
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

TherMa-MiCs: Thermal-Aware Scheduling for
Fault-Tolerant Mixed-Criticality Systems

Sepideh Safari, Heba Khdr, Pourya Gohari-Nazari, Mohsen Ansari,

Shaahin Hessabi, Member, IEEE, Jörg Henkel, Fellow, IEEE

Abstract— Multicore platforms are becoming the dominant trend in designing Mixed-Criticality Systems (MCSs), which

integrate applications of different levels of criticality into the same platform. A well-known MCS is the dual-criticality system that

is composed of low-criticality and high-criticality tasks. The availability of multiple cores on a single chip provides opportunities

to employ fault-tolerant techniques, such as N-Modular Redundancy (NMR), to ensure the reliability of MCSs. However,

applying fault-tolerant techniques will increase the power consumption on the chip, and thereby on-chip temperatures might

increase beyond safe limits. To prevent thermal emergencies, urgent countermeasures, like Dynamic Voltage and Frequency

Scaling (DVFS) or Dynamic Power Management (DPM) will be triggered to cool down the chip. Such countermeasures,

however, might not only lead to suspending low-criticality tasks, but also it might lead to violating timing constraints of high-

criticality tasks. In order to prevent such severe scenarios, it is indispensable to consider a temperature constraint within the

scheduling process of fault-tolerant MCSs. Therefore, this paper presents, for the first time, a thermal-aware scheduling scheme

for fault-tolerant MCSs, named TherMa-MiCs. In particular, TherMa-MiCs, satisfies the temperature constraint jointly with the

timing constraints of the high-criticality tasks, while attempting to maximize the QoS of low-criticality tasks under the predefined

constraints. At the same time, a reliability target is satisfied by employing the well-known N-Modular Redundancy (NMR) fault-

tolerant technique. Experimental results show that our proposed scheme meets the temperature and timing constraints, while at

the same time, improving the QoS of low-criticality tasks, with an average of 44%.

Index Terms— Multicores, N Modular Redundancy (NMR), Mixed-Criticality Systems, QoS, Temperature.

—————————— ——————————

1 INTRODUCTION

n Mixed-Criticality Systems (MCSs) a large number of
tasks of different criticality levels are integrated to exe-

cute on the same computing platform, to meet stringent
non-functional requirements relating to the area, cost, and
power [1][2]. A well-known MCS is a dual-criticality sys-
tem, in which low-criticality and high-criticality tasks are
considered. Low-criticality (LC) tasks have one Worst-
Case Execution Time (WCET) which is specified by the sys-
tem designer, while high-criticality (HC) tasks have two in-
stances of WCETs: WLO is estimated by system designers,
and WHI is estimated by certification authorities and is
more pessimistic. Dual-criticality systems will operate in
two system operational modes; normal mode and overrun
mode. The system starts its execution in the normal mode,
where both HC and LC tasks will be executed normally
based on their WLO. Whenever an HC task exceeds its WLO,
the system switches to the overrun mode, in which the ex-
ecution priority will be given to the HC tasks to guarantee

completing their execution considering their WHI before
their timing constraints. Thus, in the overrun mode, the
state-of-the-art scheduling policies either suspend LC
tasks [3][4], or guarantee a minimum service level for LC
tasks [5][6], in order to guarantee the timing requirements
for HC tasks. Intuitively, the various criticality levels and
operational modes need to be considered by the schedul-
ing policies of MCSs [7][8].

Mixed-criticality systems, like all other electronic sys-
tems, are susceptible to transient faults, which are consid-
ered as one of the severe reliability concerns which are in-
creasing along with technology scaling [9][10]. Existence of
a fault in an HC task might lead to catastrophic conse-
quences [7][11]. Therefore, these systems must properly
detect the faults and mitigate the effects of faults and pro-
vide recovery mechanisms when faults occur through ex-
ploiting fault-tolerant techniques. Several studies have
started to employ fault-tolerant techniques within
MCSs [7][12]. However, employing fault-tolerant tech-
niques results in several challenges in MCSs.

The first challenge is that fault-tolerant techniques come
with an additional timing overhead and this needs to be
taken into account within the scheduling process to pre-
vent violating timing constraints of HC tasks, especially in
the overrun mode. Besides the timing challenge, fault-tol-
erant techniques will increase the power consumption of
the cores, and thereby on-chip temperatures might in-
crease beyond safe limits, as will be demonstrated in the
following motivational example.

It is worthy to mention that the automotive indus-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

I

————————————————

 S. Safari, P. Gohari-Nazari, M. Ansari, S. Hessabi, are with the De-

partment of Computer Engineering, Sharif University of Technology,

Tehran 14588, Iran. E-mails: {ssafari, gohary, mansari}@ce.sharif.edu,

hessabi@sharif.edu.

 S. Safari, H. Khdr, M. Ansari, and J. Henkel are with the Karlsruhe In-

stitute of Technology, Karlsruhe 76131, Germany. E-mails: {Sepideh.sa-

fari, Heba.khdr, Mohsen.ansari, Henkel}@kit.edu.

Manuscript received x Aug. 2020; revised x m y; accepted x m y. Date of

publication X Y Z; date of current version X Y Z.

(Corresponding author: Shaahin Hessabi)

Recommended for acceptance by X. X.

Object Identifier no. x/TPDS.y.z

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

try [21] is an example of integrated mixed-criticality appli-
cations running on a single chip, and therefore, applica-
tions will share resources and heat can transfer between
cores. As a result, considering thermal issues within the
scheduling process is relevant for the emerging real-world
mixed-criticality applications.

 Typically, chip manufacturers implement Dynamic
Thermal Management (DTM) [13] unit on the hardware to
take some urgent countermeasures like DVFS or DPM to
throttle down the chip, when the temperature of any core
exceeds the safe limit. However, throttling down the chip
might lead to violating the timing constraints of HC tasks.
Therefore, it is indispensable to consider both temperature and
timing constraints within the scheduling process of fault-toler-
ant multicore MCSs. It should be noted that none of the previous
works have jointly considered timeliness, fault-tolerance, and
thermal management in MCSs, while this paper considers, for
the first time, all of these aspects jointly. For fault-tolerance,
we employ the well-known N Modular Redundancy
(NMR) fault-tolerant technique, which is suitable to be ap-
plied in multicore systems, since it exploits the inherent re-
dundancy of the multicores by executing replicas of the
tasks in parallel [11]. Contrarily, other fault-tolerant tech-
niques (e.g., re-execution) rely on time-redundancy and ex-
ecute the task replica consecutively on the same core, lead-
ing to significant time overhead, and eventually, timing
constraints might be violated.

1.1 Motivational Example

This example demonstrates how exploiting fault-tolerant
techniques leads to violating the temperature constraint of
MCSs. Let us consider a quad-core chip with a temperature
constraint, Tcrit, equal to 60 °𝐶 [14]. It should be noted that
temperature constraint is the input of the system. The ap-
plication task graph with five tasks {T1, T2, T3, T4, T5}, and
deadline D=75ms will be executed on the chip. Fig. 1 shows
dependencies between these tasks and the two numbers at

each node represent the low-level and high-level worst-
case execution times of the corresponding task, i.e., WLO
and WHI, respectively. Note that HC tasks (shown in gray
color) have two instances of WCETs, while the LC task (T5)
which is shown in white color has just one WCET. Fig. 2
shows the scheduling of the given task graph (shown in
Fig. 1) in four scenarios; the first one (Fig. 2a) shows the
normal mode of the given MCS, where the execution time
of each HC task is equal to its low-level WCET (WLO). The
second one (Fig. 2b) shows the overrun mode, where the
execution time of all HC tasks exceed their low-level
WCETs and reached WHI. The third and the fourth scenar-
ios (Fig. 2c, Fig. 2d) show also the normal and the overrun
modes of the MCS, respectively, but with considering N
Modular Redundancy (NMR) as the fault-tolerant tech-
nique. Here, N is considered equal to three (N=3), i.e., each
task has three copies. Note that the mixed-criticality graph
is scheduled based on the state-of-the-art scheduling pol-
icy for MCSs [18]. Besides the task scheduling, this figure
shows the resulting peak temperature on the cores at 1ms
granularity similar to [15][37]. It can be noticed in Fig. 2a,
and Fig. 2b, the peak temperature does not exceed the tem-
perature constraint. In Fig. 2b all HC tasks exceed their
low-level WCETs and the system is switched to the over-
run mode. However, in Fig. 2c, and Fig. 2d, the tempera-
ture constraint has been violated. The reason is that adding
the task replicas to the system increases the number of sim-
ultaneous active cores, and thereby the temperature has in-
creased beyond the safe limit. Typically, to handle such
scenarios, the DTM on the chip will be triggered to throttle
down the chip, and thereby cool down the chip. That, how-
ever, might lead to violating the timing constraints of the
HC tasks, leading ultimately to catastrophic consequences.

In summary, considering fault-tolerant techniques within
MCSs might lead to thermal violations which have severe impact
on executing the high-criticality tasks.

1.2 Our Novel Contributions

As it can be deduced from the motivational example, it is
indispensable to consider the temperature when schedul-
ing the tasks in fault-tolerant MCSs. However, the sched-
uling of MCSs is known to be an NP-hard problem in the
strong sense [1][6], and considering temperature con-
straints directly by the scheduling policy will complicate
the problem further, because of the heat transfer between

8, 12 7, 10

WLO

LC Tasks

HC Tasks

T1

4, 6 5

T2 T3

T4 T5

12, 15

WHI
WLO

Fig. 1. An example task graph of motivational example.

a) Normal mode b) Overrun mode c) Normal mode with
fault-tolerance

d) Overrun mode with
fault-tolerance

Fig. 2. A motivational example of temperature violation in fault-tolerant mixed-criticality systems.

SAFARI ET AL.: THERMA-MICS: THERMAL-AWARE SCHEDULING FOR FAULT-TOLERANT MIXED-CRITICALITY SYSTEMS 3

the cores. Particularly, executing a task on a core might in-
crease the temperatures of other cores [16][17]. That im-
plies, for scheduling a task on one core, the temperatures
of all other cores need also to be checked.

To tackle this challenge, we consider the Thermal Safe
Power (TSP) which is an abstraction that provides ther-
mally safe power constraint as a function of the number of
simultaneously active cores. Executing cores at any power
consumption below TSP ensures that thermal violations
are avoided. That implies, for scheduling a task on one
core, only the power consumption of executing the given
task on that core needs to be considered, and no need to
know all the power consumptions of other cores. Obvi-
ously, the complexity of considering TSP by the scheduling
policy is less than considering the core temperature di-
rectly. However, since TSP is a function of the number of
simultaneously active cores, we need to consider another
TSP value at each time, a new task needs to be scheduled
and that will affect the task scheduled previously. To solve
this challenge, we propose to calculate the Maximum Safe
Simultaneous Active Cores (MSSAC) factor for each task
(before scheduling), based on the task’s maximum power
consumption and TSP. In particular, considering the
power consumption of the task and the TSP values for all
possible numbers of active cores, we calculate how many
cores can be simultaneously active with each task. Hence,
for scheduling a set of tasks at a specific time point, the
MSSAC factors for all of those tasks need to be satisfied, in
order to satisfy temperature constraints.

