{T5, T6, T7} are mapped on C1, C2, and C3, respectively. The
resulting total power consumption through the execution
time of the frame is depicted in the curve shown below the
scheduling. As it can be observed from this curve, the
adopted scheduling policy [11] meets the power constraint
of the system but it cannot tolerate even a single fault oc-
currence (i.e., this policy does not support any fault-toler-
ant technique). Therefore, the system will fail if a fault oc-
curs.

In order to tolerate two faults, the state-of-the-art non-
uniform checkpointing technique [12] is employed as

(a) (c)

(b) (d)

Fig. 1. The motivational example of checkpointing. (a) Power profiles of the tasks, (b) A simple scheduling of the tasks without any fault-tolerance
technique, (c) Non-uniform checkpointing [12], (d) Peak-power-aware non-uniform checkpointing.

0

0.4

0.8

1.2

1.6

2

0 5 10 15 20 25 30Po
w

er
 C

on
su

m
pt

io
n

(W
)

Time (ms)

Power Profile

T1
T2
T3
T4
T5
T6
T7

1

2
3
4

TDP

Po
w

er
 (W

)

C2

C1
D

C3

Time (ms)
 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 84 85

Checkpoint
TDP

 0 10 20 30 34 85

Po
w

er
 (W

)

C2

C1
D

2.5

C3

Time (ms)

T1

T2

T3

T4

T6

T5

T7

2
2.5 TDP

Po
w

er
 (W

)

C2

C1

D

C3

Time (ms)
 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 84 85

1

ANSARI ET AL.: POWER-AWARE CHECKPOINTING FOR MULTICORE EMBEDDED SYSTEMS 3

shown in Fig. 1c, where the checkpoints are represented by
black rectangles. This technique uses non-uniform inter-
vals that are determined by the equations detailed in [12],
where the time and power overheads of the checkpoint in-
sertion are equal to 1ms and 0.1W, respectively. As it can
be observed from the power curve, applying the check-
pointing technique has led to violating TDP. The reason is
that the execution phases of the tasks with high power con-
sumption have been executed at the same time, after insert-
ing the checkpoints. For instance, as shown in Fig. 1c in the
time intervals [10ms to 20ms] and [60ms to 70ms] the total
power consumption of the chip is higher than TDP. Note
that prolonging the execution time (for example for task T1
from 28ms to 63ms) is due to tolerating 2 faults during the
execution time of tasks.

In Fig. 1d the timing of the non-uniform checkpoints
is rearranged such that the TDP constraint is met. In par-
ticular, the time intervals, at which TDP is violated, are se-
lected and then some checkpoints are shifted to those time
points in order to meet the TDP constraint. This is possible,
because inserting a checkpoint will suspend the task exe-
cution, and therefore it will significantly reduce the power
consumption at that point of time (see Section 5), which
helps to satisfy the TDP constraint. In Fig. 1d, the gray rec-
tangles at the beginning of the blue arrows indicate the old
time points where checkpoints need to be shifted, and the
black rectangles at the end of the blue arrows show the
new timing of the shifted checkpoints such that TDP is met.
For example, at t=15ms, the tasks on the first, second and
third cores consume 1.8W, 0.7W, and 0.8W respectively
(overall 3.3W). To satisfy TDP, the closest checkpoint on C1
has been shifted to the timing point of t=15ms, and hence,
the overall power consumption becomes 1.6W (i.e., less
than TDP) at t=15ms. However, because of shifting this
checkpoint on C1, a new TDP violation is introduced at
t=17ms. To satisfy TDP again, the third checkpoint of T2 on
C2 has been shifted to the violation point. In a similar way,
all other TDP violation points have been handled. Hence,
it can be observed, how adjusting checkpoint timing can help
satisfying TDP constraint, without any additional overhead for
power management.

1.2 Our Novel Contribution
As observed from the motivational example, adjusting
checkpoint timing can help satisfying TDP constraint,
without any additional overhead. However, the challenges
are, how to select the tasks whose checkpoints need to be
shifted, how many checkpoints need to be selected, and
what if shifting the checkpoints is not enough to satisfy
TDP constraint. All of these challenges have been tackled
in our proposed checkpointing technique, as will be ex-
plained later on. Our novel contributions are (1) Proposing
a peak-power-aware non-uniform checkpointing such that
hard real-time constraints are met; (2) Presenting a shifting
method for the tasks to satisfy TDP constraint; (3) Delaying
some parts of the tasks to meet TDP by considering the
hard real-time constraints.

This paper presents, for the first time, a peak-power-
aware checkpointing (PPAC) technique that tolerates a

given number of faults in hard real-time embedded systems,
while at the same time meets the power constraint. First of
all, an initial scheduling and checkpointing are performed
to tolerate the given number of faults and considering the
timing constraint. Afterwards, our proposed technique ad-
justs the checkpoint timing to mitigate the power spikes
that exceed TDP. In case the number of checkpoints was
not enough to meet TDP constraint throughout the whole
execution time, the available slack times on the cores will
be exploited to delay the execution of some tasks in order
to avoid the remaining power spikes beyond TDP without
any additional overhead.

Due to the rare nature of fault occurrence, the fault-
free scenario will occur much more than the faulty one. In
the fault-free scenario, the repeated parts of the tasks can
be dropped out, thereby many slack times result in
throughout the execution time. To provide power and en-
ergy savings, our technique drops out the unnecessary re-
peated parts of the tasks and applies DPM in the resulting
slack times.

Moreover, in order to evaluate our technique, we have
extended the state-of-the-art system-level simulator, gem5,
with the state-of-the-art checkpointing module in Linux,
which has not been done before, for the best of our
knowledge. Our experimental results show that our tech-
nique is able to tolerate a given number of faults (between
1 to 5) faults without exceeding the timing and power con-
straints in hard real-time embedded systems. The details
of the proposed technique will be discussed later in Sec-
tion 4.

2 MODELS AND ASSUMPTIONS
In this section, we present our system, application, power,
and fault models. We also provide reliability modeling of
our system in this section.

2.1 System and Application Model
This paper considers a multicore system with m homoge-
neous cores C={C1, C2, …, Cm}. The system executes a set of
n frame-based hard real-time tasks Ψ= {T1, T2, …, Tn} where
the tasks are released at the same time and share a common
deadline D. This application model is adopted in many re-
lated works like [6][7]. Each task Ti has a worst-case execu-
tion time wci. Note that this assumption is valid for frame-
based tasks and cases where multiple tasks belong to one
complex multi-tasked application [11]. Examples of appli-
cations that require hard real-time computing include nu-
clear power plants, railway switching systems, automotive
and avionics systems, air traffic control, telecommunica-
tions, some robotics, and military systems. In the last sev-
eral years, hard real-time computing has been required in
new applications areas, such as medical equipment, con-
sumer electronics, flight control systems, and cyber-physi-
cal systems [5][11][44][45].

2.2 Power Model
The power consumption of each core consists of static and
dynamic power components [2][8][12][24]. The static

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

power (Pstatic) is dominated by the leakage current. Dy-
namic power (Pdynamic) is mainly consumed due to activity
resulting by executing the task [22][26].

𝑃𝑃(𝑉𝑉𝑖𝑖 , 𝑓𝑓𝑖𝑖) = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 + 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑖𝑖𝑠𝑠 = 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝑖𝑖 + 𝛼𝛼𝐶𝐶𝐿𝐿𝑉𝑉𝑖𝑖2𝑓𝑓𝑖𝑖 (1)
where CL is the average switched capacitance, Vi and fi are
supply voltage and operational frequency, Isub is the sub-
threshold leakage current and (α) is the activity factor. The
dynamic power will change through the execution time of
the task, that has been considered by our technique. More-
over, different tasks result in different power profiles. In-
tuitively, the total power consumption of the chip at a spe-
cific time point is the summation of the power consump-
tion of all cores at that point of time.

𝑃𝑃𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡 = �𝑃𝑃(𝑉𝑉𝑖𝑖 , 𝑓𝑓𝑖𝑖)
𝑑𝑑

𝑖𝑖=1

 (2)

In order to show the total power consumption in different
time points, we define a vector P. Each entry of P shows
the total power consumption of the chip at each time point.

