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Abstract—Increasing the number of cores integrated on a single chip offers a great potential for the implementation of fault-
tolerant techniques to achieve high reliability in real-time embedded systems. Checkpointing with rollback-recovery is a well-
established technique to tolerate transient faults in multicore platforms. To consider the worst-case fault occurrence scenario, 
checkpointing technique requires to re-execute some parts of the tasks, and that might lead to simultaneous execution of task 
parts with high power consumptions, which eventually might result in a peak power increase beyond the thermal design power 
(TDP). Exceeding TDP can elevate on-chip temperatures beyond safe limits, and thereby triggering countermeasures that 
throttle down the voltage and frequency levels or power gate the cores. Such countermeasures might lead to violating task 
deadlines and degrading the system's reliability. To avoid such severe scenarios, it is inevitable to consider the impact of 
applying fault-tolerant techniques on the power consumption and prevent violating the power constraint of the chip, i.e., TDP. 
This paper presents for the first time, a peak-power-aware checkpointing (PPAC) technique that tolerates a given number of 
faults, k, while at the same time meets the power constraint in hard real-time embedded systems. To do this, our proposed 
technique (PPAC) adjusts the timing of the checkpoints, which have lower power consumption than the tasks to the execution 
time points that have power spikes beyond TDP. Moreover, PPAC exploits the available slack times on the cores to delay the 
execution of some tasks to avoid the remaining power spikes beyond TDP, which could not be mitigated by solely adjusting 
checkpoints. To evaluate our technique, we extend the state-of-the-art system-level simulator, gem5, with the state-of-the-art 
checkpointing module in Linux. Our experimental results show that our proposed technique is able to tolerate a given number of 
faults without exceeding the timing and power constraints in hard real-time embedded systems. The resulting peak power 
reduction achieved by our technique compared to state-of-the-art techniques is an average of 23%. Moreover, our technique 
employs the Dynamic Power Management (DPM) during the slack times resulting at runtime in the case of fault-free scenarios, 
which provides energy savings with an average of 17.28% and up to 61.1%. 

Index Terms— Peak Power Consumption, Checkpointing, Multicore Platforms, Embedded Systems  

——————————      —————————— 

1 INTRODUCTION 
UE to the continued technology scaling, power densi-
ties on the chip are increasing and thereby, on-chip 

temperature is elevating [1][2]. High temperature jeopard-
izes chip reliability through aging mechanisms, e.g., elec-
tromigration, Negative Bias Temperature Instability 
(NBTI) [3][4], and it might even lead to permanent damage 
on the chip. In order to avoid temperature increases be-
yond safe limits, Dynamic Thermal Management (DTM) 
techniques are implemented on the chip [27]. In particular, 
DTM monitors the on-chip temperature during opera-

tional mode and takes some countermeasures, e.g., Dy-
namic Voltage and Frequency Scaling (DVFS) and Dy-
namic Power Management (DPM), to throttle down the 
chip, once the temperature approaches the thermal thresh-
old [2]. Obviously, these countermeasures might lead to 
missing task deadlines, and this is not acceptable in hard 
real-time systems [5][8]. Moreover, downscaling the volt-
age and frequency levels degrades the system reliability, 
because it increases the fault rate, as demonstrated in [8]. 
As a remedy, system-level techniques [43] enforce power 
constraints on the chip aiming at suppressing power con-
sumption increases and the potential thermal violations 
and thereby avoiding the corresponding countermeasures. 
TDP, thermal design power, is the most commonly used 
power constraint since it is the highest sustainable power 
that the cooling system in a computer is designed to dissi-
pate under any workload [1][2]. 

Apart from power and thermal issues, transient faults, 
which are typically resulting due to high-energy particle 
strikes in hardware [12], are considered as severe reliabil-
ity concerns. To ensure a reliable operation for the system, 
many system-level techniques, referred to as fault-tolerant 
techniques, have been typically proposed to tolerate a given 
number of faults. These techniques, however, incur signif-
icant time and power overheads, and therefore, most of 
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these mechanisms may not be feasible and applicable in 
hard real-time embedded systems [5][12]. Checkpointing 
with rollback recovery is a fault-tolerant technique that can 
result in lower power and time overheads, if intelligently 
used, compared to re-execution, replication, triple modu-
lar redundancy (TMR), standby-sparing, and 
etc. [12][25][28][29]. In particular, when a fault occurs, 
there is no need to replicate or re-execute the whole task, 
and only the part of the task, which begins from the last 
safe checkpoint, is required to be executed again [12]. Ob-
viously, this strategy will reduce time and power over-
heads, compared to re-executing or duplicating the whole 
task. Although checkpointing has less power overhead but 
it requires to re-execute some parts of the tasks. That might 
lead to simultaneous execution of task parts with high 
power consumption, which eventually might result in a 
peak power increase beyond thermal design power (TDP). 

In order to solve this problem, this paper proposes for 
the first time a peak-power-aware checkpointing tech-
nique that tolerates k faults in hard real-time embedded 
systems, while at the same time meets the TDP constraint. 
There are two types of checkpointing techniques proposed 
in the literature; uniform checkpointing and non-uniform 
checkpointing. The former inserts checkpoints regularly at 
a specific time period, while the latter allows selecting un-
even timing periods between the checkpoints. Our pro-
posed technique employs non-uniform checkpointing to 
be able to adjust the timing of the checkpoints so that the 
TDP constraint is satisfied. In particular, inserting a check-
point for a task will suspend the task and execute a set of 
instructions to save the state of the task into the memory. 

Normally, the power consumption during the checkpoint 
is much less than the power consumption of the task [12], 
as will be demonstrated later in Section 5. Therefore, our 
proposed technique inserts the checkpoints at time points, 
at which TDP violation is expected. The following motiva-
tional example shows how adjusting the checkpoint timing 
helps to satisfy the TDP constraint. 

1.1 Motivational Example  
In this example, a triple-core chip with 2.5W of TDP (this 
assumption is similar to the TDP values in real embedded 
systems,  e.g., ARM processor [20]) is considered that exe-
cutes seven frame-based tasks T1-T7. All the tasks arrive at 
time t=0ms and have the same deadline D=85ms. The exe-
cution time of T1, T2, T6, and {T3, T4, T5, T7} are 28ms, 15ms, 
18ms, and 8ms, respectively. The worst-case power profile 
of each task is shown in Fig. 1a. To be reliable, it is assumed 
that this system needs to tolerate 2 faults. The tasks have 
been scheduled using the scheduling policy presented 
in [12]. As shown in Fig. 1b, the tasks T1, {T2, T3, T4}, and 
{T5, T6, T7} are mapped on C1, C2, and C3, respectively. The 
resulting total power consumption through the execution 
time of the frame is depicted in the curve shown below the 
scheduling. As it can be observed from this curve, the 
adopted scheduling policy [11] meets the power constraint 
of the system but it cannot tolerate even a single fault oc-
currence (i.e., this policy does not support any fault-toler-
ant technique). Therefore, the system will fail if a fault oc-
curs.  