In summary, this paper presents the first thermal-aware
scheduling for fault-tolerant mixed-criticality systems,
named as TherMa-MiCs, which satisfies timing, tempera-
ture, and reliability constraints. The temperature con-
straint is satisfied by enforcing the MSSAC factors, which
have been derived for each task based on TSP. The reliabil-
ity target has been met by employing the well-known N-
Modular Redundancy (NMR) fault-tolerant technique. How-
ever, in contrast to classic NMR where all N copies are ex-
ecuted in parallel, the MSSAC factor determines the con-
currency of executing N copies to prevent thermal viola-
tions. Under the predefined constraints, our proposed
TherMa-MiCs aims to maximize the QoS of the LC tasks.
In particular, after scheduling all HC tasks, TherMa-MiCs,
attempts to schedule as many LC tasks as possible at de-
sign time under the predefined constraints and consider-
ing the MSSAC factors. Moreover, at runtime, TherMa-
MiCs, exploits the dynamically-released slack time result-
ing from either the cancellation of executing task replicas
(when no fault occurs) or the cancellation of overrun parts
(when overrun mode has not been activated), in order to
execute additional LC tasks, while at the same time
MSSAC factors are satisfied to keep the temperature below
the predefined constraint.
In summary, the main contributions in this paper are:

 Employing the MSSAC factor derived based on
TSP, to consider the temperature constraint
within the offline and online scheduling.

 Proposing thermal-aware offline scheduling to
schedule all HC tasks and their corresponding

replicas (considering NMR fault-tolerant tech-
nique), and as many LC tasks as possible, while
satisfying the predefined timing, temperature,
and reliability constraints.

 Proposing thermal-aware online scheduling that
cancels the execution of task replicas or overrun
parts, if no fault or overrun occurs on the corre-
sponding tasks, in order to schedule more LC
tasks in the released dynamic slack times, while
still considering the MSSAC factors to prevent
thermal violations.

2 RELATED WORK

Different scheduling algorithms have been proposed for
MCSs to satisfy timing constraints [19]. Earliest Deadline
First with Virtual Deadline (EDF-VD) [3][4][25], and Early-
Release Earliest Deadline First (ER-EDF) [5][6] are the most
popular ones for periodic/sporadic task model. In the EDF-
VD algorithm, all LC tasks are immediately discarded after
switching to the overrun mode. The ER-EDF algorithm
provides a minimum acceptable service level for LC tasks
in the overrun mode by increasing the period of LC tasks
in the overrun mode to reduce their execution frequency
and competition with HC tasks. The reference [18] pre-
sented a new scheduling method for mixed-criticality task
graphs without fault-tolerant provisions. The refer-
ences [26] have proposed a method to improve the QoS of
LC tasks in the event of an overrun occurrence. None of the
proposed methods in this category have considered relia-
bility and temperature constraints.

Some previous work explores the scheduling problem
in the context of fault-tolerant MCSs without considering
power/energy or temperature constraints. The proposed
methods in [7][12][27][28][29] exploited the re-execu-
tion fault-tolerant technique. The study in [30] addresses
fault occurrence and overrun with separate modes in sin-
gle-core and multiprocessor systems. However, it selec-
tively chooses LC tasks to continue their execution in each
mode. Exploiting fault-tolerant techniques will increase
the power and temperature of the system and this has not
been considered in the aforementioned works.

Few works like [3][4][31][32] cope with the energy man-
agement problem in MCSs, without considering reliability
and temperature constraints. In order to minimize the dy-
namic energy consumption of single-cores, Huang et al. [3]
have proposed a DVFS-based optimal solution with EDF-
VD scheduling algorithm which is applied to the normal
operational mode of the system, where tasks of the same
criticality level share the same frequency. The proposed
method in [3] has been extended to multicores in [4]. The
study in [31] has proposed an optimal solution for reduc-
ing the static energy consumption by applying the DPM
technique in single-core MCSs. Volp et al. [32] have consid-
ered an energy budget for multi-core MCSs, which discard
LC tasks whenever is needed. As mentioned before, the
proposed methods in this category did not exploit fault-
tolerant techniques. Therefore, the reliability constraints of
a safety-critical system based on prominent standards are
not satisfied.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

 The studies in [20] and [33] propose schemes that sim-
ultaneously support energy management, fault tolerance,
and guaranteed service level for LC tasks in the mixed-crit-
icality multicore systems that execute sporadic/periodic
task models. Tasks in [20] are scheduled based on the Early
Release Preference Oriented Earliest Deadline First (ER-
POED) scheduling method, and the new Demand Bound
Function (DBF) analysis is developed for checking the
schedulability of periodic tasks. The purpose of the LETR-
MC paper is to minimize the total energy consumption of
the fault-tolerant system. The study in [33] proposed two
schemes that exploit the standby-sparing technique to tol-
erate permanent faults and maintain the system reliability
against transient faults with low energy overhead. Moreo-
ver, a Demand Bound Function schedulability analysis is
proposed to guarantee timeliness and energy manage-
ment. The reference [34] proposed a scheme that applies
the standby-sparing technique for fault-tolerance while
guaranteed an acceptable service level for LC tasks in over-
run mode. However, in this category, all tasks can be exe-
cuted concurrently which may violate the temperature
constraints.

As it is mentioned, none of the previous works did con-
sider satisfying thermal constraints for fault-tolerant
MCSs. However, different system-level techniques con-
sider power/temperature constraints for real-time systems
or high-performance systems. In [16], without considering
DVFS, the authors proposed a scheduling algorithm that
finds a set of concurrent executable tasks, such that the de-
sign-time chip-level peak power consumption is mini-
mized and all timing requirements are satisfied. The refer-
ence [35] has proposed a method that manages peak power
overlaps between concurrently executing tasks to meet
TDP in the fault-tolerant system. The references [36]
and [38] have proposed a peak-power-aware energy man-
agement approach that satisfies TDP constraint, reliability
requirements, and real-time constraints in the standby-
sparing systems for frame-based and periodic applica-
tions, respectively. The aforementioned papers consider
TDP to reduce the thermal violations. However, compre-
hensive studies [39][40] have demonstrated how satisfying
the TDP constraint does not guarantee to avoid thermal vi-
olations. Once thermal violation occurs, DTM must be trig-
gered to throttle down the cores. That is, however, not ac-
ceptable in real-time systems, because that might lead to
violating timing constraints [41]. As a response, a new
power budget concept, called Thermal Safe Power (TSP),
has been presented in [17][42] which is an abstraction that
provides safe power and power density constraints as a
function of the number of simultaneously active cores. Sev-
eral techniques have been then proposed to maximize the
performance under TSP constraint, e.g., [37][43], while the
technique proposed in [41] employs TSP to satisfy both
timing and temperature constraints. The reference [45] has
proposed a peak-power-aware reliability management
scheme that meets the chip-level and core-level power con-
straints by exploiting code version programming and de-
termines the number of replicas for each task to keep the
system reliability at an acceptable level.

Apart from the proposed methods in the embedded sys-
tem community, the works in [46] and [47] are examples of
exploiting TDP in high-performance systems. The study
in [46] controls the reliability by a temperature-aware mod-
ule that cools the system to run below the TDP and recon-
figures the hardware without sacrificing performance, at
runtime. The work in [47] has focused on optimizing the
energy consumption of power-budgeted data centers
while minimizing its impact on application performance.
Power capping makes it possible to add more nodes to the
data center, each node running below its TDP value, while
staying within the overall power budget of the data center.
It is worthy to mention that the existing solutions that al-
ready consider reliability and timing constraints cannot be
extended to consider temperature constraint. The reason is
that the temperature constraint cannot be separately
checked on individual cores that execute the tasks, while
the other two constraints, i.e., reliability and timing, can be
checked for each task separately from other tasks. More
specifically, any potential scheduling decision, in which a
task needs to be scheduled on a core, will have impacts on
the temperatures of the cores that execute other tasks and
might lead to thermal violations on those cores. Moreover,
the number of active/idle cores on the chip will affect the
temperatures of all cores, and thus, this information is also
needed while considering temperature through the sched-
uling process. In contrast, considering reliability and
timing constraints can be achieved on the level of the
task, without affecting any other tasks on different
cores, and there is no requirement for information about
the active and idle cores. Therefore, considering temper-
ature constraint is not straight forward and needs a new
scheduling policy that takes into account the heat transfer
between the different cores and the number of active/idle
cores, in order to be able to satisfy temperature constraint
besides timing and reliability constraint. Therefore, the
purpose of this paper is to propose a scheme that satisfies
timing, reliability, and temperature constraints while max-
imizes the QoS of low-criticality tasks in graph-based
mixed-criticality multicore systems.

3 MODELS AND ASSUMPTIONS

In this section, we introduce the models and assumptions
which are used throughout the rest of the paper.

3.1 System Model

We consider a multicore system with m identical cores. The
thermal constraint of the system is referred to as Tcrit, and
it is one of the input parameters of the system. Per-core
DVFS is available with a finite set of available voltage and
frequency (vf) levels, i.e., vf{vfmin,...,vfmax}. The suitable
voltage value for each frequency has been selected consid-
ering the non-linear relationship between frequency and
voltage as explained in [49]. The power model consists of
static and dynamic components [11][20]. The total power
consumption of each core, Pi, can be written as:

𝑃𝑖 = 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 =
𝛼. 𝐶𝑒𝑓𝑓 . 𝑣𝑖

2. 𝑓𝑖 + 𝑣𝑖 . 𝐼𝑙𝑒𝑎𝑘 + 𝑃𝑖𝑛𝑑
(1)

SAFARI ET AL.: THERMA-MICS: THERMAL-AWARE SCHEDULING FOR FAULT-TOLERANT MIXED-CRITICALITY SYSTEMS 5

where , Ceff, vi, and fi are the activity factor of the task, ef-
fective switched capacitance, supply voltage, and the op-
erating frequency of the core during the execution of task
τi, respectively. Intuitively, down-scaling the vf levels will
reduce power consumption. However, that will decrease
the reliability of the tasks [50], as will be shown later in the
reliability model. For the thermal model, we employ the
state-of-the-art thermal model presented in [17].