2.3 Reliability and Fault Model
In hard real-time embedded systems, we should have both
correct executions of tasks (i.e., functional reliability) and
also meeting the deadlines (i.e., timing reliability) [42][47].
This is because any faulty result or any missed deadline
may result in a system failure. In order to model the relia-
bility, like the works in [8][25][24][35][42][46][47], we ex-
ploit the “probability of timely completion” to consider
both meeting the deadlines and correctness of tasks’ exe-
cution. This is because, as we use the checkpointing mech-
anism, a fault within the task can be tolerated but with a
time penalty which reduces the probability of timely com-
pletion. Note that in this paper transient faults are consid-
ered as the source of fault occurrence, i.e., bit upsets in the
underlying hardware. Such transient faults are typically
assumed to follow a Poisson process with the rate
λ [7][8][12][21][23][46]. The fault rate varies exponentially
as the supply voltage V changes. Therefore, the raw fault
rate λ(V) corresponding to the supply voltage V can be
written as follows:

𝜆𝜆(𝑉𝑉) = 𝜆𝜆010
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚−𝑉𝑉

𝛥𝛥 (3)

where λ0 is the fault rate corresponding to the maximum
voltage (V=Vmax) and Δ is a parameter that shows how the
fault rate increases with voltage decrease. Since the voltage
and frequency scaling increases the fault rate (see Eq. 3)
and degrades the task’s reliability due to increasing the
worst-case execution time (see Eq. 4), we do not employ
DVFS. Therefore, λ0 is the fault rate of this paper. A transi-
ent fault in the underlying hardware may ultimately result
in a software failure. To measure the software failures due
to transient faults, we use a state-of-the-art software relia-
bility model called the Function Vulnerability Index
(FVI) [9]. This measures the software failure probability
and accounts for both spatial and temporal vulnerabilities
of different instructions [9]. Therefore, the software failure
rate due to transient faults can be modeled as λ0×FVI. The

reliability of task i execution is computed as:

𝑅𝑅𝑖𝑖 = 𝑒𝑒𝜆𝜆0×𝐹𝐹𝑉𝑉𝐹𝐹×𝑤𝑤𝑠𝑠𝑖𝑖 (4)

It should be noted that, due to the Function Vulnerability
Index, different applications have different reliability.

3 PROBLEM DEFINITION
Given a multicore system with m cores that executes a set
of n frame-based hard real-time tasks, where the tasks ar-
rive at the same time and have a common deadline D, and
each task Ti has a worst-case execution time wci. The goal
is to tolerate a given number of faults in hard real-time em-
bedded systems such that the power and timing con-
straints are met. The problem is how to find the task-to-
core assignment, the scheduling of the tasks, the required
number of checkpoints of each task, and their timing to
achieve the target goal.
• The power consumption is represented by the matrix

Pϵℝn×m×l, in which each element Pijt denotes the power
consumption for the task i the core j at a time point t.

• The task-to-core mapping is represented by the matrix
Xϵ{0,1}n×m. The task i is mapped to the core j if and only
if Xij = 1.

In the following, we formulate the constraints that need to
be jointly satisfied by the proposed method.
Chip Power Constraint: The power consumption of the
chip, i.e., the sum of the power of all underlying cores,
should be less than TDP.

∑ 𝑋𝑋𝑖𝑖,𝑗𝑗𝑃𝑃𝑖𝑖,𝑗𝑗,𝑠𝑠𝑖𝑖,𝑗𝑗 ≤ 𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇,𝑠𝑠ℎ𝑖𝑖𝑖𝑖, at each time point t (5)

Task Timing Constraint: The worst-case execution time of
all assigned tasks to the core j with their checkpointing
time overhead (CK_t) should not exceed the task timing
constraint (defined by the D).

∀𝑗𝑗:�(𝑋𝑋𝑖𝑖,𝑗𝑗𝑤𝑤𝑐𝑐𝑖𝑖 + 𝐶𝐶𝐶𝐶_𝑡𝑡(𝑇𝑇𝑖𝑖))
𝑖𝑖

≤ 𝐷𝐷 (6)

The minimum number of checkpoints: The proposed
technique determines the number of checkpoints for the
tasks such that they can tolerate k faults. As long as the
number of faults does not exceed this value, the task can
recover from faults using the employed checkpoints. The
required number of uniform checkpoints that tolerates k
faults is calculated by Eq. 7 as explained in [30].

Fig. 2. Flow diagram of the PPAC algorithm

Start

Initial Scheduling with
uniform/nonuniform

checkpointing

No

Yes

Find the time points in
which TDP is violated

Find # required CPs
for meeting TDP at t

Finish Violating TDP at other
time points?

Are there
enough CPs?

Find # cores which have a
slack time ≥ the violation

period

Shift the selected
CPs to meet TDP

Find Min. # CPs and Min.
tasks to meet TDP at t

Yes

 Are there enough
CPs and tasks for

meeting TDP?

Yes

Shift the selected CPs
and delay the selected

tasks to meet TDP
Infeas

ible

No

No

ANSARI ET AL.: POWER-AWARE CHECKPOINTING FOR MULTICORE EMBEDDED SYSTEMS 5

𝑛𝑛𝑖𝑖(𝑘𝑘,𝑤𝑤𝑐𝑐𝑖𝑖) =

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑛𝑛− = ��

𝑘𝑘 × 𝑤𝑤𝑐𝑐𝑖𝑖
𝐶𝐶𝐶𝐶_𝑡𝑡(𝑇𝑇𝑖𝑖)

� , if 𝑤𝑤𝑐𝑐𝑖𝑖 ≤
𝑛𝑛−(𝑛𝑛− + 1)

𝑘𝑘
𝐶𝐶𝐶𝐶_𝑡𝑡(𝑇𝑇𝑖𝑖)

𝑛𝑛+ = ��
𝑘𝑘 × 𝑤𝑤𝑐𝑐𝑖𝑖
𝐶𝐶𝐶𝐶_𝑡𝑡(𝑇𝑇𝑖𝑖)

� , if 𝑤𝑤𝑐𝑐𝑖𝑖 >
𝑛𝑛−(𝑛𝑛− + 1)

𝑘𝑘
𝐶𝐶𝐶𝐶_𝑡𝑡(𝑇𝑇𝑖𝑖)

 (7)

However, non-uniform checkpointing can tolerate the
same number of faults with a smaller number of check-
points, by using the algorithm proposed in [12], which con-
siders the resulting number of checkpoints from equation
7 as an input. In this paper, we follow the same strategy
proposed in [12] to employ the minimum number of check-
points and thereby the minimum time and power over-
head. To determine the non-uniform checkpoint intervals,
the method in [12] postpones checkpoint insertions as
much as possible such that fewer checkpoints are inserted
in fault-free scenarios. To reserve the minimum possible
time for faulty states, at first, they use the optimal uniform
checkpointing and then reduce the number of checkpoints
based on the fault occurrence (see Sections 2 and 3 in [12]).
Note that the optimal uniform checkpointing minimizes
the application execution time in the worst-case fault sce-
nario. They have proposed a non-uniform checkpointing
scheme that enables checkpointing at selective locations
while considering applications deadline, execution time
and a user-defined number of tolerable faults to curtail the
time and power overheads.
Core Assignment Constraint: Each task can be only
mapped to a core.

∀𝑖𝑖:�𝑋𝑋𝑖𝑖,𝑗𝑗
𝑗𝑗

= 1 (8)

The mentioned problem is categorized as an NP-Hard
problem [2][6][31]. The optimal solution is finding a feasi-
ble scheduling that meets all of the mentioned constraints
if it exists. It should be noted that an exhaustive search to
find all combinations results in an exponential time com-
plexity equal to O(nm).
Hence, this paper proposes a heuristic-based algorithm to
provide a solution for the presented problem in polyno-
mial time.

4 PEAK-POWER-AWARE CHECKPOINTING
To solve the aforementioned problem, we propose a peak-
power-aware checkpointing (PPAC) that tolerates a given
number of faults in hard real-time embedded systems, while
at the same time satisfying the predefined power con-
straint, which is TDP.

As discussed earlier, non-uniform checkpointing al-
lows uneven distribution of the checkpoints throughout
the execution time, in contrast to the uniform checkpoint-
ing which distributes the checkpoints evenly, so that they
are separated by identical time intervals. Therefore, we
employ non-uniform checkpointing to be able to adjust the
timing of the checkpoints so that the TDP constraint is sat-
isfied.

An overview of our proposed method (PPAC) is
shown in Fig. 2, while the details of our method are ex-
plained in the following subsections. The first step of the
proposed method is to perform initial scheduling of the
tasks with non-uniform checkpointing. Then, PPAC finds
the time points at which TDP is violated. For meeting TDP
at the found time points, PPAC first tries to find the re-
quired checkpoints that meet TDP if shifted to the violation
time points. If there are enough checkpoints for meeting
TDP, PPAC shifts them to the selected time point. Other-
wise, the available slack time on the cores will be exploited
to delay some tasks so that the TDP constraint is satisfied.
To do this, PPAC should find the minimum number of

Algorithm 1. Peak-Power-Aware Checkpointing
Inputs: A set of n tasks, Set of cores, Tasks’ power profile, and Chip-
level TDP constraint.
Output: The tasks scheduling, checkpoint timing.