In order to tolerate two faults, the state-of-the-art non-
uniform checkpointing technique [12] is employed as 
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Fig. 1. The motivational example of checkpointing. (a) Power profiles of the tasks, (b) A simple scheduling of the tasks without any fault-tolerance 
technique, (c) Non-uniform checkpointing [12], (d) Peak-power-aware non-uniform checkpointing. 
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shown in Fig. 1c, where the checkpoints are represented by 
black rectangles. This technique uses non-uniform inter-
vals that are determined by the equations detailed in [12], 
where the time and power overheads of the checkpoint in-
sertion are equal to 1ms and 0.1W, respectively. As it can 
be observed from the power curve, applying the check-
pointing technique has led to violating TDP. The reason is 
that the execution phases of the tasks with high power con-
sumption have been executed at the same time, after insert-
ing the checkpoints. For instance, as shown in Fig. 1c in the 
time intervals [10ms to 20ms] and [60ms to 70ms] the total 
power consumption of the chip is higher than TDP. Note 
that prolonging the execution time (for example for task T1 
from 28ms to 63ms) is due to tolerating 2 faults during the 
execution time of tasks. 

In Fig. 1d the timing of the non-uniform checkpoints 
is rearranged such that the TDP constraint is met. In par-
ticular, the time intervals, at which TDP is violated, are se-
lected and then some checkpoints are shifted to those time 
points in order to meet the TDP constraint. This is possible, 
because inserting a checkpoint will suspend the task exe-
cution, and therefore it will significantly reduce the power 
consumption at that point of time (see Section 5), which 
helps to satisfy the TDP constraint. In Fig. 1d, the gray rec-
tangles at the beginning of the blue arrows indicate the old 
time points where checkpoints need to be shifted, and the 
black rectangles at the end of the blue arrows show the 
new timing of the shifted checkpoints such that TDP is met. 
For example, at t=15ms, the tasks on the first, second and 
third cores consume 1.8W, 0.7W, and 0.8W respectively 
(overall 3.3W). To satisfy TDP, the closest checkpoint on C1 
has been shifted to the timing point of t=15ms, and hence, 
the overall power consumption becomes 1.6W (i.e., less 
than TDP) at t=15ms. However, because of shifting this 
checkpoint on C1, a new TDP violation is introduced at 
t=17ms. To satisfy TDP again, the third checkpoint of T2 on 
C2 has been shifted to the violation point. In a similar way, 
all other TDP violation points have been handled. Hence, 
it can be observed, how adjusting checkpoint timing can help 
satisfying TDP constraint, without any additional overhead for 
power management.  

1.2 Our Novel Contribution  
As observed from the motivational example, adjusting 
checkpoint timing can help satisfying TDP constraint, 
without any additional overhead. However, the challenges 
are, how to select the tasks whose checkpoints need to be 
shifted, how many checkpoints need to be selected, and 
what if shifting the checkpoints is not enough to satisfy 
TDP constraint. All of these challenges have been tackled 
in our proposed checkpointing technique, as will be ex-
plained later on. Our novel contributions are (1) Proposing 
a peak-power-aware non-uniform checkpointing such that 
hard real-time constraints are met; (2) Presenting a shifting 
method for the tasks to satisfy TDP constraint; (3) Delaying 
some parts of the tasks to meet TDP by considering the 
hard real-time constraints. 

This paper presents, for the first time, a peak-power-
aware checkpointing (PPAC) technique that tolerates a 

given number of faults in hard real-time embedded systems, 
while at the same time meets the power constraint. First of 
all, an initial scheduling and checkpointing are performed 
to tolerate the given number of faults and considering the 
timing constraint. Afterwards, our proposed technique ad-
justs the checkpoint timing to mitigate the power spikes 
that exceed TDP. In case the number of checkpoints was 
not enough to meet TDP constraint throughout the whole 
execution time, the available slack times on the cores will 
be exploited to delay the execution of some tasks in order 
to avoid the remaining power spikes beyond TDP without 
any additional overhead.  

Due to the rare nature of fault occurrence, the fault-
free scenario will occur much more than the faulty one. In 
the fault-free scenario, the repeated parts of the tasks can 
be dropped out, thereby many slack times result in 
throughout the execution time. To provide power and en-
ergy savings, our technique drops out the unnecessary re-
peated parts of the tasks and applies DPM in the resulting 
slack times.  

Moreover, in order to evaluate our technique, we have 
extended the state-of-the-art system-level simulator, gem5, 
with the state-of-the-art checkpointing module in Linux, 
which has not been done before, for the best of our 
knowledge. Our experimental results show that our tech-
nique is able to tolerate a given number of faults (between 
1 to 5) faults without exceeding the timing and power con-
straints in hard real-time embedded systems. The details 
of the proposed technique will be discussed later in Sec-
tion 4.  

2 MODELS AND ASSUMPTIONS 
In this section, we present our system, application, power, 
and fault models. We also provide reliability modeling of 
our system in this section. 

2.1 System and Application Model 
This paper considers a multicore system with m homoge-
neous cores C={C1, C2, …, Cm}. The system executes a set of 
n frame-based hard real-time tasks Ψ= {T1, T2, …, Tn} where 
the tasks are released at the same time and share a common 
deadline D. This application model is adopted in many re-
lated works like [6][7]. Each task Ti has a worst-case execu-
tion time wci. Note that this assumption is valid for frame-
based tasks and cases where multiple tasks belong to one 
complex multi-tasked application [11]. Examples of appli-
cations that require hard real-time computing include nu-
clear power plants, railway switching systems, automotive 
and avionics systems, air traffic control, telecommunica-
tions, some robotics, and military systems. In the last sev-
eral years, hard real-time computing has been required in 
new applications areas, such as medical equipment, con-
sumer electronics, flight control systems, and cyber-physi-
cal systems [5][11][44][45]. 

2.2 Power Model 
The power consumption of each core consists of static and 
dynamic power components [2][8][12][24]. The static 
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power (Pstatic) is dominated by the leakage current. Dy-
namic power (Pdynamic) is mainly consumed due to activity 
resulting by executing the task [22][26]. 

𝑃𝑃(𝑉𝑉𝑖𝑖 , 𝑓𝑓𝑖𝑖) = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 + 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑖𝑖𝑠𝑠 = 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝑖𝑖 + 𝛼𝛼𝐶𝐶𝐿𝐿𝑉𝑉𝑖𝑖2𝑓𝑓𝑖𝑖  (1) 
where CL is the average switched capacitance, Vi and fi are 
supply voltage and operational frequency, Isub is the sub-
threshold leakage current and (α) is the activity factor. The 
dynamic power will change through the execution time of 
the task, that has been considered by our technique. More-
over, different tasks result in different power profiles. In-
tuitively, the total power consumption of the chip at a spe-
cific time point is the summation of the power consump-
tion of all cores at that point of time.  

𝑃𝑃𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡 = �𝑃𝑃(𝑉𝑉𝑖𝑖 , 𝑓𝑓𝑖𝑖)
𝑑𝑑

𝑖𝑖=1

 (2) 

In order to show the total power consumption in different 
time points, we define a vector P. Each entry of P shows 
the total power consumption of the chip at each time point. 