3.2 Reliability Model

Since mixed-criticality embedded systems often control

safety-critical applications, tolerating faults and achieving

high reliability levels are of great importance; i.e., faults

must be detected, and appropriate recovery tasks must be

successfully completed before the deadlines. Faults can be

classified as permanent, transient, or intermittent based on

their occurrence and duration. Permanent faults result

from hardware component failure or manufacturing de-

fects. Recovery from this kind of fault is only possible by

replacing or repairing the faulty component. Transient

faults occur for a short time period and then disappear

without physical damage to the processor. It is often in-

duced by electromagnetic interference and cosmic radia-

tion. Intermittent faults occur frequently, and it is difficult

to detect because after its occurrence the system operates

correctly. Transient faults are the most common type of

faults, and their number is continuously increasing due to

high complexity, smaller transistor sizes, higher opera-

tional frequency, and lower voltage levels. The rate of tran-

sient faults is often much higher compared to that of per-

manent faults. Transient-to-permanent fault ratios can

vary between 2:1 and 100:1 or higher [48]. Therefore, in this

paper, we consider transient faults.

Transient faults are usually assumed to follow a Poisson
distribution with an average rate of λ [9][52]. Considering
the effects of DVFS on transient fault rate, the fault rate at
the scaled supply voltage vi=ρivmax is modeled as [54][55]:

𝜆(𝜌𝑖) = 𝜆010
𝑑(1−𝜌𝑖)
1−𝜌𝑚𝑖𝑛 (2)

where λ0 is the fault rate at the maximum voltage (vmax), ρmin
is the ratio of the minimum supply voltage vmin to maxi-
mum supply voltage vmax, and the exponent value d is a
technology-dependent constant [36]. Considering fi=σifmax,
the reliability of a task is defined as the probability of exe-
cuting the task successfully, in the absence of transient
faults [9]. Hence, the reliability of task τi is [54][55]:

𝑅𝑖
𝐿𝑂(𝜌𝑖 , 𝜎𝑖) = 𝑒

−𝜆(𝜌𝑖)
𝑊𝑖

𝐿𝑂

𝜎𝑖 (3)

𝑅𝑖
𝐻𝐼(𝜌𝑖 , 𝜎𝑖) = 𝑒

−𝜆(𝜌𝑖)
(𝑊𝑖

𝐻𝐼−𝑊𝑖
𝐿𝑂)

𝜎𝑖 (4)

where λ(ρi) is given by Eq. 2 and Wi/σi is the execution time
of τi when executed at fi=σifmax. Since the reliability of HC

tasks depends on their WCET, Eq. 3 and Eq. 4 compute the
reliability of each HC task based on low-level WCET and
its execution time in overrun mode (WiHI-WiLO), respec-
tively.
Since there might be a variation in the execution time of the
tasks, we have designed the system based on WCETs sim-
ilar to many state-of-the-art techniques ([11][12][51][57]).
In this paper, we exploit NMR for fault-tolerance where
there are N copies for each task. Therefore, the reliability of
one copy of each HC task is computed based on Eq. 5.

(,) (,). (,)LO HI

i i i i i i i i iR R R

(5)

The reliability of each task τi by considering N copies is
computed by the following equation, as explained
in [11] [35][56]:

/2

(,) (,)[1 (,)]
N

N j j N j

i i i i i i i i i

N

N
R R R

j

(6)

In MCSs, each criticality level has an important property,
which is known as Probability of Failure per Hour
(PFH=1-R) that represents the maximum probability of
failure to which each task of that level must adapt. The DO-
178B/C (aeronautics domain) [22], IEC61508 (generic elec-
trical and/or electronic and/or programmable electronic
(E/E/PE)) [23], and ISO26262 (automotive domain) [24] are
three standards being the most commonly used in MCSs.
In the DO-178B standard five criticality levels from A with
highest, to E with lowest criticality levels are defined.
Safety requirements of each criticality level are shown in
Table 1. Hence, each task τi from HC task set must be guar-
anteed to be schedulable, even in presence of faults, to
achieve a failure rate of at most PFHi=PFH(ζHI). It should
be noted that the space shuttle [58], X-38 Crew return ve-
hicle [59], Boeing 777 [60], and the MARS system [61] are
examples of real-world safety-critical embedded systems
that exploiting more than two replications to satisfy the re-
liability target based on the considered safety standards.

3.3 Task Model

In this paper, we consider task graphs because, in certain
applications, computational activities cannot be executed
in an arbitrary order, and they have to respect precedence
relations that are defined at the design time [34][62]. Such
precedence relations are usually described through task
graphs [62]. A task graph G(V, E), is a directed acyclic
graph where each node (Vi), represents an individual task,
and the edges represent the dependencies among these
tasks, i.e., E represents only the edges between the nodes.
A directed edge between two tasks shows that there is a
data transfer between them.

We consider an MCS with two different criticality lev-
els, which are denoted as high-criticality and low-critical-
ity levels. Thus, the tasks can belong to any of these two
criticalities out of the five criticality levels in the DO-178B
standard [22]. The deadline of the whole graph is equal to
D. Each task τi in a task graph has {ζ, WLO, WHI, X, s, e, O,
vfτmin, vf τ, P, A, Z} parameters:

 ζ ∈ {LC, HC} denotes the criticality level of τi.
 WLO: The designer-specified WCET for τi.
 WHI: The CAs-specified WCET for τi.

Table 1. DO178B safety requirements [7]

ζ A B C D E

PFH < 10-9 < 10-7 < 10-5 > 10-5 -

TABLE 1
DO178B safety requirements [22]

ζ A B C D E

PFH < 10-9 < 10-7 < 10-5 > 10-5 -

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

 X: The assigned core to τi.
 s: The start time of τi.
 e: The completion time of τi.
 O ∈ {NO, OV} denotes the operational mode of τi.
 vf τmin: The minimum vf level which satisfies Rtarget

for τi.
 vf τ: Selected vf level for τi, i.e., either vf τmin or vf max.
 P(O, vfτ): Peak power consumption of task τi

throughout its execution time at the operational
mode (O), i.e., WLO or WHI- WLO, running at the se-
lected vf level (vf τ).

 A: List of successors of τi.
 Z: List of predecessors of τi.

We consider a task graph with NMR provision; i.e.,
there are N copies for each node. Although the copy nodes
share the same predecessors and successors as the original
node, they have some differences such as: the assigned
core, the assigned vf level, and MSSAC factor which will
be introduced in detail later. By considering N copies for
each node, V length is n×N, while E dimensions are
(n×N)×(n×N). Here, n is the number of tasks in the task
graph and N is the number of versions of each task (includ-
ing the original version).

To store all dependencies between the nodes, we define
a dependency matrix, 𝐷𝑒𝑝(𝑛×𝑁)×(𝑛×𝑁), where Dep[i,j]=1,
when task i directly depends on task j, i.e., Eij =1, or when
any parent of node i depends on task j. Hence, each node
inherits the dependencies of its parents. Therefore, the list
of successors for each node will be driven from the de-
pendency matrix. Particularly, for a task, the 1 value in col-
umn j (corresponding to task τj) will indicate the succes-
sors of task j (the corresponding row indices represents the
indices of successors). Contrarily, the one values in row i
indicates the predecessors of task i. In the dual-criticality
systems, if ζi=LC, τi.WiHI=τi.WiLO, otherwise τi.WLO<
τi.WHI [5][6]. Moreover, WCETs of the tasks are considered
as the input of our proposed scheduling technique; there-
fore it is orthogonal to the approaches that analyze/esti-
mate WCETs of the tasks on real systems [63]-[65].

4 PROBLEM DEFINITION

Given the task graph G(Vn×N, E(n×N)×(n×N)), m homogenous
cores, and set of vf levels, where vf{vfmin,...,vfmax} levels, the
goal of our method is to maximize the quality of service
(QoS) of LC tasks while keeping the tasks’ timing, reliabil-
ity, and temperature constraints in mixed-criticality multi-
core systems. As introduced in Section 1, considering the
temperature directly within the scheduling process will in-
crease the complexity further, and therefore, we employ
the thermal safe power (TSP) [17] constraint. TSP is calcu-
lated as a function of the number of the simultaneous ac-
tive cores, referred to as AC, and it guarantees to satisfy the
temperature constraint, Tcrit. Mathematically, we can for-
mulate the above problem as follows:
Optimization Goal: Maximize the total QoS of LC tasks:

#Executed LC tasks
QoS (G)

#Total LC tasks
totalMaximize (7)

Reliability Constraint: The vf level of each task must be

selected so that the reliability of each task meets the relia-
bility constraint as follows:

, (,)N

i i i i targetR R

(8)

TSP constraint: The summation of the power consumption
of all cores (m) at time t should be less than the TSP for the
current number of the active core at time t; i.e., AC(t):

1
At each time , () (())

m

jj
t P t TSP AC t

(9)

Timing Constraint: The completion time of each HC task
should be less than the deadline.

, . . , for all HC tasksi i ie D (10)

Task Graph Dependency Constraints: Dependency con-
straints between tasks should not be violated even after
fault or overrun occurrence or applying DVFS. If there is a
dependency between two nodes, the completion time of
the previous node should be smaller than the start time of
its dependent task.

, , . . , if [,] 1i ji j e s Dep i j (11)

This problem is known to be an NP-hard problem in a
strong sense [16][17]. Therefore, finding an optimal solu-
tion will have exponential-time complexity. Therefore, we
employ a heuristic for our thermal-aware scheduling that
aims at maximizing the QoS of the LC tasks under the
aforementioned constraints.

It is worthy to mention that our scheduling algorithm
needs to give guarantees at the offline phase for meeting
timing and thermal constraints. Therefore, the worst-case
execution scenarios (including worst-case fault and over-
run occurrence scenarios) and worst-case estimations for
time and power are considered by our scheduling policy.

Offline Scheduling

Hardware-Level Parameters

vf levels

Software-Level Parameters

Task sets

T2

Tn-1 Tn

Reliability requirements

Intended task dependencies

Processing elements

C1 C2 C3 Cm

Online Scheduling

T1

T3
T4

Timing constraint

Find MSSAC for

each task based on

TSP (Section 5.2)

T2

Tn-1 Tn

T1

T3 T4

Task graph + NMR LSST extraction for HC

tasks considering MSSAC

(Section 5.3)

MSSAC & LSST

constraint scheduling

of all tasks (Section 5.4)

L
S

S
T

.. Handling Fault and Overrun occurrence Maximizing QoS of LC tasks

Task-graph traversing

(Section 5.3) LPL

C1

C2

Cm

T1

D

T1
 T1

MSSAC 1

2 23 3

Tn

Tn

Tn

Tn-1

T

T

T
t

~

~

~
LSST(T1) LSST(Tn)LSST(T2)

~

(Section 5.5)

core_1

core_0 core_3

core_2

75

65

55

45

Fig. 3. An overview of our proposed TherMa-MiCs scheme.