BEGIN:
1: Initial scheduling with uniform/non-uniform checkpointing;
2: Initialize the vector of total power consumption P;
3: Violations ← Violation points of TDP; //a list (t, p, period)
4: while (Violations!=Φ) do
5: cur.vio ← the current TDP violation point to be handled;
////////////////////// Adjusting Checkpoint Timing //////////////////////////
6: Ψ ← Find available CPs for cur.vio.t;
7: if (∑ 𝑇𝑇𝑖𝑖 .𝑃𝑃𝑖𝑖∈𝜓𝜓 -∑ 𝑇𝑇𝑖𝑖.𝐶𝐶𝐶𝐶_𝑃𝑃𝑖𝑖∈𝜓𝜓 ≤ cur.vio.p)
8: Ψ ← Find a subset of Ψ with min. # of CPs that meet TDP
-- at cur.vio.t;
9: Shift(Ψ); // set the checkpoint time to cur.vio.t
10: P(cur.vio.t) ←P(cur.vio.t)-∑ 𝑇𝑇𝑖𝑖 .𝑃𝑃𝑖𝑖∈𝜓𝜓 +∑ 𝑇𝑇𝑖𝑖 .𝐶𝐶𝐶𝐶_𝑃𝑃𝑖𝑖∈𝜓𝜓 ;
11: else
//////////////////////// Delaying Task Execution ////////////////////////////////
12: C ← Set of cores whose slack time≥ cur.vio.period;
13: Ψ1 ← Find tasks which are in C1 and executing within
-- cur.vio.period;
14: CL ← create_all_combinations(Ψ1, Ψ);
15: (Ψ2, Ψ3) ← Find a combination of CL with min. # tasks
-- that meet TDP at cur.vio.t;
17: if (Ψ2= Φ & Ψ3= Φ)
18: return infeasible;
19: break;
20: Shift(Ψ2); // set the checkpoint time to cur.vio.t
21: Delay(Ψ3, cur.vio.period);//delay the tasks with cur.vio.period
22: P(cur.vio.t)←P(cur.vio.t)-∑ 𝑇𝑇𝑖𝑖.𝑃𝑃𝑖𝑖∈𝜓𝜓2&𝜓𝜓3 +∑ 𝑇𝑇𝑖𝑖.𝐶𝐶𝐶𝐶_𝑃𝑃𝑖𝑖∈𝜓𝜓2 ;
23: Update(Violations);
24: end while;
END

Table 1. The Notation of the Parameters used in Algorithm 1

Notation Description
Violations A list of the violation points of TDP

cur.vio The current TDP violation point to be handled
cur.vio.period The period of the current TDP violation point to

be handled
cur.vio.p The power consumption of the current TDP vio-

lation point to be handled
cur.vio.t The exact time of the current TDP violation point

in the frame to be handled
Ψ A subset of available checkpoints with minimum

number of checkpoints that meet TDP at cur.vio.t;
C A set of cores whose slack time ≥ cur.vio.period
P The power consumption of the system at each

time

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

checkpoints that need to be shifted and the minimum num-
ber of tasks that need to be delayed, in order to satisfy TDP.
If exploiting both checkpoints and delaying the tasks does
not satisfy TDP, that means there is no feasible schedule
for the given tasks.

 These functionalities, i.e., initial scheduling, adjusting
checkpoint timing, exploiting slack time for delaying task
execution, are conducted at design time, using a heuristic,
whose pseudo-code is listed in Algorithm 1. Additionally,
at runtime, we also exploit released slack times of fault-free
scenarios in order to further power/energy reduction, by
applying the Dynamic Power Management technique. The
following subsections illustrate the details of the proposed
techniques.

4.1 Initial scheduling and checkpointing
Before inserting checkpoints, the tasks need to be mapped
on the cores. In particular, tasks are mapped based on
Worst Fit Decreasing (WFD) bin packing, which is a well-
known technique that is typically used in state-of-the-art
scheduling techniques (e.g., [5][32]). In the WFD bin pack-
ing, the cores are sorted in increasing order in terms of uti-
lization, while the tasks are sorted in decreasing order in
terms of the worst-case execution time. Then, the first task
in the list is mapped to the first core in the list, and the or-
der of the list of the core will be updated after each map-
ping.

After mapping the tasks, the algorithm determines the
initial scheduling with non-uniform checkpointing
according to the priority-based scheduling policy [11] in
line 1 of Algorithm 1. Note that Table 1 describes the
variables used in Algorithm 1. To do that, the number of
checkpoints needs to be determined. As explained in
Section 3, we select the minimum non-uniform check-
points to tolerate k faults in order to reduce the overheads
of checkpointing. Moreover, the initial timing of the check-
points has been also inserted as suggested by the state-of-
the-art non-uniform checkpointing technique [12]. Alt-
hough the employed non-uniform checkpointing has a
lower power overhead compared to the uniform one, TDP
violations might be observed. The reason is that check-
pointing requires to re-execute some parts of the tasks.
That might lead to simultaneous execution of task parts
with high power consumption, which eventually might re-
sult in a peak power beyond thermal design power (TDP).
In line 2, the algorithm initializes a list to the total power
consumption of the chip at each time point according to the
initial scheduling. In line 3, the algorithm finds time points
where TDP is violated and puts it in the list Violations. Each
entry of the list has three parameters: the time point of the
violation, the period of violation, and the power consump-
tion of the TDP violation. Next, the algorithm iterates un-
til TDP is met at all violation points (lines 4-24) by means
of adjusting checkpoint timing and exploiting available
slack time for delaying task execution, as explained in the
following subsections.

4.2 Adjusting Checkpoint Timing
The goal of adjusting checkpoint timing is to have more

checkpoints at the time points of TDP violations, because
during the period of the checkpoint the task execution will
be suspended, and thus the total power consumption is
significantly reduced. Executing the checkpoint has power
overhead, but it is much less than the power consumption
of the tasks, as will be shown later in Section 5.
To achieve this goal, our proposed method (PPAC) will try
to shift the available checkpoints, that are originally in-
serted after the violation time point, to the violation time
point. Before shifting the checkpoints, it is necessary to
check if shifting the available checkpoints is enough to sat-
isfy TDP or not (see the condition in line 7 of Algorithm 1).
Note that the variables cur.vio.p, Ti.CK_P, and Ti.P repre-
sent the current amount of power violation of the time
point, the power overhead of the checkpoint of Ti, and the
power consumption of Ti, respectively. If this condition is
satisfied, then PPAC will shift only the minimum number
of checkpoints that lead to satisfying TDP, if they are
shifted to the violation time point (line 8). In particular,
PPAC will try first to find a task (Ti) that has a minimum
power consumption that is equal or greater than
(cur.vio.p+Ti.CK_P). If found, the checkpoint of that task
will be shifted, because that will satisfy TDP by shifting
one checkpoint. If such a task is not available, PPAC will
find a list of checkpoints of multiple tasks that satisfies the
TDP constraint with a minimum number of checkpoints.
After finding the required list of checkpoints, these check-
points will be shifted (line 9), i.e., their time will be set to
cur.vio.t. Then, the algorithm updates the power consump-
tion list (line 10).

If the available checkpoints are not enough for meet-
ing TDP, i.e., the condition shown in line 7 is not satisfied,
the algorithm needs to use the second function of the pro-
posed method, which is explained in the following subsec-
tion.

In conclusion, we should compute the total power con-
sumption of the chip at each time slot to check the TDP
constraint, and hence, the location of some checkpoints
should be changed. Moreover, if there are not enough
checkpoints for meeting TDP, shifting the tasks can be
meet the TDP constraint. Therefore, the maximum compu-
tational overheads of the proposed method are changing
the locations of some checkpoints and shifting some tasks.

4.3 Delaying Task Execution
Intuitively, delaying the execution of a task at the violation
time point will significantly reduce the total power con-
sumption and that will help to satisfy TDP constraint.
However, this might lead to missing the deadline of the
frame. Therefore, PPAC will delay only the tasks executing
on the cores that have slack time equal to or greater than
the violation period. Hence, in line 12, the algorithm finds
a set of cores C that have a slack time greater than or equal
to cur.vio.period. In line 13, the algorithm assigns the tasks
which are in C and executing at cur.vio.period to the list Ψ1.
This list of tasks contains only the possible tasks to delay
without violating timing constraints. Generating this list
will significantly reduce the search space when the algo-

ANSARI ET AL.: POWER-AWARE CHECKPOINTING FOR MULTICORE EMBEDDED SYSTEMS 7

rithm needs to select the best tasks to delay with the pur-
pose of satisfying TDP.

Note that TDP might be satisfied by delaying only a
subset of these tasks and shifting some of the available
checkpoints. Therefore, our PPAC will find all the combi-
nations between the list of the potential tasks to delay and
the list of the available checkpoints that satisfy TDP
(line 15). To do this, the algorithm finds the minimum
number of checkpoints that need to be shifted and the min-
imum number of tasks that need to be delayed, to satisfy
TDP. Afterward, the selected tasks will be delayed by
cur.vio.period and the selected checkpoints will be shifted to
the cur.vio.t. If no combination satisfies TDP, the algorithm
returns infeasible and we cannot meet the TDP constraint
for the considered time slot. Finally, the algorithm updates
the power consumption list and violations in lines 22 and
23, respectively.