2.3 Reliability and Fault Model 
In hard real-time embedded systems, we should have both 
correct executions of tasks (i.e., functional reliability) and 
also meeting the deadlines (i.e., timing reliability) [42][47]. 
This is because any faulty result or any missed deadline 
may result in a system failure. In order to model the relia-
bility, like the works in [8][25][24][35][42][46][47], we ex-
ploit the “probability of timely completion” to consider 
both meeting the deadlines and correctness of tasks’ exe-
cution. This is because, as we use the checkpointing mech-
anism, a fault within the task can be tolerated but with a 
time penalty which reduces the probability of timely com-
pletion. Note that in this paper transient faults are consid-
ered as the source of fault occurrence, i.e., bit upsets in the 
underlying hardware. Such transient faults are typically 
assumed to follow a Poisson process with the rate 
λ [7][8][12][21][23][46]. The fault rate varies exponentially 
as the supply voltage V changes. Therefore, the raw fault 
rate λ(V) corresponding to the supply voltage V can be 
written as follows: 

𝜆𝜆(𝑉𝑉) = 𝜆𝜆010
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚−𝑉𝑉

𝛥𝛥  (3) 

where λ0 is the fault rate corresponding to the maximum 
voltage (V=Vmax) and Δ is a parameter that shows how the 
fault rate increases with voltage decrease. Since the voltage 
and frequency scaling increases the fault rate (see Eq. 3) 
and degrades the task’s reliability due to increasing the 
worst-case execution time (see Eq. 4), we do not employ 
DVFS. Therefore, λ0 is the fault rate of this paper. A transi-
ent fault in the underlying hardware may ultimately result 
in a software failure. To measure the software failures due 
to transient faults, we use a state-of-the-art software relia-
bility model called the Function Vulnerability Index 
(FVI) [9]. This measures the software failure probability 
and accounts for both spatial and temporal vulnerabilities 
of different instructions [9]. Therefore, the software failure 
rate due to transient faults can be modeled as λ0×FVI. The 

reliability of task i execution is computed as:  

𝑅𝑅𝑖𝑖 = 𝑒𝑒𝜆𝜆0×𝐹𝐹𝑉𝑉𝐹𝐹×𝑤𝑤𝑠𝑠𝑖𝑖  (4) 

It should be noted that, due to the Function Vulnerability 
Index, different applications have different reliability. 

3 PROBLEM DEFINITION 
Given a multicore system with m cores that executes a set 
of n frame-based hard real-time tasks, where the tasks ar-
rive at the same time and have a common deadline D, and 
each task Ti has a worst-case execution time wci. The goal 
is to tolerate a given number of faults in hard real-time em-
bedded systems such that the power and timing con-
straints are met. The problem is how to find the task-to-
core assignment, the scheduling of the tasks, the required 
number of checkpoints of each task, and their timing to 
achieve the target goal.  
• The power consumption is represented by the matrix 

Pϵℝn×m×l, in which each element Pijt denotes the power 
consumption for the task i the core j at a time point t. 

• The task-to-core mapping is represented by the matrix 
Xϵ{0,1}n×m. The task i is mapped to the core j if and only 
if Xij = 1. 

In the following, we formulate the constraints that need to 
be jointly satisfied by the proposed method.   
Chip Power Constraint: The power consumption of the 
chip, i.e., the sum of the power of all underlying cores, 
should be less than TDP. 

∑ 𝑋𝑋𝑖𝑖,𝑗𝑗𝑃𝑃𝑖𝑖,𝑗𝑗,𝑠𝑠𝑖𝑖,𝑗𝑗 ≤ 𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇,𝑠𝑠ℎ𝑖𝑖𝑖𝑖, at each time point t (5) 

Task Timing Constraint: The worst-case execution time of 
all assigned tasks to the core j with their checkpointing 
time overhead (CK_t) should not exceed the task timing 
constraint (defined by the D). 

∀𝑗𝑗:�(𝑋𝑋𝑖𝑖,𝑗𝑗𝑤𝑤𝑐𝑐𝑖𝑖 + 𝐶𝐶𝐶𝐶_𝑡𝑡(𝑇𝑇𝑖𝑖))
𝑖𝑖

≤ 𝐷𝐷 (6) 

The minimum number of checkpoints: The proposed 
technique determines the number of checkpoints for the 
tasks such that they can tolerate k faults. As long as the 
number of faults does not exceed this value, the task can 
recover from faults using the employed checkpoints. The 
required number of uniform checkpoints that tolerates k 
faults is calculated by Eq. 7 as explained in [30].  

 
 
 
 
 

 
 
 
 
 
 

 
Fig. 2. Flow diagram of the PPAC algorithm 
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𝑛𝑛𝑖𝑖(𝑘𝑘,𝑤𝑤𝑐𝑐𝑖𝑖) =

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑛𝑛− = ��

𝑘𝑘 × 𝑤𝑤𝑐𝑐𝑖𝑖
𝐶𝐶𝐶𝐶_𝑡𝑡(𝑇𝑇𝑖𝑖)

� ,      if  𝑤𝑤𝑐𝑐𝑖𝑖 ≤
𝑛𝑛−(𝑛𝑛− + 1)

𝑘𝑘
𝐶𝐶𝐶𝐶_𝑡𝑡(𝑇𝑇𝑖𝑖)

𝑛𝑛+ = ��
𝑘𝑘 × 𝑤𝑤𝑐𝑐𝑖𝑖
𝐶𝐶𝐶𝐶_𝑡𝑡(𝑇𝑇𝑖𝑖)

� ,       if  𝑤𝑤𝑐𝑐𝑖𝑖 >
𝑛𝑛−(𝑛𝑛− + 1)

𝑘𝑘
𝐶𝐶𝐶𝐶_𝑡𝑡(𝑇𝑇𝑖𝑖)

 (7) 

However, non-uniform checkpointing can tolerate the 
same number of faults with a smaller number of check-
points, by using the algorithm proposed in [12], which con-
siders the resulting number of checkpoints from equation 
7 as an input. In this paper, we follow the same strategy 
proposed in [12] to employ the minimum number of check-
points and thereby the minimum time and power over-
head. To determine the non-uniform checkpoint intervals, 
the method in [12] postpones checkpoint insertions as 
much as possible such that fewer checkpoints are inserted 
in fault-free scenarios. To reserve the minimum possible 
time for faulty states, at first, they use the optimal uniform 
checkpointing and then reduce the number of checkpoints 
based on the fault occurrence (see Sections 2 and 3 in [12]). 
Note that the optimal uniform checkpointing minimizes 
the application execution time in the worst-case fault sce-
nario. They have proposed a non-uniform checkpointing 
scheme that enables checkpointing at selective locations 
while considering applications deadline, execution time 
and a user-defined number of tolerable faults to curtail the 
time and power overheads.  
Core Assignment Constraint: Each task can be only 
mapped to a core. 

∀𝑖𝑖:�𝑋𝑋𝑖𝑖,𝑗𝑗
𝑗𝑗

= 1 (8) 

The mentioned problem is categorized as an NP-Hard 
problem [2][6][31]. The optimal solution is finding a feasi-
ble scheduling that meets all of the mentioned constraints 
if it exists.  It should be noted that an exhaustive search to 
find all combinations results in an exponential time com-
plexity equal to O( nm ). 
Hence, this paper proposes a heuristic-based algorithm to 
provide a solution for the presented problem in polyno-
mial time. 

4 PEAK-POWER-AWARE CHECKPOINTING 
To solve the aforementioned problem, we propose a peak-
power-aware checkpointing (PPAC) that tolerates a given 
number of faults in hard real-time embedded systems, while 
at the same time satisfying the predefined power con-
straint, which is TDP. 