SAFARI ET AL.: THERMA-MICS: THERMAL-AWARE SCHEDULING FOR FAULT-TOLERANT MIXED-CRITICALITY SYSTEMS 7

5 OUR PROPOSED THERMAL-AWARE SCHEDULING

We propose a thermal-aware scheduling method, named
TherMa-MiCs, which consists of two phases; offline and
online, as illustrated in Fig. 3. All necessary software and
hardware information about the system will be inputs to
our scheduler at the offline phase. This information in-
cludes tasks’ WCETs, the worst-case power profile, dead-
line, dependencies between tasks, reliability target, and
cores’ vf levels. As it is shown in Fig. 3, the given task
graph is extended to consider fault-tolerant provisions re-
sulting from employing N Modular Redundancy (NMR)
technique. After that, for each task, the minimum vf level
that satisfies the reliability target, referred to vf τmin, will be
extracted, as explained in Section 3. Then, our proposed
Maximum Safe Simultaneous Active Cores (MSSAC) factor
is computed for each task considering its vf τmin and vfmax, as
explained in Section 5.2. This factor is used as a constraint
in the scheduling process.

In order to schedule LC tasks besides the HC tasks
(without violating the timing constraints of HC tasks), we
need to extract first the latest safe start time (namely LSST)
factor for each HC task, at which the task can start its exe-
cution and complete it before the deadline, while consider-
ing faulty and overrun situations, as well as all graph de-
pendencies. To extract LSST factors, HC tasks and their
replicas are assigned to cores and scheduled based on the
proposed policy (Algorithm 2) from the deadline of the
graph to start time while considering the graph dependen-
cies and also MSSAC factor. Finally, the main scheduling
policy (Algorithm 3) schedules all tasks from the start to
the deadline with considering both LSST and MSSAC fac-
tors while attempting to schedule LC tasks on the available
slack times without violating LSST and MSSAC con-
straints. In the online phase, the scheduler will exploit the
slack times that might dynamically become available at
runtime, as explained in Section 5.5, in order to schedule
more LC tasks, thereby improving the QoS as much as pos-
sible. In the following subsections, all of the aforemen-
tioned steps will be explained in detail.

Illustrative example: Throughout the explanation of
the steps of our TherMa-MiCs scheme, we present an illus-
trative example to demonstrate the functionality of each
step and its inputs and outputs. In the illustrative example,
we consider an example of a task graph with nine tasks,
whose parameters are shown in Fig. 4. The deadline for the
graph is equal to 240ms. It is worth noting that for the sake
of simplicity to illustrate the steps of our proposed tech-

nique, the tasks used in this illustrative example are syn-
thetically generated. Hence, the WCETs at different vf lev-
els in Table 2, the MSSAC factors in Table 3, and the relia-
bility are computed based on this task set. However, in Sec-
tion 6 real applications from the MiBench benchmark
suite [66][67] are considered. The target multicore system
consists of four cores, where the available vf levels are
vf1=[1.016v 1.2GHz], vf2=[1.055v 1.4GHz], vf3=[1.118v
1.6GHz], and vf4=[1.322v 2.0GHz]. More details about the
experimental setup are explained in Section 6.

5.1 Satisfying Reliability Target

To satisfy the reliability target, we employ for the first time
NMR fault-tolerant technique [11][35] for MSCs. Accord-
ing to the NMR method, a majority voting is done, after
executing the ⌈𝑁/2⌉ copies of each task. When a fault oc-
curs the remaining (⌊𝑁/2⌋) copies should be executed to
perform the majority voting.

Applying DVFS for reducing the power consumption,
increases the execution time of the task which results in
lower reliability according to equations 2-6. In our pro-
posed method, we consider the DVFS is applied to the first
⌈𝑁/2⌉ copies of each task and the remaining replicas will
be executed at the maximum vf level.

TABLE 2

Extracting the minimum acceptable vf level for each task,

(i.e., vf τmin), and corresponding WCET at vf τmin.

T
a

sk

Low-Level WCET (ms) at

different vf levels;

 vf1, vf2, vf3, vf4

 Overrun WCET (WHI-WLO)

(ms) at different vf levels;

vf1, vf2, vf3, vf4

vf1 vf2 vf3 vf4 vf τmin vf1 vf2 vf3 vf4 vf τmin

T1 33 28 25 20 vf4 8 7 6 5 vf4

T2 25 21 18 15 vf2 5 4 3.7 3 vf2

T3 20 17 15 12 vf3 8 7 6 5 vf3

T4 12 10 8 7 vf2 5 4 3.7 3 vf2

T5 7 6 5 4 vf2 - - - - -

T6 15 13 11 9 vf2 3.3 2.9 2.5 2 vf2

T7 8 7 6 5 vf1 - - - - -

T8 6 5.5 5 4 vf1 3.3 2.9 2.5 2 vf1

T9 16 14 12 10 vf1 - - - - -

TABLE 3

MSSAC factor for the normal and overrun parts of each task

Task
MSSAC at normal mode MSSAC at overrun mode

vf τmin vfmax vf τmin vfmax

T1 1 1 1 1

T2 3 1 3 1

T3 2 1 2 1

T4 3 1 4 1

T5 3 1 - -

T6 3 2 3 2

T7 4 2 - -

T8 4 2 4 2

T9 4 1 - -

15,

18

20,

25

4
12,

17

7,

10

T1 T2

T3 T4 T5

4,

6
10

T8 T9

9,

11

T6

5
T
7

Deadline 240ms

LC Tasks

HC Tasks

W LO

W LO

W HI

Fig. 4. An example task graph

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

In the illustrative example (Fig. 4), we consider that
Three Modular Redundancy (TMR) method is exploited
for fault tolerance, where there are three copies for each
HC task. Table 2 shows the low-level WCET (WLO) and
WCET at overrun mode (WHI-WLO), for the synthetic gener-
ated tasks shown in Fig. 4 at the available vf levels listed
earlier. As it was mentioned before, applying DVFS will in-
crease the execution time of the task and reduce the relia-
bility of the task (Equations 2-6). In this table, the normal
and overrun WCETs of each task at different vf levels are
computed, i.e., vf1 corresponds to the minimum vf level
and vf4 corresponds to the maximum vf level. Therefore,
the WCET of the task at vf4 is smaller than its WCET at vf1.
Then the reliability of each task at all vf levels is computed,
and the minimum vf level which still satisfies the reliability
target (based on equations 2-6) is determined in the gray
column. For example, the normal WCET of T2 when exe-
cuting based on vf2 is 21ms and this vf level is the minimum
one that still satisfies the reliability target, and the lower vf
levels are not acceptable for this task due to reliability re-
quirements. Therefore, vf2 is reported in the gray column
regarding vfmin. Moreover, the overrun WCET of T2 is com-
puted in all vf levels, and as it is reported in the second part
of the table, vf2 is the minimum one which still satisfies the
reliability target of T2, and the overrun WCET of the task
in this vf level is equal to 4ms. Therefore, the green colors
show the WCET of the task in the normal and overrun
modes corresponding to vf τmin, and the corresponding vf
level is reported in gray columns.

5.2 Maximum Safe Simultaneous Active Cores
(MSSAC)

In order to consider temperature through scheduling, we
derive the Maximum Safe Simultaneous Active Cores
(MSSAC) factor for each task. To do this, TSP values are
computed for all possibilities of the number of active cores
using the algorithm proposed in [17], and the output is

stored in TSPList (the details of generating TSPList are de-
scribed in Fig. 8). Then, we employ a binary search to find
how many cores can be concurrently active with each task
based on its maximum power consumption, as demon-
strated in Algorithm 1. In particular, there is a need to find
the maximum number of active cores, at which the TSP
value is equal or greater than the power consumption of
the task. Importantly, there are four power consumption
values that need to be considered for each task due to the
following reasons: First, each HC task has two peak power
values; one during the execution at the normal mode and
another during the execution at the overrun mode. Second,
some of the task replicas will be executed at vf τmin, while
others will be executed at vfmax. As a result, there are four
MSSAC values for each HC task and two MSSAC values
for each LC task, since they do not have overrun mode. Al-
gorithm 1 generates the MSSAC table for the tasks. We con-
sider that applying Algorithm 1 for the tasks in the illus-
trative example (Fig. 4) results in Table 3. Importantly, the
table rows corresponding to the HC tasks will be replicated
to represent the MSSAC factors for the HC replicas. It
should be noted that the first and second replicas will be
scheduled with the MSSAC at vf τmin while the third replica
is scheduled with MSSAC at vfmax. The time complexity of
Algorithm 1 is O((NLO+ NHI)×logC), where NLO, NHI, and C,
are the number of LC tasks, HC tasks, and cores, respec-
tively.

During the scheduling process, at any given time inter-
val the number of active cores should not exceed the
MSSAC factors of all tasks that need to be scheduled at that
time interval. For example, consider T3, T5, and T6 from Fig.
4 which can be executed concurrently according to the task
graph. As it can be seen in Table 3, T3, T5, T6 have the
MSSAC values of 2, 3, 3, respectively. To schedule these

Algorithm 1. Find Maximum Safe Simultaneous Active Cores

(MSSAC)

Inputs: Vn×N: list of tasks, TSPList: List of TSPs for all # active cores

Output: MSSAC Table.

// find four MSSAC values for each task to cover all scenarios;

Function FindMSSAC(V, TSPList)

1. start←1;

2. end← # cores;

3. for each τi єV & each O є{NO, OV} & each vf є{vf τmin, vfmax} do

4. MSSAC(τi,O,vf)←GreatestMSSAC (τi.P(O,vf),start,end,TSPList);

5. return MSSAC;

end function

function GreatestMSSAC (τi.P, start, end, TSPList)

1. if start ≥ end then

2. return infeasible;

3. middle = (end-start+1)/2;

4. if P < TSPList[middle] and P > TSPList[middle+1] then

5. return middle;

6. else if P < TSPList[middle] then

7. return GreatestMSSAC (τi.P, start, middle, TSPList);

8. else

9. return GreatestMSSAC (τi.P, middle, end, TSPList);

End function

T6

3

T5

T3

2MSSAC

(MSSAC: 2)

(MSSAC: 3)

(MSSAC: 3)

Fig. 5. A simple example of considering MSSAC in the scheduling.

TABLE 4

Longest path to leaves for the example task set in Fig. 4

Task Path to leaves Path lenght

HC: T1
T1 T3 T8 48

T1 T4 T7 40

HC: T2

T2 T4 T7 33

T2 T5 T9 32

T2 T6 T8 35

T2 T6 T9 39

HC: T3 T3 T8 23

HC: T4 T4 T7 15

LC: T5 T5 T9 14

LC: T6
T6 T8 17

T6 T9 21

HC: T7 T7 5

LC: T8 T8 6

HC: T9 T9 10

SAFARI ET AL.: THERMA-MICS: THERMAL-AWARE SCHEDULING FOR FAULT-TOLERANT MIXED-CRITICALITY SYSTEMS 9

tasks, the scheduler will consider the minimum MSSAC
factors among these three tasks (that can be run concur-
rently), which is equal to 2. That means, only two tasks
can be scheduled in parallel to satisfy the MSSAC con-
straint, while the third one needs to be scheduled at the
next time interval, as shown in Fig. 5.