4.4 Runtime Opportunities
In fault-tolerant techniques for real-time systems, the
worst-case scenario needs to be considered at design time
while scheduling the tasks. The worst-case scenario as-
sumes that the k faults will occur. As aforementioned, the
checkpointing technique adds time overhead to the task
execution, since it requires to re-execute some parts of the
tasks. However, at runtime, it is possible that no fault oc-
curs, and thereby long slack time will be available on the
cores1.

Therefore, we propose to exploit the available slack
time resulting after the actual execution of the tasks at
runtime, to further reduce power/energy consumption.
That, in turn, will help to increase the life-time of the
embedded systems that are battery-based [8][12]. To
achieve this, we employ a runtime control unit. This
unit needs first to monitor the accuracy of the task exe-
cution, and when no fault occurs, it cancels the execu-
tion of the replicated parts of the tasks (that have been
added by the checkpointing technique to tolerate
faults), resulting in slack times in the schedule. The

1 A comparison between faulty and fault-free scenarios is
shown in [12].

online control unit puts the system during those result-
ing slack times into a low power state (apply DPM). The
time overhead of DPM is typically represented by the
break to sleep time which is about 1ms [2][8]. The power
overhead of this technique is about 500uW which is
negligible compared to the power consumption of tasks
which is about 1W [25]. In our technique, if the slack
time is more than the break to sleep time, the core is set to
sleep mode. Hence, by applying DPM during slack
times, our technique can achieve further power and en-
ergy reductions at runtime.

4.5 Illustrative Example
To show how the PPAC technique works in runtime, we
use Fig. 3 which is the online part of the motivational ex-
ample (explained in subsection 1.1). In Fig. 3, the actual-
case fault scenario is shown. In this scenario, we consider
that two, one, and zero faults occur on the tasks {T1, T2, T5},
{T3, T4, T6}, and T7 respectively. Note that checkpoints are
represented by black rectangles, and rollback recovery
processes are shown as white diagonal patterned rectan-
gles. In the checkpointing technique, when a fault occurs,
the system rolls back to the most recent checkpoint and re-
executes the part of the task that is executed during the last
checkpoint. In this figure, by applying PPAC, TDP is met
at all time points by shifting five checkpoints at design time
(see Fig. 1d).

At runtime, the online control unit monitors the accu-
racy of the task execution. When no fault occurs, it cancels
the execution of the replicated parts of the tasks that have
been added by the checkpointing technique to tolerate
faults. As soon as a task finishes successfully, the online
control unit applies DPM. To do this, we exploit the slack
times that create after that each task completes its execu-
tion without faults to further reduce power/energy con-
sumption through DPM. For example, when only one fault
occurs at the first part of T6 and other its parts are executed
successfully, a slack time at the time slot [54ms, 60ms] on
C3 is created. Since there is no task being executing at the

Fig. 3. The online part of the PPAC re-scheduling in the worst-case fault scenario.

1

2
2.5 TDP

Po
w

er
 (W

)

C2

C1

D

C3

Time (ms)
 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

FaultRollbackCheckpointT1 T2 T3 T4 T6T5 T7

DPM DPM

DPM

DPM

DPM

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

mentioned time slot on C3, DPM is applied on C3 to fur-
ther reduce power consumption, and so on. It is worthy to
mention that this figure shows the actual fault rate but in
Fig. 1, we showed the worst-case fault scenarios. Moreo-
ver, we have changed the locations of the checkpoints for
meeting TDP. Therefore, there are some instances in this
figure where after a fault occurs, the time required to com-
plete the task after rollback is much lower than the time
from the checkpoint up to the fault.

5 EXPERIMENTAL EVALUATION
5.1 Setup
In order to evaluate our PPAC technique, we conducted
experiments on various real-life applications of MiBench
Benchmark [15] executed on a cycle-accurate system-level
simulator (gem5 [16]), which is instrumented with precise
power and performance characteristics for ARM Cortex-
A7 [20] and an emerging non-volatile memory (NVM)
technology. The details of the processor and memory con-
figuration are summarized in Table 2. The applications and
processor characteristics were obtained through gem5 [16],
and McPAT [17]. We have deployed various applications
of an embedded MiBench Benchmark suite [15] (listed in
Table 3), as it is commonly used by state-of-the-art real-
time scheduling techniques [5][12]. These applications are
single-threaded because real-time systems require predict-
ability [44][45]. In order to consider a wide range of appli-
cations, we chose the applications from all program groups
of MiBench (i.e., automotive, consumer, network, office,
security, and telecomm). Additionally, the applications
were selected such that they introduce a variety of values
for the simulation parameters, i.e., peak power consump-
tion, average power consumption, worst-case execution
time, energy consumption, and checkpointing overheads
(see Table 3). As we mentioned in the system and applica-
tion model, we have considered n frame-based hard real-
time tasks. Each task is a benchmark from MiBench. Note
that in this model tasks have the same release time (arrival
time) and they do not have a dependency between them
[1][2][3]. Therefore, each task executed individually and
then the results are provided for the system. The maximum
length of the power vector for each frame is equal to the

deadline of the frame. We calculate these values in the de-
sign time and we do not need any computational overhead
for runtime. It is worthy to mention that the granularity of
power measurement is millisecond of the time frame and
the unit is Watt. With respect to the time and power char-
acteristics of the checkpoint memory, we assumed that the
system uses a non-volatile memory (NVM) as stable stor-
age to hold checkpoints.

For the evaluation of our proposed method, we have
created a scheduler that maps and schedules the tasks by
considering the proposed checkpointing mechanism in
multicore embedded systems. To provide checkpointing
overheads for simulation, at first, we determined the
checkpoint size for each benchmark application. We con-
sidered full-scale checkpointing where the entire address
space used by an application is written to the memory dur-
ing each checkpoint. We selected ReRAM because it pre-
sents a relatively better time and power characteristics
compared to the other types of memory [12]. Moreover, we
assume that the system is equipped with Argus [14] as a
fault-detection mechanism and the time overhead for fault
detection (~ 4% of the worst-case execution time of each
task [12]) is added to the checkpointing overheads. For
finding the accurate time, the power and memory
overhead of the checkpoints for each application we
employ CRIU [19] (Checkpoint/Restore in Userspace), the
most powerful software in Linux that is used for
checkpointing in many applications such as ducker [19].
For the first time, we have implemented CRIU in gem5
with an ARM processor. To do this, we have created a new
image of Linux and the new kernel that supports
checkpoints in the userspace. Indeed, we have compiled a
new version of the Linux kernel for gem5 and have added
some functions and modifications to the kernel to enable

Table 3. The characteristics of the Benchmark Applications

 Patricia GSM FFT CRC32 dijkstra Blowfish Susan QSORT Bitcount
Execution time (ms) 253 473 233 240 88 272 108 132 196

Average power consumption (w) 1.026 1.021 1.036 1.125 1.079 1.081 1.038 1.031 0.984
Peak power consumption (w) 2.428 4.749 3.960 4.532 2.622 3.838 1.124 1.053 5.792

Energy consumption (J) 0.258 0.482 0.240 0.269 0.939 0.294 0.112 0.136 0.192
Average power consumption of
checkpointing in processor (W)

0.024 0.0172 0.047 0.052 0.286 0.0197 0.129 0.021 0.015

Peak power consumption of
checkpointing in processor (W)

0.073 0.427 0.088 0.165 0.946 0.124 0.166 0.398 0.099

Memory overhead of checkpoint
(KByte)

4336 212 732 204 260 216 440 1864 96

Checkpointing time (ms) 39.2 20.3 14.1 10.9 5.2 12.3 7.2 17.7 8.4
Checkpointing time overhead 15.5% 4.2% 6% 4.5% 5.9% 4.5% 6.6% 13.4% 4.3%

Checkpointing time and power values are obtained for the ReRAM technology.

Table 2. The details of processor and memory configuration

Core
Type

Instruction
Set

Architecture

Machine
Type

Core
Voltage

Core
Freq.

L1d
Cache
Size

L2
Cache
Size

Ram
Size

ARM ARMv7A
Out of
Order

1.318V 2GHz 32KB 512KB 512MB

ANSARI ET AL.: POWER-AWARE CHECKPOINTING FOR MULTICORE EMBEDDED SYSTEMS 9

checkpointing so that we can get the checkpoint in the
gem5 environment. Then, we get the results of the gem5
environment and send them to our scheduler. Note that in
order to run CRIU in gem5 with armv7 architecture, first,
we cross-compile CRIU for arm32, then we compile a new
kernel with functions that are required for running CRIU
and take a checkpoint following the instruction in [48]. As
the last step, we created an image with Ubuntu core 18.04.2
(Bionic Beaver) for the aforementioned kernel. The kernel
and image ran on the VExpress_GEM5_V1 machine type
and we managed to get checkpoints from our benchmarks.
 In order to generate task sets, we produce a set of tasks
that have different worst-case execution times. We set the
deadlines of the task randomly, to have slack times be-
tween 10% to 80%. These various scenarios of slack times
result in different task utilization on the target cores. We
categorize the resulting set of tasks into various utilization
scenarios; i.e., 0.1, 0.2, …, 0.8, in order to evaluate our tech-
nique and the comparison candidates for those scenarios,
as shown in the figures in this section. Note that, these uti-
lization scenarios represent the task utilization of the core
before applying the checkpointing technique. We com-
pared our PPAC technique with three state-of-the-art
checkpointing techniques in terms of feasibility, schedula-
bility, and peak power consumption. The comparison can-
didates are:

• Standard uniform checkpointing (StaU) [13]: This
technique determines the uniform checkpoint inter-
vals for each application so that k faults are tolerated
and the timing constraint of the applications is satis-
fied.