As discussed earlier, non-uniform checkpointing al-
lows uneven distribution of the checkpoints throughout 
the execution time, in contrast to the uniform checkpoint-
ing which distributes the checkpoints evenly, so that they 
are separated by identical time intervals. Therefore, we 
employ non-uniform checkpointing to be able to adjust the 
timing of the checkpoints so that the TDP constraint is sat-
isfied.   

An overview of our proposed method (PPAC) is 
shown in Fig. 2, while the details of our method are ex-
plained in the following subsections. The first step of the 
proposed method is to perform initial scheduling of the 
tasks with non-uniform checkpointing. Then, PPAC finds 
the time points at which TDP is violated. For meeting TDP 
at the found time points, PPAC first tries to find the re-
quired checkpoints that meet TDP if shifted to the violation 
time points. If there are enough checkpoints for meeting 
TDP, PPAC shifts them to the selected time point. Other-
wise, the available slack time on the cores will be exploited 
to delay some tasks so that the TDP constraint is satisfied. 
To do this, PPAC should find the minimum number of 

Algorithm 1. Peak-Power-Aware Checkpointing 
Inputs: A set of n tasks, Set of cores, Tasks’ power profile, and Chip-
level TDP constraint. 
Output: The tasks scheduling, checkpoint timing. 

BEGIN: 
1:  Initial scheduling with uniform/non-uniform checkpointing; 
2:  Initialize the vector of total power consumption P; 
3: Violations ← Violation points of TDP; //a list (t, p, period) 
4:  while (Violations!=Φ) do 
5:       cur.vio ← the current TDP violation point to be handled; 
////////////////////// Adjusting Checkpoint Timing  ////////////////////////// 
6:       Ψ ← Find available CPs for cur.vio.t; 
7:       if (∑ 𝑇𝑇𝑖𝑖 .𝑃𝑃𝑖𝑖∈𝜓𝜓 -∑ 𝑇𝑇𝑖𝑖.𝐶𝐶𝐶𝐶_𝑃𝑃𝑖𝑖∈𝜓𝜓  ≤ cur.vio.p) 
8:           Ψ ← Find a subset of Ψ with min. # of CPs that meet TDP 
--                    at cur.vio.t; 
9:           Shift(Ψ); // set the checkpoint time to cur.vio.t 
10:         P(cur.vio.t) ←P(cur.vio.t)-∑ 𝑇𝑇𝑖𝑖 .𝑃𝑃𝑖𝑖∈𝜓𝜓 +∑ 𝑇𝑇𝑖𝑖 .𝐶𝐶𝐶𝐶_𝑃𝑃𝑖𝑖∈𝜓𝜓 ; 
11:     else 
//////////////////////// Delaying Task Execution  //////////////////////////////// 
12:         C ← Set of cores whose slack time≥ cur.vio.period; 
13:         Ψ1 ← Find tasks which are in C1 and executing within  
--                     cur.vio.period; 
14:         CL ← create_all_combinations(Ψ1, Ψ);  
15:         (Ψ2, Ψ3)  ← Find a combination of CL with min. # tasks  
--                               that meet TDP at cur.vio.t;  
17:         if (Ψ2= Φ & Ψ3= Φ)  
18:              return infeasible; 
19:              break; 
20:         Shift(Ψ2); // set the checkpoint time to cur.vio.t 
21:         Delay(Ψ3, cur.vio.period);//delay the tasks with cur.vio.period 
22:         P(cur.vio.t)←P(cur.vio.t)-∑ 𝑇𝑇𝑖𝑖.𝑃𝑃𝑖𝑖∈𝜓𝜓2&𝜓𝜓3 +∑ 𝑇𝑇𝑖𝑖.𝐶𝐶𝐶𝐶_𝑃𝑃𝑖𝑖∈𝜓𝜓2  ; 
23:    Update(Violations);  
24: end while; 
END 

 

 

Table 1. The Notation of the Parameters used in Algorithm 1 

Notation Description 
Violations A list of the violation points of TDP 

cur.vio The current TDP violation point to be handled 
cur.vio.period The period of the current TDP violation point to 

be handled 
cur.vio.p The power consumption of the current TDP vio-

lation point to be handled 
cur.vio.t The exact time of the current TDP violation point 

in the frame to be handled 
Ψ A subset of available checkpoints with minimum 

number of checkpoints that meet TDP at cur.vio.t; 
C A set of cores whose slack time ≥ cur.vio.period 
P The power consumption of the system at each 

time 
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checkpoints that need to be shifted and the minimum num-
ber of tasks that need to be delayed, in order to satisfy TDP.  
If exploiting both checkpoints and delaying the tasks does 
not satisfy TDP, that means there is no feasible schedule 
for the given tasks.  

 These functionalities, i.e., initial scheduling, adjusting 
checkpoint timing, exploiting slack time for delaying task 
execution, are conducted at design time, using a heuristic, 
whose pseudo-code is listed in Algorithm 1. Additionally, 
at runtime, we also exploit released slack times of fault-free 
scenarios in order to further power/energy reduction, by 
applying the Dynamic Power Management technique. The 
following subsections illustrate the details of the proposed 
techniques.  

4.1 Initial scheduling and checkpointing 
Before inserting checkpoints, the tasks need to be mapped 
on the cores. In particular, tasks are mapped based on 
Worst Fit Decreasing (WFD) bin packing, which is a well-
known technique that is typically used in state-of-the-art 
scheduling techniques (e.g., [5][32]). In the WFD bin pack-
ing, the cores are sorted in increasing order in terms of uti-
lization, while the tasks are sorted in decreasing order in 
terms of the worst-case execution time. Then, the first task 
in the list is mapped to the first core in the list, and the or-
der of the list of the core will be updated after each map-
ping. 

After mapping the tasks, the algorithm determines the 
initial scheduling with non-uniform checkpointing 
according to the priority-based scheduling policy [11] in 
line 1 of Algorithm 1. Note that Table 1 describes the 
variables used in Algorithm 1. To do that, the number of 
checkpoints needs to be determined. As explained in 
Section 3, we select the minimum non-uniform check-
points to tolerate k faults in order to reduce the overheads 
of checkpointing. Moreover, the initial timing of the check-
points has been also inserted as suggested by the state-of-
the-art non-uniform checkpointing technique [12]. Alt-
hough the employed non-uniform checkpointing has a 
lower power overhead compared to the uniform one, TDP 
violations might be observed. The reason is that check-
pointing requires to re-execute some parts of the tasks. 
That might lead to simultaneous execution of task parts 
with high power consumption, which eventually might re-
sult in a peak power beyond thermal design power (TDP). 
In line 2, the algorithm initializes a list to the total power 
consumption of the chip at each time point according to the 
initial scheduling. In line 3, the algorithm finds time points 
where TDP is violated and puts it in the list Violations. Each 
entry of the list has three parameters: the time point of the 
violation, the period of violation, and the power consump-
tion of the TDP violation. Next, the algorithm iterates un-
til TDP is met at all violation points (lines 4-24) by means 
of adjusting checkpoint timing and exploiting available 
slack time for delaying task execution, as explained in the 
following subsections.  