5.3 Extracting LSST for HC tasks

The latest safe start time (LSST) for each HC task needs to
be extracted to be able to schedule LC tasks without lead-
ing to violating timing constraints of HC tasks when a fault
or overrun occurs [18]. By definition, LSST is the time at
which the task can start its execution and complete it be-
fore the deadline. In order to guarantee meeting all con-
straints, the worst-case scenario must be considered in the
offline scheduling. That implies, all HC tasks and their rep-
licas need to be scheduled, and also the overrun parts of all
of them need to be considered as well. Thus, to extract
LSST factors, we map all HC tasks and their replicas to the
cores and then schedule them in reverse order from the
deadline of the graph in the schedule to the start, and the
LSST of each task will be the start time of its first version
in this reverse schedule.

For graph traversing during the scheduling, we employ
the well-known list scheduling algorithm [68]. Specifically,
we find the Longest Path to Leaves (LPL) for each node (the

task of the graph), i.e., all paths from each node to the
leaves of the graph are determined and the summation of
the execution time of the nodes in the path is calculated. It
is worthy to mention that each task will be represented by
one only one node. Then the largest summation of the ex-
ecution time of the nodes in the path from the mentioned
node to the leaves is reported as the LPL of the task. For
the HC tasks, their WHI is considered, and their replicas
have exactly the same LPL value. Table 4 shows all existing
paths from each node to the leaves of the example task
graph of Fig. 4, and the computed LPL for each node is de-
termined by red color. The resulting LPL values are stored
in a queue, referred to as LPL_Q. Importantly, the LPL val-
ues of the HC tasks will be replicated to represent the LPL
for the HC task replicas. Then, LPL_Q is sorted in increas-
ing order; Afterward, the scheduler selects the HC tasks

Algorithm 3. LSST- & MSSAC- Constrained scheduling

Inputs: G: Input task graph, LPL_Q: Priority task queue,

D: Deadline, LSST, MSSAC Table, X: Task to core mapping.

Output: The main task scheduling.

Function mainScheduling (G, LPL_Q, D, LSST, X, MSSAC)

1. while Q≠ϕ do

2. τi.← The first task of LPL_Q;// where i is the task index

3. τi.vf τ ← vf τmin for ⌈𝑁/2⌉ replicas, and, vfmax for ⌊𝑁/2⌋ replicas;

4. if (τi.ζ = LC) then

5. τi.X ← Select core based on WFD policy;

6. if τi.Z=ϕ then //Selected task does not have any predecessors

7. k ←0;

8. else

9. k ← max. end time of τi.Z;

10. while k ≤ τi.WHI at τi.vf τ do

11. ts←Find first free time slot after k on τi.X;

-- // check MSSAC factors

12. if (τi.ζ = HC) then

13. Partition ts to tsLO & tsHI based on τi.WLO & τi.WHI-τi.WLO;

14. 𝑀𝑆𝑆𝐴𝐶𝑚𝑖𝑛
𝐿𝑂 ←Min (MSSAC(τi,NO, τi.vf τ), MSSACs of all

-- tasks at tsLO);

15. 𝑀𝑆𝑆𝐴𝐶𝑚𝑖𝑛
𝐻𝐼 ←Min (MSSAC (τi,OV, τi.vf τ), MSSACs of all

-- tasks at tsHI);

16. if 𝑀𝑆𝑆𝐴𝐶𝑚𝑖𝑛
𝐿𝑂 ≥(AC at tsLO)+1 & 𝑀𝑆𝑆𝐴𝐶𝑚𝑖𝑛

𝐻𝐼 ≥(AC at tsHI)+1

-- then // check LSST constraint

17. while (start time of ts > 𝜏𝑖. 𝐿𝑆𝑆𝑇) then

18. Unschedule the LC task (LCt) of the smallest LPL;

19. LPL_Q.add (LCt);

20. Schedule i at ts on τi.X;

21. LPL_Q.Remove(i);

22. break;

23. k ← k+ts

24. else if (τi.ζ = LC) then

25. MSSAC←Min. of (MSSAC(τi,NO, τi.vf τ), MSSACs of all

-- tasks at ts);

26. if MSSAC ≥ (AC at ts) +1

27. Schedule i at ts on τi.X;

28. LPL_Q.Remove(i);

29. break;

30. k ← k+ts

31. if (τi.ζ = LC) & is not scheduled then

32. LPL_Q.remove(i);

End function

Algorithm 2. Mapping and temporary scheduling from deadline

to start to extract LSST

Inputs: G: Input task graph, LPL_Q: Priority task queue,

D: Deadline, MSSAC Table.

Output: X: Task to core mapping, LSST: Latest Safe Start Time.

Function LSST (G, LPL_Q, D, MSSAC)

1. while LPL_Q≠ϕ do

2. τi← The first HC task of LPL_Q; // where i is the task index

3. τi.X ← Select core based on WFD policy;

4. τi.vf τ ← vf τmin for ⌈𝑁/2⌉ replicas, and, vfmax for ⌊𝑁/2⌋ replicas;

5. if τi.A=ϕ then //Selected task does not have any successor

6. k ←D;

7. else

8. k ← min. start time of τi.A;

9. while k ≥ τi.WHI at τi.vf τ do

10. ts←Find first free time slot before k on Xi;

11. Partition ts to tsLO & tsHI based on τi.WLO & τi.WHI- τi.WLO;

12. 𝑀𝑆𝑆𝐴𝐶𝑚𝑖𝑛
𝐿𝑂 ←Min(MSSAC(τi,NO,τi.vfτ), MSSACs of all tasks

-- at tsLO);

13. 𝑀𝑆𝑆𝐴𝐶𝑚𝑖𝑛
𝐻𝐼 ←Min(MSSAC(τi,OV, τi.vfτ), MSSACs of all tasks

-- at tsHI);

14. if 𝑀𝑆𝑆𝐴𝐶𝑚𝑖𝑛
𝐿𝑂 ≥ (AC at tsLO)+1 & 𝑀𝑆𝑆𝐴𝐶𝑚𝑖𝑛

𝐻𝐼 ≥ (AC at tsHI)+1

-- then

15. Schedule i at ts on τi.X;

16. LPL_Q.Remove(i);

17. break;

18. k ← k-ts;

19. if τi is not scheduled then

20. return infeasible;

21. for all τi do

22. τi.LSST←Start time of first instance of each HC task;

23. if τi.LSST < 0 then

24. return infeasible;

End function

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

from LPL_Q, one by one, and maps them to cores based on
Worst Fit Decreasing (WFD) bin packing [6] which helps
to exploit the parallelism inherent in multicores, thereby
minimizing the application execution time [69]. While
other heuristics like Next Fit Decreasing (NFD), First Fit
Decreasing (FFD), and Best Fit Decreasing (BFD) aim to
minimize the number of processors, and they often result
in a highly unbalanced workload distribution [69]. The
pseudo-code of this WFD-based mapping is shown in Al-
gorithm 2 (lines 1-3). After mapping, our proposed sched-
uler selects the first possible start time of the task on the
selected core starting from the deadline of the graph. In
particular, the scheduler (in lines 4-8) determines the time
interval that the selected task can potentially execute in it,
considering the dependency constraints. That implies, if
the selected task does not have any successors it can be
scheduled at the first free time slot on the assigned core.
Otherwise, it should be scheduled after all of its successors.
The parameter k determines the potential start time for the
selected task in reverse order. Line 10 determines the first
free time slot (ts) before k on the assigned core (Xi) for the
selected task τi. At first, the selected time slot ts is parti-
tioned into two parts (tsLO and tsHI) based on the WLO and
WHI-WLO of the selected task at the corresponding vf level;
i.e., ⌈𝑁/2⌉ copies of each task will be executed at τi.vf τmin,
and the ⌊𝑁/2⌋ copies will be executed with τi.vfmax (line 11).
It should be noted that although the normal and overrun
parts of each version share the same vf level, they may
have different MSSAC factors. Therefore, when the sched-
uler finds the free slot time for scheduling the whole task,
it should consider the MSSAC value of both normal and
overrun parts of the task. At both parts of the found time
slot, the MSSAC constraint needs to be checked; i.e., the

MSSAC of the selected task and all the tasks scheduled on
other cores at each part of ts must be less than or equal to
the total number of active cores (AC) at ts (as shown in lines
12-13). The MSSAC of the task will be derived from
MSSAC Table 3 (the output of Algorithm 1), based on its
operational mode and its selected vf level. If MSSAC con-
straint is satisfied for both the normal and overrun parts of
the task (line 14), the task will be scheduled at ts (line 15)
and removed from LPL_Q (line 16). Otherwise, the sched-
uler finds the next free time slot in line 18. If after travers-
ing all free time slots, the task is still not scheduled, the al-
gorithm returns infeasible in lines 19-20.

Table 4 shows the LPL for the tasks in the illustrative
example. The rows belong to the HC tasks will be tripli-
cated for replicas, and then LPL_Q will be sorted in increas-
ing order. Fig. 6 depicts the mapping and scheduling of HC
tasks with their corresponding replicas from the deadline
of the graph based on dependency and MSSAC con-
straints. It should be noted that the first and second repli-
cas will be scheduled considering their MSSAC for vfτmin.
The third replica of each task (represented by green color
quadrants) should be executed in faulty mode at vfmax in
both normal and overrun modes, and therefore, its MSSAC
for vfmax will be considered. Note that the difference in the
width of the rectangles (that indicate the tasks) shows the
different vf levels.

To demonstrate how our scheduler finds the time slots
that a task can be scheduled, we take T8 in Fig. 6, as an ex-
ample. T8 has no successors and has the largest LPL among
all tasks and should be scheduled first. To schedule the
tasks, we start from the deadline which is 240ms, and trav-
erse the schedule in reverse order from the deadline to the
start of the schedule to find a free time slot for scheduling

Core 1

Core 2

Core 3

Core 4

240

MSSAC

234
Time [ms]

D

T8

T8

T4

T6

T3

T2

8T

2

T4

225215

T4

41

201

3

T6

190

T6

185

2

174

T3

157

31

T3
136

2

T2

1

118

T2

93

3

T1

68

T1

43

T1

18

1

LSST (T1) LSST (T2) LSST (T3) LSST (T6) LSST (T4) LSST (T8)

4

Fig. 6. Scheduling HC tasks from deadline to start for obtaining the LSST, constrained by the MSSAC factors of the tasks.

Core 1

Core 2

Core 3

Core 4

240

MSSAC

Time [ms]

D

T8

T8

T4

T6

T3

T2

8T

2

T4

225207

T4

413

T6

197

T6

183

2

174

T3

156

31

T3

136

2

T2

1

118

T2

93

3

T1

50

T1

25

T1

18

1

LSST (T1) LSST (T2) LSST (T3) LSST (T6) LSST (T4) LSST (T8)

75 100 139

T5

192

T9

216

T7

4

Fig. 7. The final offline scheduling of our proposed TherMa-MiCs from start to deadline that satisfies both timing and temperature con-

straints through employing LSST and MSSAC constraints. Some LC tasks could be scheduled in the available slack time on the cores.