• Non-uniform checkpointing (NonU) [12]: This tech-
nique is an implementation of the non-uniform check-
pointing presented in [12]. It exploits non-uniform
checkpoint intervals to tolerate faults and reduces the
overhead of checkpointing mechanism.

• RAPM [18]: This technique is proposed in [18]. RAPM
uses a backup task for each faulty task to achieve fault
tolerance (re-execution technique).

We compared PPAC with the three mentioned techniques
for two following scenarios: i) the worst-case scenario
when all the faults occur and the system consumes the
maximum possible power (Section 5.2) and ii) the actual-
case (realistic) scenario when the faults occur based on
Eq. 3 (the realistic scenario in the nature) and the system
consumes real power (Section 5.3).

5.1.1 Evaluation Metrics
The major evaluation metrics of the comparison candidates
are (1) feasibility, (2) schedulability, (3) the percentage of
TDP enforcement throughout the execution time, and (4)
normalized peak power consumption to TDP. We define
feasibility as the percentage of simulations that the TDP
and deadline constraints are satisfied simultaneously. In-
deed, in this paper, the meaning of feasibility is the per-
centage of meeting the deadline and the TDP constraint
simultaneously.

In this section, we consider the per-core utilization factor

(U) that is the fraction of core time spent in the execution
of the task set. Since wci/Di is the fraction of core time spent
in executing task Ti, the utilization factor for n tasks is
given by

𝑈𝑈 = �
𝑤𝑤𝑐𝑐𝑖𝑖
𝐷𝐷𝑖𝑖

𝑑𝑑

𝑖𝑖=1

 (9)

The core utilization factor provides a measure of the
computational load on the chip due to the task set. If
this factor is less than 1 for each core, the maximum load
for each core is performed. It is worthy to mention that
all of the figures in this paper have a utilization less than
1.

5.2 The Worst-case Scenario
The worst-case scenario considers that the given number
of faults k will occur, and thereby all replicated parts of the
tasks and their checkpoints are executed in this scenario,
which potentially leads to high power consumption.
Therefore, it can be considered a good condition for com-
paring peak power reduction and feasibility. Note that
since we generate a different set of tasks, we have different
deadlines and utilizations. Each case of simulations was
simulated 1000 times with different deadlines and utiliza-
tions, and the average results are reported.

Note that our evaluations in this subsection consist of
two sets of simulations. In the first set, we evaluate the
techniques along with different number of faults. In the
second set, various system utilizations are considered.

5.2.1 The impact of different number of faults
In this subsection, we show the impact of different number

(a)

(b)

Fig. 4. Normalized peak power to the chip TDP in the worst-case
scenario by considering different k faults occurrence; (a) # of cores
= 4, (b) # of cores = 8.

0.80
1.00
1.20
1.40
1.60
1.80

1 2 3 4 5

N
or

m
al

iz
ed

 P
ea

k
Po

w
er

 t
o

TD
P

Number of faults (per task)

StaU NonU RAPM PPAC

0.80

1.00

1.20

1.40

1.60

1 2 3 4 5

N
or

m
al

iz
ed

 P
ea

k
Po

w
er

 t
o

TD
P

Number of faults (per task)

StaU NonU RAPM PPAC

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

of faults on the adopted evaluation metrics for all compar-
ison candidates. Fig. 4 shows the normalized peak power
to the chip TDP for a chip with 4 and 8 cores when charac-
teristics of tasks are generated based on Table 3. It should
be noted that the value of TDP for a chip with 4 cores and
8 cores is 8W and 16W, respectively. It can be seen from
Fig. 4 that PPAC never violates TDP while the state-of-the-
art techniques violate it because the state-of-the-art tech-
niques do not consider it. Furthermore, Fig. 4 indicates that
with the higher numbers of cores RAPM can meet TDP, but
with higher fault occurrences and a lower number of cores,
it cannot meet TDP. Both StaU and NonU mechanisms are
performing poorly regarding peak power reduction. It
should be noted that when the number of the cores
increases (Fig. 4a to Fig. 4b), the slack times on the cores
increase, and then TDP and deadline violations decrease.
Our PPAC technique reduces the peak power
consumption by 34% and up to 62% compared to the state-
of-the-art techniques.

Fig. 5 shows the effect of increasing the number of
fault occurrences on the schedulability, the percentage of
TDP enforcement throughout the execution time, and fea-
sibility for different mechanisms on a chip with 4 and 8
cores. Since we shift some tasks to the next time slots to
manage peak power consumption, we need more time
slots for meeting the deadlines. In this paper, we have fo-
cused on meeting TDP and timing constraints simultane-
ously. Therefore, our proposed technique incurs more time
overhead as compared to other techniques that consider
fewer constraints, e.g., the reference [13]. It should be
noted that for the feasibility comparison, as other tech-
niques do not consider TDP, so they will definitely be
worse. It may be good that we show whether the deadline
violation will be increased when the proposed technique is
used. One of the overheads of our proposed method is the
required time for shifting the tasks. This is a consequence

of having two constraints: 1) deadline, 2) TDP. When we
have two constraints, regardless of what is the benchmark,
we need some time overhead for meeting both of them.

As shown in the right side of Fig. 5, our PPAC has
higher feasibility than all other comparison candidates for
different k faults occurrence in the worst-case scenario for
random utilizations when (a) # of cores = 4, and (b) # of
cores = 8. The resulting feasibility of PPAC is 69%, while
the StaU, NonU, and RAPM techniques are 41.6%, 38.9%,
15.4%, respectively. To provide a deeper insight, we addi-
tionally show both implicit metrics of feasibility; i.e., the

(a)

(b)

Fig. 5. The impact of different k faults occurrence in the worst-case scenario for random utilizations on schedulability, the percentage of
TDP enforcement throughout the execution time, and feasibility; a) # of cores = 4, b) # of cores = 8.

0

20

40

60

80

100

1 2 3 4 5

Fe
as

ib
ili

ty
 [%

]

Number of faults (per core)

StaU NonU RAPM PPAC

0

20

40

60

80

100

1 2 3 4 5

Fe
as

ib
ili

ty
 [%

]

Number of faults (per core)

StaU NonU RAPM PPAC

(a)

(b)

Fig. 6. Normalized peak power to the chip TDP in the worst-case
scenario by considering various utilizations; (a) # of cores = 4, (b) #
of cores = 8.

0.80
1.00
1.20
1.40
1.60
1.80

0.1 0.2 0.4 0.6 0.8

N
or

m
al

iz
ed

 P
ea

k
Po

w
er

 t
o

TD
P

Utilization (per core)

StaU NonU RAPM PPAC

0.80

1.00

1.20

1.40

0.1 0.2 0.4 0.6 0.8

N
or

m
al

iz
ed

 P
ea

k
Po

w
er

 t
o

TD
P

Utilization (per core)

StaU NonU RAPM PPAC

ANSARI ET AL.: POWER-AWARE CHECKPOINTING FOR MULTICORE EMBEDDED SYSTEMS 11

percentage of TDP enforcement throughout the execution
time and the schedulability. As it can be observed from the
charts in the middle of the figure, PPAC has always met
TDP constraint, while the StaU, NonU, and RAPM tech-
niques have met the TDP constraint by only 48.8%, 47.6%,
27.6%, respectively. However, there is a time overhead to
be paid by PPAC for meeting the TDP. In particular, PPAC
shifts some parts of the tasks to the next time slots to satisfy
TDP constraints. This time overhead has led to reducing
the schedulability of PPAC in some worst-case scenarios.
The schedulability of the four comparison candidates;
PPAC, StaU, NonU, and RAPM are 69.7%, 83.7%, 70.1%,
32.2%, respectively.

5.2.2 The impact of various utilizations
In this subsection, we show the impact of various utiliza-
tions on the adopted evaluation metrics. Fig. 6 shows the
normalized peak power to the chip TDP for a chip with 4
and 8 cores. It can be seen from Fig. 6 that PPAC never vi-
olates TDP while the state-of-the-art techniques violate it.
Our PPAC technique reduces the peak power
consumption by 28% and up to 60.1% compared to the
state-of-the-art techniques in various utilizations.

The original utilization of tasks without applying the
checkpointing technique is varied between 0.1 to 0.8 for
each core. To demonstrate this, we generated 1000 task sets
from the tasks shown in Table 3 and repeated the
simulations for several per-core utilization values
(Uper- core= 0.1 to 0.8). Since the proposed approach never vi-
olates the two mentioned constraints, we show the fre-
quency of meeting these constraints (as defined feasibility).