4.2 Adjusting Checkpoint Timing 
The goal of adjusting checkpoint timing is to have more 

checkpoints at the time points of TDP violations, because 
during the period of the checkpoint the task execution will 
be suspended, and thus the total power consumption is 
significantly reduced. Executing the checkpoint has power 
overhead, but it is much less than the power consumption 
of the tasks, as will be shown later in Section 5.  
To achieve this goal, our proposed method (PPAC) will try 
to shift the available checkpoints, that are originally in-
serted after the violation time point, to the violation time 
point. Before shifting the checkpoints, it is necessary to 
check if shifting the available checkpoints is enough to sat-
isfy TDP or not (see the condition in line 7 of Algorithm 1). 
Note that the variables cur.vio.p, Ti.CK_P, and Ti.P repre-
sent the current amount of power violation of the time 
point, the power overhead of the checkpoint of Ti, and the 
power consumption of Ti, respectively. If this condition is 
satisfied, then PPAC will shift only the minimum number 
of checkpoints that lead to satisfying TDP, if they are 
shifted to the violation time point (line 8). In particular, 
PPAC will try first to find a task (Ti) that has a minimum 
power consumption that is equal or greater than 
(cur.vio.p+Ti.CK_P). If found, the checkpoint of that task 
will be shifted, because that will satisfy TDP by shifting 
one checkpoint. If such a task is not available, PPAC will 
find a list of checkpoints of multiple tasks that satisfies the 
TDP constraint with a minimum number of checkpoints. 
After finding the required list of checkpoints, these check-
points will be shifted (line 9), i.e., their time will be set to 
cur.vio.t. Then, the algorithm updates the power consump-
tion list (line 10).  

If the available checkpoints are not enough for meet-
ing TDP, i.e., the condition shown in line 7 is not satisfied, 
the algorithm needs to use the second function of the pro-
posed method, which is explained in the following subsec-
tion.  

In conclusion, we should compute the total power con-
sumption of the chip at each time slot to check the TDP 
constraint, and hence, the location of some checkpoints 
should be changed. Moreover, if there are not enough 
checkpoints for meeting TDP, shifting the tasks can be 
meet the TDP constraint. Therefore, the maximum compu-
tational overheads of the proposed method are changing 
the locations of some checkpoints and shifting some tasks. 

4.3 Delaying Task Execution 
Intuitively, delaying the execution of a task at the violation 
time point will significantly reduce the total power con-
sumption and that will help to satisfy TDP constraint. 
However, this might lead to missing the deadline of the 
frame. Therefore, PPAC will delay only the tasks executing 
on the cores that have slack time equal to or greater than 
the violation period. Hence, in line 12, the algorithm finds 
a set of cores C that have a slack time greater than or equal 
to cur.vio.period. In line 13, the algorithm assigns the tasks 
which are in C and executing at cur.vio.period to the list Ψ1. 
This list of tasks contains only the possible tasks to delay 
without violating timing constraints. Generating this list 
will significantly reduce the search space when the algo-
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rithm needs to select the best tasks to delay with the pur-
pose of satisfying TDP.  

Note that TDP might be satisfied by delaying only a 
subset of these tasks and shifting some of the available 
checkpoints. Therefore, our PPAC will find all the combi-
nations between the list of the potential tasks to delay and 
the list of the available checkpoints that satisfy TDP 
(line 15). To do this, the algorithm finds the minimum 
number of checkpoints that need to be shifted and the min-
imum number of tasks that need to be delayed, to satisfy 
TDP. Afterward, the selected tasks will be delayed by 
cur.vio.period and the selected checkpoints will be shifted to 
the cur.vio.t. If no combination satisfies TDP, the algorithm 
returns infeasible and we cannot meet the TDP constraint 
for the considered time slot. Finally, the algorithm updates 
the power consumption list and violations in lines 22 and 
23, respectively. 

4.4 Runtime Opportunities 
In fault-tolerant techniques for real-time systems, the 
worst-case scenario needs to be considered at design time 
while scheduling the tasks. The worst-case scenario as-
sumes that the k faults will occur. As aforementioned, the 
checkpointing technique adds time overhead to the task 
execution, since it requires to re-execute some parts of the 
tasks. However, at runtime, it is possible that no fault oc-
curs, and thereby long slack time will be available on the 
cores1. 

Therefore, we propose to exploit the available slack 
time resulting after the actual execution of the tasks at 
runtime, to further reduce power/energy consumption. 
That, in turn, will help to increase the life-time of the 
embedded systems that are battery-based [8][12]. To 
achieve this, we employ a runtime control unit. This 
unit needs first to monitor the accuracy of the task exe-
cution, and when no fault occurs, it cancels the execu-
tion of the replicated parts of the tasks (that have been 
added by the checkpointing technique to tolerate 
faults), resulting in slack times in the schedule. The 
 

1 A comparison between faulty and fault-free scenarios is 
shown in [12]. 

online control unit puts the system during those result-
ing slack times into a low power state (apply DPM). The 
time overhead of DPM is typically represented by the 
break to sleep time which is about 1ms [2][8]. The power 
overhead of this technique is about 500uW which is 
negligible compared to the power consumption of tasks 
which is about 1W [25]. In our technique, if the slack 
time is more than the break to sleep time, the core is set to 
sleep mode. Hence, by applying DPM during slack 
times, our technique can achieve further power and en-
ergy reductions at runtime.  

4.5 Illustrative Example 
To show how the PPAC technique works in runtime, we 
use Fig. 3 which is the online part of the motivational ex-
ample (explained in subsection 1.1). In Fig. 3, the actual-
case fault scenario is shown. In this scenario, we consider 
that two, one, and zero faults occur on the tasks {T1, T2, T5}, 
{T3, T4, T6}, and T7 respectively. Note that checkpoints are 
represented by black rectangles, and rollback recovery 
processes are shown as white diagonal patterned rectan-
gles. In the checkpointing technique, when a fault occurs, 
the system rolls back to the most recent checkpoint and re-
executes the part of the task that is executed during the last 
checkpoint. In this figure, by applying PPAC, TDP is met 
at all time points by shifting five checkpoints at design time 
(see Fig. 1d).  

At runtime, the online control unit monitors the accu-
racy of the task execution. When no fault occurs, it cancels 
the execution of the replicated parts of the tasks that have 
been added by the checkpointing technique to tolerate 
faults. As soon as a task finishes successfully, the online 
control unit applies DPM. To do this, we exploit the slack 
times that create after that each task completes its execu-
tion without faults to further reduce power/energy con-
sumption through DPM. For example, when only one fault 
occurs at the first part of T6 and other its parts are executed 
successfully, a slack time at the time slot [54ms, 60ms] on 
C3 is created. Since there is no task being executing at the 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. The online part of the PPAC re-scheduling in the worst-case fault scenario. 
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mentioned time slot on C3, DPM is applied on C3 to fur-
ther reduce power consumption, and so on. It is worthy to 
mention that this figure shows the actual fault rate but in 
Fig. 1, we showed the worst-case fault scenarios. Moreo-
ver, we have changed the locations of the checkpoints for 
meeting TDP. Therefore, there are some instances in this 
figure where after a fault occurs, the time required to com-
plete the task after rollback is much lower than the time 
from the checkpoint up to the fault. 