SAFARI ET AL.: THERMA-MICS: THERMAL-AWARE SCHEDULING FOR FAULT-TOLERANT MIXED-CRITICALITY SYSTEMS 11

the tasks. T8” and T8’ which have MSSAC equal to 2 are ex-
ecuted concurrently on their designated cores. When the
scheduler wants to schedule T8, finding the first free possi-
ble time slot to schedule the task is not enough to start the
task at that time, because the MSSAC constraint needs to
be checked. If the MSSAC constraint is not satisfied, the
scheduler tests the next free time slot until satisfying the
MSSAC constraint. In this example, T8 is scheduled at
225ms. It should be noted that T8 does not have any succes-
sors and therefore we only consider MSSAC. However, if
there is a task that has some successors, its start time
should be earlier than the earliest start time of all its copies.
After scheduling all HC tasks, their corresponding repli-
cas, and their overrun parts, the scheduler reports the start
time of the first version of each HC task as the LSST of that
task in lines 21-24.

The time complexity of Algorithm 2 is O(NHI×ts), where
NHI, and ts are the number of HC tasks, and time slots, re-
spectively.

5.4 LSST- & MSSAC-constrained scheduling

After extracting the LSST of HC tasks, we can schedule
now all HC tasks and some LC tasks from the start of the
scheduling, such that the latest safe start time (LSST) of HC
tasks and the MSSAC constraints are not violated.
Algorithm 3 shows the pseudo-code of scheduling all tasks
from start time to deadline. In order to schedule tasks, we
employ LPL_Q queue similar to the previous step, but the
LPL_Q will be sorted here in decreasing order. Tasks are
selected one by one from LPL_Q queue for scheduling in
line 2. If the selected task is HC, it will be scheduled on its
designated core which is driven from Algorithm 2. How-
ever, since the LC tasks did not schedule in the previous
step, they should be mapped in lines 4-5. In lines 6-9, if the
selected task does not have any predecessor, it can start its
execution from time 0; otherwise, the maximum end time
of all of its predecessors is assigned as the first possible
start time of this task. However, the MSSAC constraint will
be checked first. Thus, the selected task will be scheduled
in the first free time slot after k, at which the MSSAC factors
of both the normal and overrun parts of the task are satis-
fied (lines 11-15). Next, If the selected task is an LC, it will
be scheduled in the first free time slot after k, at which the
MSSAC factors of the task are satisfied (lines 11-15). Oth-
erwise, the scheduler finds the next free time slot in line 17.
After completing the loop, If the LC task is still not sched-
uled, it is removed from the LPL_Q because it can’t sched-
ule in any time slot (lines 18-19).

 Similar to Algorithm 2, if the selected task is an HC one,
the selected time slot ts is partitioned to tsLO and tsHI in lines
10-11. At both parts of ts, the MSSAC constraint needs to
be checked, because the normal and overrun parts of each
task may have different MSSAC factors; i.e., the MSSAC of
the selected task and all the tasks scheduled at each part of
ts must be less or equal the total number of active cores
(AC) at ts (lines 14-15). If the MSSAC constraint is satisfied
for both the normal and overrun parts of the task (line 16),
the LSST constraint for HC tasks will be checked (lines 17-
23). That implies, if scheduling LC tasks lead to LSST vio-

lation of an HC task, the scheduler starts to iteratively re-
move from the schedule the LC tasks with the smallest LPL
value from LPL_Q, that have been scheduled before that
HC task, one by one (line 18), until satisfying the LSST
value of the HC task again. The removed LC tasks from the
schedule will be added again to the LPL_Q to schedule in
the next step (lines 19). This scheduling guarantees the ex-
ecution of all HC tasks even in the overrun or faulty execu-
tion modes and attempts to schedule as many LC tasks as
possible, considering the worst-case scenario.

Fig. 7 shows the final scheduling of HC tasks with their
corresponding replicas, and guaranteed executable LC
tasks based on MSSAC and LSST factors from the start to
the deadline at design time. It is worthy to mention that
employing fault-tolerant techniques has timing overhead.
However, it is necessary to pay for this overhead in order
to achieve a given reliability target, even if QoS has been
reduced. Because ensuring the required reliability for HC
is of great importance, otherwise, it will result in cata-
strophic consequences. Emerging multi-core systems pro-
duces great opportunities to exploit the inherent redun-
dancies for executing more tasks concurrently. However,
activating all cores at maximum vf levels might violate
temperature constraints. Therefore, we propose to calcu-
late the MSSAC factor for the tasks, which specifies the
maximum simultaneous tasks that can be run with each
other, without violating the temperature constraints. Then,
the tasks will be scheduled in parallel if both the MSSAC
factors and the dependency constraints between tasks are
satisfied. This parallel execution of the tasks on different
cores allows scheduling more LC tasks and thereby QoS
will be improved without violating the predefined timing,
thermal, and reliability constraints.

The time complexity of Algorithm 3 is Max{O(NHI× ts
×NLO), O(NLO× ts)}, where NHI, NLO, and ts are the number of
HC tasks, LC tasks, and time slots, respectively.

5.5 Runtime scheduling

At runtime, the available slack times are used for improv-
ing the QoS of LC tasks by considering the dependency
and MSSAC constraints. Slack times at runtime might re-
lease due to replica or overrun cancelation. In particular, at
runtime, the tasks will be scheduled according to the pre-
computed schedule. However, if overrun or fault occur-
rence scenarios do not occur, and dynamic slack times are
released, then LC tasks can be scheduled on the fly without
impacting the already scheduled tasks. For each resulting
slack time slot, ts, the scheduler finds first the LC tasks,
whose predecessors are completely executed, and then se-
lects the task with the largest LPL in LPL_Q. If the execu-
tion time of the task at vfτmin is equal to or less than the ts,
then the MSSAC is checked for the feasibility of scheduling
under temperature constraints. If the MSSAC is not satis-
fied, this task cannot schedule at this free slack time. In case
the execution time of the task is bigger than the slack time
(ts), the scheduler checks whether the execution time of the
task at vfmax is equal or less than the ts, and again checks the
MSSAC constraint. If the selected task is not schedulable,
the next candidate task will be checked for scheduling in
ts. This process will be iterated for all released slack times.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

It should be noted that the time complexity of algorithms
1, 2, and 3 of the offline phase is computed in section 5.
Regardless of the actual execution time (which depends on
many parameters and the selected execution scenario), the
computations are done in the offline phase. Moreover, the
lightweight online manager uses the available released
slack times only for improving the QoS of LC tasks, if
needed, by scheduling them on the fly without impacting
the already scheduled tasks. Therefore, according to our
experimental results, the time overhead of the runtime
scheduler is up to 0.57% for the scenarios that half of the
tasks are LC tasks. This overhead indicates the ratio of the
time required by the online scheduler to the total execution
time of the tasks. This overhead is considered negligi-
ble [52]. Nevertheless, to account for this overhead and
guarantee satisfying timing constraints, we have consid-
ered the overhead of the scheduler as a part of the task’s
WCET similar to the state-of-the-art scheduling policies in
the real-time community [18][52][53].

6 RESULTS AND DISCUSSION

In this section, we evaluate the effectiveness of our pro-
posed TherMa-MiCs scheme in terms of feasibility, tem-
perature, QoS, and reliability. The tool flow of our experi-
ments is shown in Fig. 8. We consider an ARM processor,
which is widely used in many embedded systems, based
on simulations conducted on gem5 [70] and McPAT [71]
for 22nm with out-of-order Cortex-A15 cores. These simu-
lators, i.e., gem5 and McPAT, extract the power profiles, the
worst-case execution time, and chip area. The simulation
configurations are written in Table 5. The tool QUILT [72]
generates the chip floorplan based on the results of McPAT.
For calculating TSPList, the RC thermal model of the chip
is required to model the thermal behavior of the processor.
The RC thermal model can be extracted using the HotSpot
simulator [73] with providing the floorplan of the proces-
sor and the configuration of its cooling system. Based on
the algorithm introduced in [17] the TSP for worst-case
mappings for the pre-defined thermal threshold is calcu-
lated. To generate task graphs, we modified the open-
source DAG generator for the mixed-criticality systems’
tool which is introduced in [18]. The tasks of each DAG are
selected from the MiBench benchmark suite [11][66][67],
which is commonly used in the embedded system commu-
nity It is worthy to mention that this benchmark includes
a variety of programs in different embedded system areas
such as automotive and industrial control, consumer de-

vices, office automation, networking, security, and tele-
communications. MiBench has been used by many recent
state-of-the-art techniques in the embedded commu-
nity [67][76].

We generated 100 random DAGs where each generated
DAG has a different topology (configuration) from others
in terms of the number of nodes (tasks), the connection be-
tween nodes, and parallelism degree (low-, middle-, and
high-parallelism) [35]. It is known that the height of a task
graph can be used to determine the parallelism degree for
task graphs with a specific number of tasks. Consider n is
the number of tasks in a task graph and h is the task graph
height, h can vary between 1 (the highest parallelism de-
gree) and n (a chained task graph with the lowest parallel-
ism degree). Therefore, we consider the following classes:
1) task graphs with high parallelism degrees whose heights
are 1≤h≤n/3; 2) task graphs with medium parallelism de-
grees whose heights are n/3 ≤ h ≤ 2n/3; and 3) task graphs
with low parallelism degrees whose heights are 2n/3 ≤ h ≤
n. We compare TherMa-MiCs with the following state-of-
the-art methods:

 LE-NMR: A scheduling technique which is pro-
posed in [11] that considers an NMR and aims at
reducing the energy overhead of the fault-tolerant
technique (NMR) in hard real-time multicore em-
bedded systems. This technique executes the tasks
in two phases: the indispensable phase and the on-
demand phase. When a task has no faults during
the indispensable phase, the time which is reserved
for its copies in the on-demand phase is reclaimed
to significantly reduce power and energy. We
choose LE-NMR to highlight that reducing power
and energy is not enough to avoid thermal viola-
tions.

 CNMR: It is conventional or classic NMR, where all
N copies of each task are executed in parallel [56].
The CNMR technique does not consider power or
temperature constraints through scheduling the
tasks.

 Medina [18]: This technique proposed a scheduling
policy for graph-based mixed-criticality tasks.
However, it does not consider any fault-tolerant

TABLE 5

The details of simulation configuration

Name Configuration

Core Type ARM Cortex-A15

Core Microarch. ARMv7-A

Machine Type Out of Order

Feature Size 22nm

Cores 4, 9, 16, 36

Core vf level 19 vf levels [0.9v, 0.2GHz] to [1.3v, 2.0GHz]

L1 Cache 32KB, 8KB block-width, 4-way

L2 Cache 2MB, 16-way

Memory 2GB, 32-bit LPDDR3e

Chip Thickness 0.15mm

Heat Sink Thickness 1mm

Spreader Thickness 0.1 mm

Fig. 8. The tool flow adopted in our experiments.