As shown in the right side of Fig. 7, our PPAC has
higher feasibility than all other comparison candidates in
scenario (a) # of cores = 4 and k=2, and (b) # of cores = 8
and k=3. Particularly, the resulting feasibility of PPAC is
76.1%, while the StaU, NonU, and RAPM techniques are
49.3%, 47.9%, 14.7%, respectively. As it can be observed
from the charts in the middle of the figure, PPAC has al-
ways met TDP constraint, while the StaU, NonU, and

RAPM techniques have met the TDP constraint by only
52%, 51.3%, 26.4%, respectively. The schedulability of the
four comparison candidates; PPAC, StaU, NonU, and
RAPM are 77.1%, 91.7%, 79.8%, 40%, respectively, for the
worst-case scenario. However, for the realistic scenario, we
can notice from Fig. 8 that our PPAC has much better
schedulability, in average of 99.5%, while only the tech-
nique "NonU" has a higher schedulability with an average
of 99.7%. This is however a negligible overhead to pay to
satisfy power constraint in addition to timing constraint.
Note that NonU uses non-uniform checkpointing without
shifting the parts of the tasks to reduce the time overhead
in the realistic scenario.

5.3 Realistic Scenario
In this case, we investigate the actual conditions (the real-
istic scenario in nature) where the actual fault rate is con-
sidered. To inject the faults, we have generated them using
a Poisson process where the fault rate λ was modeled using
Eq.3 under the parameters λ0=10-4 faults/us [1]. It should
be noted that these fault rates are much higher than real
fault rates (e.g., 10-12 faults/us). Since, using fewer faults
will require much number of fault injections to cover dif-
ferent parts of applications, which will require months of
simulations to ensure high coverage, we used the high
fault rates to evaluate our technique. Due to the stochastic
nature of transient faults, the same application is executed
for 1000 times and the average results are reported.

In this scenario, like the worst-case scenario, we show
the schedulability, the percentage of TDP enforcement
throughout the execution time, and the feasibility of the
proposed method for different utilizations. Similar to the
previous scenario, we consider that the original utilization
of tasks without applying the checkpointing technique is
varied between 0.1 to 0.8 for each core.

As shown in the right side of Fig. 8, our PPAC has
higher feasibility than all other comparison candidates in
the realistic scenario. The resulting feasibility of PPAC is
99%, while the StaU, NonU, and RAPM techniques are

(a)

(b)
Fig. 7. The impact of various utilizations in the worst-case scenario on schedulability, the percentage of TDP enforcement throughout the
execution time, and feasibility; a) # of cores = 4 and k=2, b) # of cores = 8 and k=3.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

61%, 71.8%, 48.9%, respectively. As it can be observed from
the charts in the middle of the figure, PPAC has always met
TDP constraint, while the StaU, NonU, and RAPM tech-
niques have met the TDP constraint by only 62.3%, 73%,
49.9%, respectively. Moreover, the schedulability of the
four comparison candidates; PPAC, StaU, NonU, and
RAPM are 99.5%, 96%, 99.7%, 94.4%, respectively.

Moreover, Fig. 9 shows the normalized peak power to
the chip TDP for a chip with 4 and 8 cores. It can be seen
from Fig. 9 that Our PPAC technique reduces the peak
power consumption by 27% and up to 53% compared to

the state-of-the-art techniques in various utilizations.
In Fig. 10, we have evaluated the aforementioned meth-

ods on 2, 4 and 8 core systems with the mentioned fault
rate. We executed up to 100 tasks on each core for 1000 task
sets and reported the average results. As it is shown in the
figure, our worst-case evaluation broadly matches the real-
world scenario. By increasing the number of cores, the en-
ergy consumption for all four methods decreases because
the utilization of the cores decreases. Although PPAC al-
ways keeps the peak power of the system below TDP con-
straint, other methods cannot guarantee meeting TDP con-
straint. The experiments show that PACC completely out-
performs the two techniques (SptU and RAPM) from the
energy consumption viewpoint. However, the energy con-
sumption of PPAC is worse than the NonU technique be-
cause NonU is designed as a technique that manages en-
ergy consumption. The PPAC technique provides on aver-
age 17.28% (up to 61.1%) energy reduction as compared to
the three mentioned techniques.

6 RELATED WORK
At first, checkpointing was proposed for database systems
where availability/reliability is the main criterion [33].

(a)

(b)

Fig. 8. The impact of various utilizations in the realistic scenario on schedulability, the percentage of TDP enforcement throughout the
execution time, and feasibility; a) # of cores = 4 and k=2, b) # of cores = 8 and k=3.

(a)

(b)

Fig. 9. Normalized peak power to the chip TDP in the worst-case
scenario by considering different k faults occurrence; (a) # of cores
= 4, (b) # of cores = 8.

0.80

1.00

1.20

1.40

1.60

0.1 0.2 0.4 0.6 0.8

N
or

m
al

iz
ed

 P
ea

k
Po

w
er

 t
o

TD
P

Utilization (per core)

StaU NonU RAPM PPAC

0.80

1.00

1.20

1.40

0.1 0.2 0.4 0.6 0.8

N
or

m
al

iz
ed

 P
ea

k
Po

w
er

 t
o

TD
P

Utilization (per core)

StaU NonU RAPM PPAC

Fig. 10. Normalized energy consumption to PPAC in the ac-
tual-case scenario.

0.8
1

1.2
1.4
1.6
1.8

2 4 8N
or

m
ali

ze
d

En
er

gy

C
on

su
m

pt
io

n
to

 P
PA

C

Number of cores

NonU StaU RAPM

ANSARI ET AL.: POWER-AWARE CHECKPOINTING FOR MULTICORE EMBEDDED SYSTEMS 13

However, in real-time embedded systems, other require-
ments like high reliability and timeliness as well as low
power consumption should be carefully considered [13].
Example applications of such real-time embedded systems
where high reliability and low power consumption are
needed include, but not limited to, medical care devices,
avionics systems, control of chemical reactions, space and
surveillance systems, and condition monitoring sys-
tems [12]. Although checkpointing with rollback recovery
increases the execution time of the tasks in the absence of
faults, it reduces the recovery time of faulty tasks. This is
because there is no need to replicate or re-execute the
whole task, and only the part of the task, which begins
from the last safe checkpoint, is required to be executed
again. Checkpointing is a fault-tolerant technique that can
result in lower power and time overheads, if intelligently
used, compared to re-execution, replication, TMR,
standby-sparing, and etc. [12][25][28][29].

In [34], Pop et al. have exploited the combination of
checkpointing with rollback recovery and active replica-
tion to tolerate transient faults in the hard real-time sys-
tems. Moreover, they have proposed global optimization
of the number of checkpoints and have integrated check-
pointing into an assignment and mapping optimization
strategy. Zhu et al. in [35] have proposed a method that
whenever the slack is not enough for re-execution of the
tasks, checkpointing is employed as the fault-tolerant tech-
nique. Punnekkat et al. [36] have proposed a feasibility test
for periodic and sporadic task sets which can be scheduled
based on any fixed-priority preemptive scheduling under
checkpointing fault-tolerant technique for uniprocessor
systems to tolerate transient faults. They claim that the re-
sults are applicable to distributed multiprocessor systems
where tasks are statically allocated to individual proces-
sors. Indeed, they have minimized the execution time of
the tasks for equidistant checkpoints in the worst-case fault
scenario. In [37], a checkpointing mechanism is presented
to achieve higher lifetime reliability of the system. In [38],
a checkpointing scheme is presented for ASIP-based em-
bedded systems. Kwak et al. in [39] have proposed a check-
pointing scheme that tolerates timing and control flow er-
rors in hard real-time systems. However, these works do
not consider the power overhead of adding the check-
points. Some works try to maximize the probability of
meeting deadlines while using probabilistic analy-
sis [40][41]. However, for hard real-time systems, tolerat-
ing a given number of faults (up to k faults) should be guar-
anteed [10][12][30][42]. Melhem et al. in [13] have consid-
ered the interaction between checkpointing and average
power management and proposed uniform and non-uni-
form checkpointing schemes for tolerating only one fault.
The work in [12] has proposed a non-uniform checkpoint-
ing scheme with very low time and energy overheads to
tolerate k faults for hard real-time systems. They use Dy-
namic Voltage Scaling (DVS) for reducing the average
power consumption of the system.

As it is mentioned, none of the previous work in the
context of real-time embedded systems did consider the

power constraint for different checkpointing mechanisms.
This paper presents for the first time, a peak-power-aware
checkpointing (PPAC) technique that tolerates k faults in
hard real-time embedded systems, while at the same time
meets the power and timing constraints.