5 EXPERIMENTAL EVALUATION 
5.1 Setup 
In order to evaluate our PPAC technique, we conducted 
experiments on various real-life applications of MiBench 
Benchmark [15] executed on a cycle-accurate system-level 
simulator (gem5 [16]), which is instrumented with precise 
power and performance characteristics for ARM Cortex-
A7 [20] and an emerging non-volatile memory (NVM) 
technology. The details of the processor and memory con-
figuration are summarized in Table 2. The applications and 
processor characteristics were obtained through gem5 [16], 
and McPAT [17]. We have deployed various applications 
of an embedded MiBench Benchmark suite [15] (listed in 
Table 3), as it is commonly used by state-of-the-art real-
time scheduling techniques [5][12]. These applications are 
single-threaded because real-time systems require predict-
ability [44][45]. In order to consider a wide range of appli-
cations, we chose the applications from all program groups 
of MiBench (i.e., automotive, consumer, network, office, 
security, and telecomm). Additionally, the applications 
were selected such that they introduce a variety of values 
for the simulation parameters, i.e., peak power consump-
tion, average power consumption, worst-case execution 
time, energy consumption, and checkpointing overheads 
(see Table 3). As we mentioned in the system and applica-
tion model, we have considered n frame-based hard real-
time tasks. Each task is a benchmark from MiBench. Note 
that in this model tasks have the same release time (arrival 
time) and they do not have a dependency between them 
[1][2][3]. Therefore, each task executed individually and 
then the results are provided for the system. The maximum 
length of the power vector for each frame is equal to the 

deadline of the frame. We calculate these values in the de-
sign time and we do not need any computational overhead 
for runtime. It is worthy to mention that the granularity of 
power measurement is millisecond of the time frame and 
the unit is Watt. With respect to the time and power char-
acteristics of the checkpoint memory, we assumed that the 
system uses a non-volatile memory (NVM) as stable stor-
age to hold checkpoints.  

For the evaluation of our proposed method, we have 
created a scheduler that maps and schedules the tasks by 
considering the proposed checkpointing mechanism in 
multicore embedded systems. To provide checkpointing 
overheads for simulation, at first, we determined the 
checkpoint size for each benchmark application. We con-
sidered full-scale checkpointing where the entire address 
space used by an application is written to the memory dur-
ing each checkpoint. We selected ReRAM because it pre-
sents a relatively better time and power characteristics 
compared to the other types of memory [12]. Moreover, we 
assume that the system is equipped with Argus [14] as a 
fault-detection mechanism and the time overhead for fault 
detection (~ 4% of the worst-case execution time of each 
task [12]) is added to the checkpointing overheads. For 
finding the accurate time, the power and memory 
overhead of the checkpoints for each application we 
employ CRIU [19] (Checkpoint/Restore in Userspace), the 
most powerful software in Linux that is used for 
checkpointing in many applications such as ducker [19]. 
For the first time, we have implemented CRIU in gem5 
with an ARM processor. To do this, we have created a new 
image of Linux and the new kernel that supports 
checkpoints in the userspace. Indeed, we have compiled a 
new version of the Linux kernel for gem5 and have added 
some functions and modifications to the kernel to enable 

Table 3. The characteristics of the Benchmark Applications 

 Patricia GSM FFT CRC32 dijkstra Blowfish Susan QSORT Bitcount 
Execution time (ms) 253 473 233 240 88 272 108 132 196 

Average power consumption (w) 1.026 1.021 1.036 1.125 1.079 1.081 1.038 1.031 0.984 
Peak power consumption (w) 2.428 4.749 3.960 4.532 2.622 3.838 1.124 1.053 5.792 

Energy consumption (J) 0.258 0.482 0.240 0.269 0.939 0.294 0.112 0.136 0.192 
Average power consumption of 
checkpointing in processor (W) 

0.024 0.0172 0.047 0.052 0.286 0.0197 0.129 0.021 0.015 

Peak power consumption of 
checkpointing in processor (W) 

0.073 0.427 0.088 0.165 0.946 0.124 0.166 0.398 0.099 

Memory overhead of checkpoint 
(KByte) 

4336 212 732 204 260 216 440 1864 96 

Checkpointing time (ms) 39.2 20.3 14.1 10.9 5.2 12.3 7.2 17.7 8.4 
Checkpointing time overhead 15.5% 4.2% 6% 4.5% 5.9% 4.5% 6.6% 13.4% 4.3% 

Checkpointing time and power values are obtained for the ReRAM technology.   

Table 2. The details of processor and memory configuration 

Core 
Type 

Instruction 
Set 

Architecture 

Machine 
Type 

Core 
Voltage 

Core 
Freq. 

L1d 
Cache 
Size 

L2 
Cache 
Size 

Ram 
Size 

ARM ARMv7A 
Out of 
Order 

1.318V 2GHz 32KB 512KB 512MB 
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checkpointing so that we can get the checkpoint in the 
gem5 environment. Then, we get the results of the gem5 
environment and send them to our scheduler. Note that in 
order to run CRIU in gem5 with armv7 architecture, first, 
we cross-compile CRIU for arm32, then we compile a new 
kernel with functions that are required for running CRIU 
and take a checkpoint following the instruction in [48]. As 
the last step, we created an image with Ubuntu core 18.04.2 
(Bionic Beaver) for the aforementioned kernel. The kernel 
and image ran on the VExpress_GEM5_V1 machine type 
and we managed to get checkpoints from our benchmarks.  
 In order to generate task sets, we produce a set of tasks 
that have different worst-case execution times. We set the 
deadlines of the task randomly, to have slack times be-
tween 10% to 80%. These various scenarios of slack times 
result in different task utilization on the target cores. We 
categorize the resulting set of tasks into various utilization 
scenarios; i.e., 0.1, 0.2, …, 0.8, in order to evaluate our tech-
nique and the comparison candidates for those scenarios, 
as shown in the figures in this section.  Note that, these uti-
lization scenarios represent the task utilization of the core 
before applying the checkpointing technique. We com-
pared our PPAC technique with three state-of-the-art 
checkpointing techniques in terms of feasibility, schedula-
bility, and peak power consumption. The comparison can-
didates are:  

• Standard uniform checkpointing (StaU) [13]: This 
technique determines the uniform checkpoint inter-
vals for each application so that k faults are tolerated 
and the timing constraint of the applications is satis-
fied.  

• Non-uniform checkpointing (NonU) [12]: This tech-
nique is an implementation of the non-uniform check-
pointing presented in [12]. It exploits non-uniform 
checkpoint intervals to tolerate faults and reduces the 
overhead of checkpointing mechanism. 

• RAPM [18]: This technique is proposed in [18]. RAPM 
uses a backup task for each faulty task to achieve fault 
tolerance (re-execution technique).  

We compared PPAC with the three mentioned techniques 
for two following scenarios: i) the worst-case scenario 
when all the faults occur and the system consumes the 
maximum possible power (Section 5.2) and ii) the actual-
case (realistic) scenario when the faults occur based on 
Eq. 3 (the realistic scenario in the nature) and the system 
consumes real power (Section 5.3).   

5.1.1 Evaluation Metrics  
The major evaluation metrics of the comparison candidates 
are (1) feasibility, (2) schedulability, (3) the percentage of 
TDP enforcement throughout the execution time, and (4) 
normalized peak power consumption to TDP. We define 
feasibility as the percentage of simulations that the TDP 
and deadline constraints are satisfied simultaneously. In-
deed, in this paper, the meaning of feasibility is the per-
centage of meeting the deadline and the TDP constraint 
simultaneously.  