MiBench

Gem5

McPAT

TSP Tool

QUILT

HotSpot

Initialize phase

Mixed-Criticality DAG Generator

Main phase

Our TherMa-MiCs Scheme

Processor

Area

Processor floorplan

Cooling system

configuration

Power

Trace

Processor description

(TDTM, Pmax, ...)

RC-Thermal model TSP List

Software & Hardware

Level Inputs
MC-DAG

Outputs:

Assigned vf level of each task,

Scheduling of tasks in cores

SAFARI ET AL.: THERMA-MICS: THERMAL-AWARE SCHEDULING FOR FAULT-TOLERANT MIXED-CRITICALITY SYSTEMS 13

provisions and drops all LC tasks in the overrun
mode.

As it can be noticed our TherMa-MiCs, LE-NMR, and
CNMR employ NMR to satisfy the reliability target. We
evaluate those techniques for different N, i.e., N=3, N=5,
and N=7. However, due to space limitations, we show the
evaluation results of feasibility, temperature, and QoS only
for N=3. Nevertheless, in Section 6.4, where the reliability
is evaluated, we show the results for N=3, N=5, and N=7,
since they are relevant in that evaluation.

6.1 Evaluating the Feasibility

In Fig. 9 we reported our comparison with three state-of-
the-art techniques in terms of feasibility with different par-
allelism degrees of the DAG and different numbers of
cores. The feasibility is defined as the percentage of satis-
fying both timing and temperature constraints in the re-
sulting schedule. Moreover, to have a better understanding
of the resulting feasibility numbers, we show the schedula-
bility, which is the percentage of satisfying timing con-
straints in the resulting schedule, and the percentage of
thermal violations when timing constraints are satisfied.
The results are reported from the offline scheduling (Sec-
tion 5.4) that considers the worst-case scenario where all
copies of tasks and all overrun parts will be executed com-
pletely. The parallelism degree is increased from low par-
allelism to high parallelism. According to Fig. 9, the pro-
posed method in [18] has the highest schedulability since
it is not fault-tolerant. However, our proposed TherMa-
MiCs method has lower schedulability, since it considers

temperature constraint through scheduling in conjunction
with applying DVFS. However, since other methods are
not temperature-aware, by increasing the parallelism de-
gree the temperature will increase and more thermal vio-
lations occurred, and it can be observed in Fig. 9 how the
state-of-the-art methods suffer from high thermal viola-
tions, and thereby low feasibility, while our TherMa-MiCs
does not lead to any thermal violations, which ultimately
helps to increase the resulting feasibility. The reason that
Medina [18] has higher feasibility in comparison to others
(except TherMa-MiCs) is that it is not fault-tolerant and
does not consider replicas.

6.2 Evaluating the Temperature

In addition to the evaluation of the thermal violation per-
centage in the above section, in this subsection, we evalu-
ate the resulting peak temperature after applying the
scheduling of the comparison candidates for different
numbers of cores and different parallelism degrees. Here,
the realistic execution scenario at runtime has been consid-
ered, where all overrun parts will be executed completely
and the fault rate is derived from Eq. 2. As shown in Fig.
10, TherMa-MiCs meets the temperature constraint, Tcrit=
60 ͦC in all scenarios [14]. Note that TherMa-MiCs also
meets the temperature constraint when N=5 and N=7, but
as aforementioned, these additional results have not been
shown due to space limitation. Other methods do not con-
sider temperature constraints. Hence, in these methods
tasks will be executed in parallel even in the realistic exe-

Low parallelism Middle parallelism High parallelism

Fig. 9. Comparing the resulting a) Feasibility, b) Schedulability, and c) Thermal violation from the offline scheduling of our proposed method,

TherMa-MiCs, with the scheduling policies in the state-of-the-art methods. The feasibility is defined as the percentage of satisfying both

timing and temperature constraints in the resulting schedule. Our TherMa-MiCs achieves higher feasibility with 33.47% on average. The

schedulability is defined as the percentage of satisfying timing constraints in the resulting schedule.

* these are the thermal violations when timing constraint is satisfied.

0
0.2
0.4
0.6
0.8

1
1.2

1

Chart Title

Medina [18] CNMR LE-NMR TherMa-MiCs a

0

20

40

60

80

100

4 9 16 36

F
ea

si
b

il
it

y
(

(%
)

Number of Cores

0

20

40

60

80

100

4 9 16 36

F
ea

si
b

il
it

y
 (

%
)

Number of Cores

0

20

40

60

80

100

4 9 16 36

F
ea

si
b

il
it

y
 (

%
)

Number of Cores

0

20

40

60

80

100

4 9 16 36

S
ch

ed
u

la
b

il
it

y
 (

%
)

Number of Cores

0

20

40

60

80

100

4 9 16 36

S
ch

ed
u
la

b
il

it
y

 (
%

)

Number of Cores

0

20

40

60

80

100

4 9 16 36

S
ch

ed
u

la
b

il
it

y
 (

%
)

Number of Cores

0

20

40

60

80

100

4 9 16 36

T
h
er

m
al

 V
io

la
ti

o
n

*
(%

)

Number of Cores

0

20

40

60

80

100

4 9 16 36

T
h
er

m
al

 V
io

la
ti

o
n

*
(%

)

Number of Cores

0

20

40

60

80

100

4 9 16 36

T
h

er
m

al
 V

io
la

ti
o
n

*

(%
)

Number of Cores

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

cution scenario; i.e., there are some situations that even af-
ter canceling the overrun or replica parts, the number of
the active cores will be beyond the safe limit and tempera-
ture constraint is violated. As it is shown in the figure, in
higher number of cores, the maximum temperature in-
creases because the number of active cores is increased.

We would like to clarify that the temperature constraint
is the input of the system and the scheduler computes the
MSSAC factor based on the predefined temperature con-
straints. Therefore, increasing or decreasing the target tem-
perature does not change the policy of the proposed
method and our proposed method is applicable for any
temperature target. However, decreasing the value of the
temperature target may lead to a decrease in the MSSAC
factors of the tasks, and thus the number of tasks that can
be executed in parallel will be reduced. That means it de-
creases the number of LC tasks that can be executed in par-
allel with the HC tasks, and thereby the QoS is decreased.
Moreover, it might also decrease the number of HC tasks
that can be executed in parallel with other HC tasks, and
in this case, some HC tasks will be delayed to the next in-
tervals, and they ultimately might miss their deadlines,
and thereby the feasibility is decreased. Contrarily, in-
creasing the value of the temperature constraint will allow
increasing the number of HC tasks and LC tasks that can
run in parallel, and thereby the feasibility of HC tasks and
the OoS of LC tasks will be improved.

6.3 Evaluating the QoS

The QoS is defined as the ratio of the number of LC tasks
that the scheduler guarantees to execute them to the origi-
nal number of LC tasks [1][30][74][75]. Fig. 11 represents
the QoS of TherMa-MiCs in the offline and online phases
with different percentages of LC tasks. In this evaluation,
task graphs with different parallelism degrees are consid-
ered. Fig. 11 consists of two main scenarios: a) Fig. 11a
shows the results when less than half of the total number
of tasks are LC, and b) Fig. 11b shows the results when
more than half of tasks are LC. Moreover, additional sce-
narios are considered which represent the different per-
centages of overrun occurrences, and also different num-
bers of cores are considered. In each figure, the orange bar
shows the achieved QoS in the offline phase for different
scenarios. The green bars show the amount of QoS im-
provement in the online phase in addition to the offline
phase. The height of the bar represents the total QoS.

By changing the percentage of HC tasks that overrun in
different numbers of cores, the QoS improvement is evalu-
ated. For each number of cores and overrun percentage in
Fig. 11, 100 DAGs with different configurations are gener-
ated, while in Fig. 11a and Fig. 11b the percentage of LC
tasks is less than 50% and more than 50% of total existing
tasks in the system, respectively. Then the final result in
each bar is the average of achieved 100 results. In the online
phase, due to replica and overrun cancellation, dynamic
slack times are released which can be used for further
scheduling LC tasks to improve the QoS. For example, in
Fig. 11a, when the overrun percentage is equal to 60%, in a
quad-core system, the QoS of the offline phase is 20%. In
the online phase, by exploiting released dynamic slack
times the QoS reaches 60%. The 44% is the average QoS of
all of these scenarios. In Fig. 11a and Fig. 11b, by increasing
the percentage of overrun occurrence, the QoS improve-
ment is decreased because the amount of released dynamic
slack is reduced. By increasing the number of cores, the
QoS is improved because there are more available re-
sources to schedule LC tasks in advance and an online
phase. The QoS improvement of Fig. 11b is lower than Fig.
11a. Due to the MSSAC factor, by increasing the number of
LC tasks, the number of LC tasks that can be executed con-
currently is reduced. Moreover, when the number of LC
tasks is lower than HC tasks (Fig. 11a), in the case that over-
run does not occur in the online phase, the slack time will
be released and the LC tasks can be executed in the re-
leased dynamic slack times. Therefore, in the online phase,
the QoS can be reached 100% in most scenarios. However,
when the number of LC tasks is more than HC tasks (Fig.
11b), since the number of HC tasks is low, even if overrun
does not occur, the amount of released slack time in the

a. Percentage of LC tasks to the total number of tasks is less

than 50%.

b. Percentage of LC tasks to the total number of tasks is more

than 50%.

Fig. 11. QoS of the offline and online phases.

0

0.5

1

1.5

2

2.5

3

3.5

Offline Online real

Chart Title

Offline Online real

0

20

40

60

80

100

4 9

1
6

3
6 4 9

1
6

3
6 4 9

1
6

3
6 4 9

1
6

3
6 4 9

1
6

3
6 4 9

1
6

3
6

100% 80% 60% 40% 20% 0%

Q
o

S
 (

%
)

Percentage of overrun occurrence

0

20

40

60

80

100

4 9

1
6

3
6 4 9

1
6

3
6 4 9

1
6

3
6 4 9

1
6

3
6 4 9

1
6

3
6 4 9

1
6

3
6

100% 80% 60% 40% 20% 0%
Q

o
S

 (
%

)

Percentage of overrun occurrence

Fig. 10. The resulting peak temperature on the chip. Our

TherMa-MiCs satisfies the thermal constraint, while the state-of-the-

art techniques violate it.

0
0.2
0.4
0.6
0.8

1
1.2

1

Chart Title

Medina [18] CNMR LE-NMR TherMa-MiCs a

0

30

60

90

120

150

4 9 16 36

T
em

p
er

at
u

re
 (

˚C
)

Number of Cores

Medina [18] CNMR LENMR TherMa-MiCs

SAFARI ET AL.: THERMA-MICS: THERMAL-AWARE SCHEDULING FOR FAULT-TOLERANT MIXED-CRITICALITY SYSTEMS 15

online phase is not efficient to execute all LC tasks. There-
fore, in fewer scenarios, the QoS can be reached 100%.