7 CONCLUSIONS
In this paper, a Peak-Power-Aware Checkpointing (PPAC)
technique to achieve low-power fault tolerance for hard
real-time systems has been proposed. According to the
power profile of applications, PPAC determines the mini-
mum number of non-uniform checkpoints that tolerate k
faults in hard real-time embedded systems, while at the
same time meets the power constraints. In the experiments,
we verified the schedulability of the proposed technique
and other techniques for each generated task set. The
results show that PPAC meets the timing and TDP con-
straints on average by 80.38% while the other techniques
meet the mentioned constraints on average by 31.9%.
Moreover, our proposed technique provides up to 37.9%
(on average by 23%) peak power reduction compared to
state-of-the-art techniques.

REFERENCES
[1] S. Pagani, H. Khdr, J. Chen, M. Shafique, M. Li, and J. Henkel,

“Thermal Safe Power (TSP): Efficient Power Budgeting for Het-
erogeneous Manycore Systems in Dark Silicon,” IEEE Trans.
Comp., vol. 66, no. 1, pp. 147-162, 2017.

[2] M. Ansari, S. Safari, A. Yeganeh-Khaksar, M. Salehi, and A.
Ejlali, “Peak Power Management to Meet Thermal Design Power
in Fault-Tolerant Embedded Systems,” IEEE Trans. Parallel and
Distr. Sys., vol. 30, no. 1, pp. 161-173, 1 Jan. 2019.

[3] H. Khdr, H. Amrouch, and J. Henkel, “Aging-Constrained Per-
formance Optimization for Multi Cores,” in ACM/EDAC/IEEE
55rd Design Automation Conference (DAC), USA, pp. 24-28, 2018.

[4] D. K. Schroder and J. A. Babcock, “Negative bias temperature
instability: Road to cross in deep submicron silicon semiconduc-
tor manufacturing,” Journal of Applied Physics, pp. 1–18, 2003.

[5] S. Safari, M. Ansari, G. Ershadi and S. Hessabi, “On the Schedul-
ing of Energy-Aware Fault-Tolerant Mixed-Criticality Multicore
Systems with Service Guarantee Exploration,” in IEEE Trans.
Parallel and Distr. Sys., vol. 30, no. 10, pp. 2338-2354, 2019.

[6] W. Munawar, H. Khdr, S. Pagani, M. Shafique, J. Chen, and J.
Henkel, “Peak Power Management for Scheduling Real-time
Tasks on Heterogeneous Many-Core Systems,” in 20th IEEE
ICPADS, Hsinchu, Taiwan, December 2014.

[7] B. Zhao, H. Aydin, and D. Zhu, “Enhanced reliability-aware
power management through shared recovery technique,” in
Proc. ICCAD, pp. 63–70, 2009.

[8] M. A. Haque, H. Aydin and D. Zhu, “On Reliability Management
of Energy-Aware Real-Time Systems Through Task Replica-
tion,” IEEE Trans. Parallel and Distr. Sys., vol. 28, no. 3, pp. 813-
825, 2017.

[9] S. Rehman, A. Toma, F. Kriebel, M. Shafique, J. Chen, and J.
Henkel, “Reliable Code Generation and Execution on Unreliable
Hardware under Joint Functional and Timing Reliability
Considerations,” RTAS, pp. 273-282, 2013.

[10] K.H Kim and J. Kim, “An Adaptive DVS Checkpointing Scheme
for Fixed-Priority Tasks with Reliability Constraints in Depend-
able Real-Time Embedded Systems,” ICESS, pp. 560-571, May
14-16, 2007.

[11] G. Buttazzo, “Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications,” New York, NY:
Springer, 2011.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

[12] M. Salehi, M. Khavari Tavana, S. Rehman, M. Shafique, A. Ejlali,
and J. Henkel, “Two-State Checkpointing for Energy-Efficient
Fault Tolerance in Hard Real-Time Systems,” in IEEE Trans.
VLSI, vol. 24, no. 7, pp. 2426-2437, 2016.

[13] R. Melhem, D. Mosse, and E. Elnozahy, “The interplay of power
management and fault recovery in real-time systems,” IEEE
Trans. Comput., vol. 53, no. 2, pp. 217-231, 2004.

[14] A. Meixner, M.E. Bauer, and D. Sorin, “Argus: Low-Cost, Com-
prehensive Error Detection in Simple Cores,” Proc. IEEE/ACM
40th Int’l Symp. MICRO, pp. 210-222, Dec. 2007.

[15] M.R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A Free, Commercially Representa-
tive Embedded Benchmark Suite,” Proc. Fourth IEEE Ann. Work-
shop on Workload Characterization, pp. 3-14, 2001.

[16] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A.
Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K.
L. Sewell, M. S. B. AltafN. Vaish, M. D. Hill, and D. A. Wood,
“The gem5 simulator,” ACM SIGARCH Computer Architecture
News,vol. 39, no. 2, pp. 1–7, May 2011.

[17] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architec-
tures,” in MICRO, pp. 469–480, 2009.

[18] Y. Guo, D. Zhu, and H. Aydin, “Reliability-Aware Power Man-
agement for Parallel Real-Time Applications with Precedence
Constraints,” in Proc. Int’l Green Computing Conf. and Work.
(IGCC), pp.1-8, 2011.

[19] “Checkpoint/Restore In Userspace” [Online]. Available:
https://criu.org/Main_Page

[20] P. Greenhalgh, “big.LITTLE processing with ARM Cortex-A15 &
Cortex-A7,” ARM Limited, White Paper, September 2011.

[21] M. Ansari, J. Saber-Latibari, M. Pasandideh, and A. Ejlali, “Sim-
ultaneous Management of Peak-Power and Reliability in Heter-
ogeneous Multicore Embedded Systems,” in IEEE Trans. Parallel
and Distr. Sys., vol. 31, no. 3, pp. 623-633, 2020.

[22] M. Ansari, M. Salehi, S. Safari, A. Ejlali and M. Shafique, "Peak-
Power-Aware Primary-Backup Technique for Efficient Fault-
Tolerance in Multicore Embedded Systems," in IEEE Access, vol.
8, pp. 142843-142857, 2020.

[23] M. Ansari, A. Yeganeh-Khaksar, S. Safari and A. Ejlali, “Peak-
Power-Aware Energy Management for Periodic Real-Time Ap-
plications,” in IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 4, pp. 779-788, 2020.

[24] S. Safari, H. Khdr, P. Gohari-Nazari, M. Ansari, S. Hessabi, and
J. Henkel, “TherMa-MiCs: Thermal-Aware Scheduling for Fault-
Tolerant Mixed-Criticality Systems,” IEEE Trans. Parallel and
Distr. Sys., vol. 33, no. 7, pp. 1678-1694, 1 July 2022.

[25] A. Roy, H. Aydin and D. Zhu, “Energy-aware standby-sparing
on heterogeneous multicore systems,” 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), Austin,
TX, 2017, pp. 1-6.

[26] S. Safari et al., "A Survey of Fault-Tolerance Techniques for Em-
bedded Systems from the Perspective of Power, Energy, and
Thermal Issues," in IEEE Access, vol. 10, pp. 12229-12251, 2022.

[27] H. Khdr, S. Pagani, E. Sousa, V. Lari, A. Pathania, F. Hannig, M.
Shafique, J. Teich, and J. Henkel, “Power Density-Aware Re-
source Management for Heterogeneous Tiled Multicores,”
in IEEE Trans. on Comp., vol. 66, no. 3, pp. 488-501, 1 March 2017.

[28] I. Koren and C. M. Krishna. Fault-tolerant systems. Morgan
Kaufmann, 2010.

[29] Q. Han, M. Fan and G. Quan, “Energy minimization for fault tol-
erant real-time applications on multiprocessor platforms using
checkpointing,” International Symposium on Low Power Electronics
and Design (ISLPED), Beijing, 2013, pp. 76-81.

[30] Kim, K. Hoon, and J. Kim, “An adaptive DVS checkpointing scheme
for fixed-priority tasks with reliability constraints in dependable real-
time embedded systems,” International Conference on Embedded Software
and Systems (Springer), S. 560-571, 2007.

[31] J. Lee, B. Yun and K. G. Shin, “Reducing Peak Power
Consumption in Multi-Core Systems without Violating Real-

Time Constraints,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 4, pp. 1024-1033, April 2014.

[32] H. Aydin and Qi Yang, “Energy-aware partitioning for multiprocessor
real-time systems,” Proceedings International Parallel and Distributed
Processing Symposium, Nice, France, 2003.

[33] E. Gelenbe “On the optimum checkpoint interval,” Journal of the
ACM (JACM), vol. 26, no.2, pp. 259-270, April 1979.

[34] P. Pop, V. Izosimov, P. Eles, and Z. Peng, “Design optimization
of time- and cost-constrained fault-tolerant embedded systems
with checkpointing and replication,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 17, no. 3, pp. 389–402, 2009.

[35] D. Zhu, “Reliability-aware dynamic energy management in de-
pendable embedded real-time systems,” ACM Trans. Embed.
Comput. Syst. (TECS), vol. 10, no. 2, 2010.