In this section, we consider the per-core utilization factor 

(U) that is the fraction of core time spent in the execution 
of the task set. Since wci/Di is the fraction of core time spent 
in executing task Ti, the utilization factor for n tasks is 
given by 

𝑈𝑈 = �
𝑤𝑤𝑐𝑐𝑖𝑖
𝐷𝐷𝑖𝑖

𝑑𝑑

𝑖𝑖=1

 (9) 

The core utilization factor provides a measure of the 
computational load on the chip due to the task set. If 
this factor is less than 1 for each core, the maximum load 
for each core is performed. It is worthy to mention that 
all of the figures in this paper have a utilization less than 
1. 

5.2 The Worst-case Scenario 
The worst-case scenario considers that the given number 
of faults k will occur, and thereby all replicated parts of the 
tasks and their checkpoints are executed in this scenario, 
which potentially leads to high power consumption. 
Therefore, it can be considered a good condition for com-
paring peak power reduction and feasibility. Note that 
since we generate a different set of tasks, we have different 
deadlines and utilizations. Each case of simulations was 
simulated 1000 times with different deadlines and utiliza-
tions, and the average results are reported. 

Note that our evaluations in this subsection consist of 
two sets of simulations. In the first set, we evaluate the 
techniques along with different number of faults. In the 
second set, various system utilizations are considered.   

5.2.1 The impact of different number of faults  
In this subsection, we show the impact of different number 

 
(a) 

 
(b) 

Fig. 4. Normalized peak power to the chip TDP in the worst-case 
scenario by considering different k faults occurrence; (a) # of cores 
= 4, (b) # of cores = 8. 
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of faults on the adopted evaluation metrics for all compar-
ison candidates. Fig. 4 shows the normalized peak power 
to the chip TDP for a chip with 4 and 8 cores when charac-
teristics of tasks are generated based on Table 3. It should 
be noted that the value of TDP for a chip with 4 cores and 
8 cores is 8W and 16W, respectively. It can be seen from 
Fig. 4 that PPAC never violates TDP while the state-of-the-
art techniques violate it because the state-of-the-art tech-
niques do not consider it. Furthermore, Fig. 4 indicates that 
with the higher numbers of cores RAPM can meet TDP, but 
with higher fault occurrences and a lower number of cores, 
it cannot meet TDP. Both StaU and NonU mechanisms are 
performing poorly regarding peak power reduction. It 
should be noted that when the number of the cores 
increases (Fig. 4a to Fig. 4b), the slack times on the cores 
increase, and then TDP and deadline violations decrease. 
Our PPAC technique reduces the peak power 
consumption by 34% and up to 62% compared to the state-
of-the-art techniques.  

Fig. 5 shows the effect of increasing the number of 
fault occurrences on the schedulability, the percentage of 
TDP enforcement throughout the execution time, and fea-
sibility for different mechanisms on a chip with 4 and 8 
cores. Since we shift some tasks to the next time slots to 
manage peak power consumption, we need more time 
slots for meeting the deadlines. In this paper, we have fo-
cused on meeting TDP and timing constraints simultane-
ously. Therefore, our proposed technique incurs more time 
overhead as compared to other techniques that consider 
fewer constraints, e.g., the reference [13]. It should be 
noted that for the feasibility comparison, as other tech-
niques do not consider TDP, so they will definitely be 
worse. It may be good that we show whether the deadline 
violation will be increased when the proposed technique is 
used. One of the overheads of our proposed method is the 
required time for shifting the tasks. This is a consequence 

of having two constraints: 1) deadline, 2) TDP. When we 
have two constraints, regardless of what is the benchmark, 
we need some time overhead for meeting both of them. 

As shown in the right side of Fig. 5, our PPAC has 
higher feasibility than all other comparison candidates for 
different k faults occurrence in the worst-case scenario for 
random utilizations when (a) # of cores = 4, and (b) # of 
cores = 8. The resulting feasibility of PPAC is 69%, while 
the StaU, NonU, and RAPM techniques are 41.6%, 38.9%, 
15.4%, respectively. To provide a deeper insight, we addi-
tionally show both implicit metrics of feasibility; i.e., the 
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Fig. 5. The impact of different k faults occurrence in the worst-case scenario for random utilizations on schedulability, the percentage of 
TDP enforcement throughout the execution time, and feasibility; a) # of cores = 4, b) # of cores = 8. 
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Fig. 6. Normalized peak power to the chip TDP in the worst-case 
scenario by considering various utilizations; (a) # of cores = 4, (b) # 
of cores = 8. 
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percentage of TDP enforcement throughout the execution 
time and the schedulability.  As it can be observed from the 
charts in the middle of the figure, PPAC has always met 
TDP constraint, while the StaU, NonU, and RAPM tech-
niques have met the TDP constraint by only 48.8%, 47.6%, 
27.6%, respectively. However, there is a time overhead to 
be paid by PPAC for meeting the TDP. In particular, PPAC 
shifts some parts of the tasks to the next time slots to satisfy 
TDP constraints. This time overhead has led to reducing 
the schedulability of PPAC in some worst-case scenarios. 
The schedulability of the four comparison candidates; 
PPAC, StaU, NonU, and RAPM are 69.7%, 83.7%, 70.1%, 
32.2%, respectively.  

5.2.2 The impact of various utilizations  
In this subsection, we show the impact of various utiliza-
tions on the adopted evaluation metrics. Fig. 6 shows the 
normalized peak power to the chip TDP for a chip with 4 
and 8 cores. It can be seen from Fig. 6 that PPAC never vi-
olates TDP while the state-of-the-art techniques violate it. 
Our PPAC technique reduces the peak power 
consumption by 28% and up to 60.1% compared to the 
state-of-the-art techniques in various utilizations. 

The original utilization of tasks without applying the 
checkpointing technique is varied between 0.1 to 0.8 for 
each core. To demonstrate this, we generated 1000 task sets 
from the tasks shown in Table 3 and repeated the 
simulations for several per-core utilization values 
(Uper- core= 0.1 to 0.8). Since the proposed approach never vi-
olates the two mentioned constraints, we show the fre-
quency of meeting these constraints (as defined feasibility).  

As shown in the right side of Fig. 7, our PPAC has 
higher feasibility than all other comparison candidates in 
scenario (a) # of cores = 4 and k=2, and (b) # of cores = 8 
and k=3. Particularly, the resulting feasibility of PPAC is 
76.1%, while the StaU, NonU, and RAPM techniques are 
49.3%, 47.9%, 14.7%, respectively. As it can be observed 
from the charts in the middle of the figure, PPAC has al-
ways met TDP constraint, while the StaU, NonU, and 

RAPM techniques have met the TDP constraint by only 
52%, 51.3%, 26.4%, respectively. The schedulability of the 
four comparison candidates; PPAC, StaU, NonU, and 
RAPM are 77.1%, 91.7%, 79.8%, 40%, respectively, for the 
worst-case scenario. However, for the realistic scenario, we 
can notice from Fig. 8 that our PPAC has much better 
schedulability, in average of 99.5%, while only the tech-
nique "NonU" has a higher schedulability with an average 
of 99.7%. This is however a negligible overhead to pay to 
satisfy power constraint in addition to timing constraint. 
Note that NonU uses non-uniform checkpointing without 
shifting the parts of the tasks to reduce the time overhead 
in the realistic scenario. 

5.3 Realistic Scenario 
In this case, we investigate the actual conditions (the real-
istic scenario in nature) where the actual fault rate is con-
sidered. To inject the faults, we have generated them using 
a Poisson process where the fault rate λ was modeled using 
Eq.3 under the parameters λ0=10-4 faults/us [1]. It should 
be noted that these fault rates are much higher than real 
fault rates (e.g., 10-12 faults/us). Since, using fewer faults 
will require much number of fault injections to cover dif-
ferent parts of applications, which will require months of 
simulations to ensure high coverage, we used the high 
fault rates to evaluate our technique. Due to the stochastic 
nature of transient faults, the same application is executed 
for 1000 times and the average results are reported.  

In this scenario, like the worst-case scenario, we show 
the schedulability, the percentage of TDP enforcement 
throughout the execution time, and the feasibility of the 
proposed method for different utilizations. Similar to the 
previous scenario, we consider that the original utilization 
of tasks without applying the checkpointing technique is 
varied between 0.1 to 0.8 for each core.  

As shown in the right side of Fig. 8, our PPAC has 
higher feasibility than all other comparison candidates in 
the realistic scenario. The resulting feasibility of PPAC is 
99%, while the StaU, NonU, and RAPM techniques are 
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Fig. 7. The impact of various utilizations in the worst-case scenario on schedulability, the percentage of TDP enforcement throughout the 
execution time, and feasibility; a) # of cores = 4 and k=2, b) # of cores = 8 and k=3. 
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61%, 71.8%, 48.9%, respectively. As it can be observed from 
the charts in the middle of the figure, PPAC has always met 
TDP constraint, while the StaU, NonU, and RAPM tech-
niques have met the TDP constraint by only 62.3%, 73%, 
49.9%, respectively. Moreover, the schedulability of the 
four comparison candidates; PPAC, StaU, NonU, and 
RAPM are 99.5%, 96%, 99.7%, 94.4%, respectively. 

Moreover, Fig. 9 shows the normalized peak power to 
the chip TDP for a chip with 4 and 8 cores. It can be seen 
from Fig. 9 that Our PPAC technique reduces the peak 
power consumption by 27% and up to 53% compared to 

the state-of-the-art techniques in various utilizations.  
In Fig. 10, we have evaluated the aforementioned meth-

ods on 2, 4 and 8 core systems with the mentioned fault 
rate. We executed up to 100 tasks on each core for 1000 task 
sets and reported the average results. As it is shown in the 
figure, our worst-case evaluation broadly matches the real-
world scenario. By increasing the number of cores, the en-
ergy consumption for all four methods decreases because 
the utilization of the cores decreases. Although PPAC al-
ways keeps the peak power of the system below TDP con-
straint, other methods cannot guarantee meeting TDP con-
straint. The experiments show that PACC completely out-
performs the two techniques (SptU and RAPM) from the 
energy consumption viewpoint. However, the energy con-
sumption of PPAC is worse than the NonU technique be-
cause NonU is designed as a technique that manages en-
ergy consumption. The PPAC technique provides on aver-
age 17.28% (up to 61.1%) energy reduction as compared to 
the three mentioned techniques.  

6 RELATED WORK 
At first, checkpointing was proposed for database systems 
where availability/reliability is the main criterion [33]. 
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Fig. 8. The impact of various utilizations in the realistic scenario on schedulability, the percentage of TDP enforcement throughout the 
execution time, and feasibility; a) # of cores = 4 and k=2, b) # of cores = 8 and k=3. 
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Fig. 9. Normalized peak power to the chip TDP in the worst-case 
scenario by considering different k faults occurrence; (a) # of cores 
= 4, (b) # of cores = 8. 
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Fig. 10. Normalized energy consumption to PPAC in the ac-
tual-case scenario. 
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However, in real-time embedded systems, other require-
ments like high reliability and timeliness as well as low 
power consumption should be carefully considered [13]. 
Example applications of such real-time embedded systems 
where high reliability and low power consumption are 
needed include, but not limited to, medical care devices, 
avionics systems, control of chemical reactions, space and 
surveillance systems, and condition monitoring sys-
tems [12]. Although checkpointing with rollback recovery 
increases the execution time of the tasks in the absence of 
faults, it reduces the recovery time of faulty tasks. This is 
because there is no need to replicate or re-execute the 
whole task, and only the part of the task, which begins 
from the last safe checkpoint, is required to be executed 
again. Checkpointing is a fault-tolerant technique that can 
result in lower power and time overheads, if intelligently 
used, compared to re-execution, replication, TMR, 
standby-sparing, and etc. [12][25][28][29]. 

In [34], Pop et al. have exploited the combination of 
checkpointing with rollback recovery and active replica-
tion to tolerate transient faults in the hard real-time sys-
tems. Moreover, they have proposed global optimization 
of the number of checkpoints and have integrated check-
pointing into an assignment and mapping optimization 
strategy. Zhu et al. in [35] have proposed a method that 
whenever the slack is not enough for re-execution of the 
tasks, checkpointing is employed as the fault-tolerant tech-
nique. Punnekkat et al. [36] have proposed a feasibility test 
for periodic and sporadic task sets which can be scheduled 
based on any fixed-priority preemptive scheduling under 
checkpointing fault-tolerant technique for uniprocessor 
systems to tolerate transient faults. They claim that the re-
sults are applicable to distributed multiprocessor systems 
where tasks are statically allocated to individual proces-
sors. Indeed, they have minimized the execution time of 
the tasks for equidistant checkpoints in the worst-case fault 
scenario. In [37], a checkpointing mechanism is presented 
to achieve higher lifetime reliability of the system. In [38], 
a checkpointing scheme is presented for ASIP-based em-
bedded systems. Kwak et al. in [39] have proposed a check-
pointing scheme that tolerates timing and control flow er-
rors in hard real-time systems. However, these works do 
not consider the power overhead of adding the check-
points. Some works try to maximize the probability of 
meeting deadlines while using probabilistic analy-
sis [40][41]. However, for hard real-time systems, tolerat-
ing a given number of faults (up to k faults) should be guar-
anteed [10][12][30][42]. Melhem et al. in [13] have consid-
ered the interaction between checkpointing and average 
power management and proposed uniform and non-uni-
form checkpointing schemes for tolerating only one fault. 
The work in [12] has proposed a non-uniform checkpoint-
ing scheme with very low time and energy overheads to 
tolerate k faults for hard real-time systems. They use Dy-
namic Voltage Scaling (DVS) for reducing the average 
power consumption of the system.  

As it is mentioned, none of the previous work in the 
context of real-time embedded systems did consider the 

power constraint for different checkpointing mechanisms. 
This paper presents for the first time, a peak-power-aware 
checkpointing (PPAC) technique that tolerates k faults in 
hard real-time embedded systems, while at the same time 
meets the power and timing constraints. 

7 CONCLUSIONS 
In this paper, a Peak-Power-Aware Checkpointing (PPAC) 
technique to achieve low-power fault tolerance for hard 
real-time systems has been proposed. According to the 
power profile of applications, PPAC determines the mini-
mum number of non-uniform checkpoints that tolerate k 
faults in hard real-time embedded systems, while at the 
same time meets the power constraints. In the experiments, 
we verified the schedulability of the proposed technique 
and other techniques for each generated task set. The 
results show that PPAC meets the timing and TDP con-
straints on average by 80.38% while the other techniques 
meet the mentioned constraints on average by 31.9%. 
Moreover, our proposed technique provides up to 37.9% 
(on average by 23%) peak power reduction compared to 
state-of-the-art techniques. 
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