[36] S. Punnekkat, A. Burns, and R. Davis, “Analysis of checkpoint-
ing for real-time systems,” Real-Time Syst., vol. 20, no. 1, pp. 83–
102, 2001.

[37] M.I bin Bandan, S. Bhattacharjee, R.A. Shafik, D.K. Pradhan, and
J. Mathew, “Lifetime Reliability-Aware Checkpointing Mecha-
nism: Modelling and Analysis,” Proc. Int’l Symp. Electronic Syst.
Design (ISED), pp. 128-132, 10-12 Dec. 2013.

[38] T. Li, R. Ragel, S. Parameswaran, “Reli: Hardware/software
Checkpoint and Recovery scheme for embedded processors,”
Proc. Design, Automation & Test in Europe Conf. & Exhibition
(DATE'12), pp. 875-880, 12-16 March 2012.

[39] S. W. Kwak, B. J. Choi, and B. K. Kim, “An optimal checkpoint-
ing-strategy for real-time control systems under transient
faults,” IEEE Trans. Reliab., vol. 50, no. 3, pp. 293–301, Sep. 2001.

[40] S. W. Kwak and J.-M. Yang, “Optimal Checkpoint Placement on
Real-Time Tasks with Harmonic Periods,” J. of Computer Science
and Technology, vol. 27, no. 1, pp. 105-112, January 2012.

[41] Z. Li, L. Wang, S. Ren, and G. Quan, “Energy minimization for
checkpointing-based approach to guaranteeing real-time sys-
tems reliability,” Proc. IEEE 16th Int’l Symp. Object/Compo-
nent/Service-Oriented Real-Time Distrib. Computing (ISORC), pp. 1-
8, 19-21 June 2013.

[42] Y. Zhang and K. Chakrabarty, “A unified approach for fault tol-
erance and dynamic power management in fixed-priority real-
time embedded systems,” IEEE Trans. Comput.-Aided Design In-
tegr. Circuits Syst., vol. 25, no. 1, pp. 111-125, Jan. 2006.

[43] Z. Chen, D. Stamoulis and D. Marculescu, “Profit: Priority and
Power/Performance Optimization for Many-Core Systems,” in
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 10, pp. 2064-2075, Oct. 2018.

[44] H. Kopetz, “Real-Time Systems: Design Principles for Distrib-
uted Embedded Applications,” in Springer US, pp I-378, 2011.

[45] P. Marwedel “Embedded System Design,” in Springer US, 2006.
[46] M. Ansari, S. Safari, S. Yari-Karin, P. Gohari-Nazari, H. Khdr, M.

Shafique, J. Henkel, and A. Ejlali, “Thermal-Aware Standby-
Sparing Technique in Hetereogeneous Real-Time Embedded
Systems,” IEEE Transactions on Emerging Topics in Computing,
2021.

[47] Y. Zhang and K. Chakrabarty, “Dynamic adaptation for fault tol-
erance and power management in embedded real-time sys-
tems,” ACM Trans. Embed. Comput. Syst., vol. 3, no. 2, pp. 336–
360, May 2004.

[48] [Online]. Available: https://criu.org/Linux_kernel

https://criu.org/Main_Page

ANSARI ET AL.: POWER-AWARE CHECKPOINTING FOR MULTICORE EMBEDDED SYSTEMS 15

Mohsen Ansari received his Ph.D. degree in com-
puter engineering from the Sharif University of
Technology, Tehran, Iran, in 2021. He is currently
an assistant professor of computer engineering at
the Sharif University of Technology, Tehran, Iran.
He was a visiting researcher in the Chair for Em-
bedded Systems (CES), Karlsruhe Institute of
Technology (KIT), Germany, from 2019 to 2021.

Also, he was a postdoctoral researcher and a research group leader
of Embedded Systems Research Laboratory (ESR-LAB), and a lec-
turer at the department of computer engineering, Sharif University of
Technology. His research interests include Cyber-Physical and Hybrid
systems with a focus on dependability/reliability.

Sepideh Safari received a Ph.D. degree in com-
puter engineering from Sharif University of Tech-
nology, Tehran, Iran, in 2021. She was a visiting re-
searcher in the Chair for Embedded Systems
(CES), Karlsruhe Institute of Technology (KIT),
Germany, from 2019 to 2021. She is now a post-
doctoral researcher at Institute for Research in
Fundamental Sciences (IPM), Tehran Iran. Her re-

search interests include the low-power design of cyber-physical sys-
tems, energy management in fault-tolerant embedded systems, and
multi-/many-core systems with a focus on dependability/reliability.

Heba Khdr is a postdoctoral researcher and a
group leader at the Chair for Embedded Systems
(CES) at Karlsruhe Institute of Technology (KIT) in
Germany. She received her Ph.D. (Dr.-Ing.) in
Computer Science from Karlsruhe Institute of
Technology (KIT) in 2018.
In 2005, she received her Diploma in Informatics

Engineering from Aleppo University in Syria with an excellent grade
and the first rank. From 2005 until 2007 she worked as a software
engineer in the industry sector in Syria. She worked as an assistant at
Aleppo University from 2008 until 2010. In 2011 she did an equivalent
master thesis at KIT.
Her research interests are thermal management and resource man-
agement in multi- and many-core systems. In 2012 she received Re-
search Student Award from KIT. She received Best Paper Award from
IEEE/ACM International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS) in 2014, and four HiPEAC pa-
per awards.

Pourya Gohari-Nazari received the MSc degree in
computer engineering from the Sharif University of
Technology, Tehran, Iran, and the BSc degree in
computer engineering from the University of Isfa-
han. His research interests include thermal man-
agement in many-core systems and embedded
systems with a focus on low-power and reliability.

Jörg Henkel (M’95-SM’01-F’15) received the Di-
ploma and Ph.D. (summa cum laude) degrees from
the Technical University of Braunschweig, Ger-
many. He was a Research Staff Member with NEC
Laboratories, Princeton, NJ, USA. His research
work is focused on co-design for embedded hard-
ware/software systems with respect to power, ther-

mal, and reliability aspects. Dr. Henkel has received six best paper
awards from, among others, ICCAD, ESWeek, and DATE. He served
as the Editor-in-Chief for the ACM TECS and IEEE Design&Test. He
is/has been an Associate Editor for major ACM and IEEE journals. He
was a General Chair ICCAD, ESWeek, etc., and serves as a Steering
Committee chair/member for leading conferences and journals. He
coordinates the DFG Program SPP 1500 “Dependable Embedded
Systems” and is a site coordinator of the DFG-TR89 collaborative re-
search center on “Invasive Computing.” He is the Chairman of the
IEEE Computer Society, Germany Chapter, and a Fellow of the IEEE.

Alireza Ejlali is an Associate Professor of Com-
puter Engineering at Sharif University of Technol-
ogy, Tehran, Iran. He received a Ph.D. degree in
computer engineering from Sharif University of
Technology in 2006. From 2005 to 2006, he was a
visiting researcher in the Electronic Systems De-
sign Group, University of Southampton, UK. In
2006 he joined Sharif University of Technology as
a faculty member in the department of computer

engineering and from 2011 to 2015, he was the director of Computer
Architecture Group in this department. He is now the director of Em-
bedded Systems Research Laboratory (ESR-LAB) and the head of
the department of computer engineering, Sharif University of Technol-
ogy. His research interests include low power design, fault tolerance,
real-time embedded systems, and Internet of Things (IoT).

Shaahin Hessabi received the BS and MS degrees
in electrical engineering from Sharif University of
Technology, Tehran, Iran, in 1986 and 1990, re-
spectively, and the PhD degree in electrical and
computer engineering from the University of Water-
loo, Ontario, Canada. He joined Sharif University of
Technology, in 1996. Since 2007, he has been an
associate professor in the Department of Computer
Engineering, Sharif University of Technology, Teh-

ran, Iran. He has published more than 100 refereed papers in the re-
lated areas. His research interests include cyber-physical systems, re-
configurable and heterogeneous architectures, network-on-chip, and
system-on-chip. He has served as the program chair, general chair,
and program committee member of various conferences, like DATE,
NOCS, NoCArch, and CADS.

	1 Introduction
	1.1 Motivational Example
	1.2 Our Novel Contribution

	2 Models and Assumptions
	2.1 System and Application Model
	2.2 Power Model
	2.3 Reliability and Fault Model

	3 Problem Definition
	4 Peak-Power-Aware Checkpointing
	4.1 Initial scheduling and checkpointing
	4.2 Adjusting Checkpoint Timing
	4.3 Delaying Task Execution
	4.4 Runtime Opportunities
	4.5 Illustrative Example

	5 Experimental Evaluation
	5.1 Setup
	5.1.1 Evaluation Metrics

	5.2 The Worst-case Scenario
	5.2.1 The impact of different number of faults
	5.2.2 The impact of various utilizations

	5.3 Realistic Scenario

	6 Related Work
	7 CONCLUSIONS
	References