6.4 Evaluating the Reliability

In this paper, the fault rate was modeled using Eq. 2 under
parameters 𝜆0 = 10−6 and d=3 [11][52]. Therefore, the fault
rate varies between 10-6 fault/s to 10-3 fault/s, corresponding
to the maximum and minimum voltage levels [11]. Fig. 12
reports the Probability of Failure (PoF) of applications for
Medina [18] and TherMa-MiCs with N=3, N=5, and N=7.
We assume that HC tasks are selected from levels A, B, or
C in the DO-178B standard [22]. Regarding the selected
level, the proper values of N will be selected because the
higher value of N satisfies a higher reliability target (i.e.,
lower PoF). Obviously, Medina [18] fails in tolerating
faults and meeting the reliability target at different fault-
rates, since it does not employ the fault-tolerant technique.

6.5 Pessimism and Optimality Discussion

Enforcing MSSAC factors that are based on TSP involves
some pessimism compared to enforcing temperature con-
straint directly, due to two reasons. First, TSP is derived
based on the worst-case mapping. Secondly, MSSAC fac-
tors have been derived based on the peak power consump-
tion of the tasks. On the other hand, solving the defined
scheduling problem while considering the temperature di-
rectly will further increase the problem complexity, which
grows exponentially, as explained earlier. Therefore, we
proposed to solve this problem using TSP which enables
us to enforce temperature constraint in an abstracted way.
This pessimism manifests itself as a reduction in the QoS
of the LC tasks.

To examine how far our scheduler is from the optimal
solution we have implemented an exhaustive search,
which is possible only for small size examples. In the ex-
haustive search, instead of computing the LPL queue for
sorting the tasks (in order to select them for mapping and
scheduling) and exploiting any bin packing algorithm for
assigning tasks to cores, all combinations of task-to-core
mapping options and their scheduling will be checked.
Moreover, the optimal solution should directly check the
temperature in all time slots during the scheduling, instead
of considering the MSSAC factors. We were able to conduct
an exhaustive search for only small-size graphs running on
a quad-core system. For this small size example, we find
the QoS obtained by the optimal solution is the same as the

QoS obtained by our algorithm. However, the optimal so-
lution could result in better QoS for bigger task graphs and
bigger systems, but the increase in the overhead of obtain-
ing the optimal schedule will grow exponentially along
with increasing the input size; i.e., number of HC and LC
tasks, number of cores, and number of time slots. There-
fore, we could not perform an exhaustive search for a big-
ger input size.

Additional evaluation of our scheduler could be con-
ducted by comparing it to a solution that considers more
combinations than our scheduler, but still not all combina-
tions, because this will not be possible, as explained above.
We derive this solution as follows: HC tasks are sorted
based on the LPL queue and are mapped based on WFD
bin packing. Then HC tasks are scheduled based on com-
puted MSSAC factors. However, for scheduling LC tasks
more combinations will be checked, by considering the
temperature of the cores at each time slot instead of using
the MSSAC factors. By applying this solution, 16% im-
provement in the QoS has been observed. However, as
elaborated in the paper, considering the temperature di-
rectly will not be possible in the actual run of the scheduler,
due to the high overhead. Nevertheless, this experiment
provides us with an estimation about unexploited optimi-
zation room (or pessimism) for the QoS by our scheduler
compared to a better solution that considers more combi-
nations, but is not feasible in the actual implementation at
runtime.

7 CONCLUSION

In this paper, we proposed the TherMa-MiCs scheme that
simultaneously satisfies the timing, temperature, and reli-
ability constraints of the high-criticality tasks, while aim-
ing at maximizing the QoS of low-criticality tasks under
the predefined constraints. It exploits the inherent redun-
dancy of multicore platforms for employing the NMR tech-
nique to ensure the reliability of MCSs. However, applying
fault-tolerant techniques which increase the number of ac-
tive cores might increase on-chip temperatures beyond
safe limits. Therefore, our proposed TherMa-MiCs scheme
enforces the thermal safe power (TSP) constraint within the
scheduling process to guarantee avoiding thermal viola-
tions. Moreover, TherMa-MiCs satisfies the timing con-
straints for the HC tasks, while at the same time improving
the QoS of the LC tasks with an average of 44% without
violating timing and temperature constraints.

ACKNOWLEDGMENT

This work is funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Fndn.) – Proj. Nb.
146371743 – TRR 89 Invasive Computing

REFERENCES

[1] A. Burns, and R. I. Davis, “A survey of research into mixed-

criticality systems,” Journal ACM Computing Surveys, vol. 50, no.

6, 2018.

Fig. 12. Comparison of PoF at different fault-rates.

0

2

1

Medina [18] TherMa-MiCs N=3

TherMa-MiCs N=5 TherMa-MiCs N=7

1.00E-24

1.00E-20

1.00E-16

1.00E-12

1.00E-08

1.00E-04

1.00E+00
10E-6 10E-5 10E-4 10E-3

P
ro

b
ab

il
it

y
 o

f
F

ai
lu

re

Fault rate (faults/sec)

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

[2] D. De Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling

of mixed-criticality real-time task sets,” 30th IEEE Real-Time

Systems Symposium (RTSS), Washington, DC, 2009.

[3] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, “Energy-

efficient DVFS scheduling for mixed-criticality systems,”

International Conference on Embedded Software (EMSOFT), 2014.

[4] S. Narayana, P. Huang, G. Giannopoulou, L. Thiele, and R. V.

Prasad, “Exploring energy saving for mixed-criticality systems

on multi-cores,” IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), Vienna, 2016.

[5] H. Su, N. Guan, and D. Zhu, “Service guarantee exploration for

mixed-criticality systems,” Int’l Conf. on Embedded and Real-Time

Computing Systems and Applications (RTCSA), Chongqing, 2014.

[6] H. Su, D. Zhu, and S. Brandt, “An elastic mixed-criticality task

model and early-release EDF scheduling algorithms,” ACM

ACM Trans. on Design Automation of Electronic Systems

(TODAES), vol. 22, no. 2, pp. 1-28, 2016.

[7] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient

scheduling of certifiable mixed-criticality sporadic task

systems,” IEEE Real-Time Systems Symposium (RTSS), 2011.

[8] C. Gu, N. Guan, J. Yu, Y. Wang, and QX. Deng, “Partitioned

scheduling policies on multi-processor mixed-criticality

systems,” Journal of Software, vol. 25, pp. 284-297, 2014.

[9] Y. Zhang, and K. Chakrabarty, “Energy-aware adaptive

checkpointing in embedded real-time systems,” IEEE Auto. and

Test in Europe Conf. and Exhibition (DATE), 2003.

[10] H. Khdr, H. Amrouch and J. Henkel, “Aging-constrained

performance optimization for multi cores,” 55th

ACM/ESDA/IEEE Design Automation Conf. (DAC), pp. 1-6, 2018.

[11] M. Salehi, A. Ejlali, and B.M. Al-Hashimi, “Two-phase low-

energy N-Modular Redundancy for hard real-time multi-core

systems,” IEEE Trans. on Parallel and Distributed Systems (TPDS),

vol. 25, no. 4, pp. 1024-1033, 2015.

[12] R. M. Pathan, “Fault-tolerant and real-time scheduling for

mixed-criticality systems,” Real-Time Syst., vol. 50, no. 4, pp. 509-

547, 2014.

[13] Intel® Xeon Phi™ Coprocessor x100 Product Family, Datasheet,

April 2015.

[14] Qualcomm Technologies, Inc., “Thermal debugging guide -

Qualcomm developer network,” Sep. 2016.

[15] https://ieeexplore.ieee.org/ielx7/12/7847504/7524768/tc-khdr-

2595560-mm.zip?tp=&arnumber=7524768

[16] J. Lee, B. Yun, and K. G. Shin, “Reducing peak power

consumption in multi-core systems without violating real-time

constraints,” IEEE Trans. on Parallel and Distributed Systems

(TPDS), vol. 25, no. 4, pp. 1024-1033, 2014.

[17] S. Pagani, et al., “Thermal Safe Power (TSP): Efficient power

budgeting for heterogeneous manycore systems in dark silicon,”

IEEE Trans. on Computers (TC), vol. 66, no. 1, pp. 147-162, 2017.

[18] R. Medina, E. Borde, and L. Pautet, “Directed acyclic graph

scheduling for mixed-criticality systems,” 22nd Int’l Conf. on

Reliable Software Technologies - Ada-Europe, 2017.

[19] D. de Niz, and L. T.X. Phan, “Partitioned scheduling of multi-

modal mixed-criticality real-time systems on multiprocessor

platforms,” 19th Real-Time and Embedded Technology and

Applications Symposium (RTAS), Berlin, 2014.

[20] S. Safari, M. Ansari, G. Ershadi, and S. Hessabi, “On the

scheduling of energy-aware fault-tolerant mixed-criticality

multicore systems with service guarantee exploration,” IEEE

Trans. on Parallel and Distributed Systems (TPDS), vol. 30, no. 10,

pp. 2338-2354, 2019.

[21] L. Bauer et al., ”Analyses and Architectures for Mixed-Critical

Systems: Industry Trends and Research Perspective Special

Session Extended Abstract,” International Conference on Embedded

Software (EMSOFT), 2019, pp. 1-2.

[22] DO-178C (2011) Software considerations in airborne systems and

equipment certification. RTCA, Inc.

[23] IEC61508 (2010) Functional safety of electrical/electronic/pro-

grammable electronic safety-related systems, IEC.

[24] ISO26262 (2011) Road vehicles-functional safety, ISO.

[25] S. Baruah, V. Bonifaci, G. Dangelo, H. Li, A. Marchetti-

Spaccamela, S. Van der Ster, L. Stougie “The preemptive

uniprocessor scheduling of mixed-criticality implicit-deadline

sporadic task systems,” Euromicro Conf. on Real-Time Systems

(ECRTS), 2012.

[26] D Liu, J Spasic, N Guan, G Chen, S Liu, and T Stefanov, “EDF-

VD scheduling of mixed-criticality systems with degraded

quality guarantees,” IEEE Real-Time Systems Symposium (RTSS),

2016.

[27] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifia-

ble mixed-criticality systems,” RTAS, 2010.

[28] J. Lin, A. M. K. Cheng, D. Steel, and M. Yu-Chi Wu “Scheduling

mixed-criticality real-time tasks in a fault-tolerant system,”

RTSS, 2014.

[29] A. Thekkilakattil, R. Dobrin, and S. Punnekkat, “Mixed criticality

scheduling in fault-tolerant distributed real-time systems, ” Int’l

Conf. on Embedded Syst. (ICES), 2014.

[30] Z. Al-bayati, J. Caplan, B. H. Meyer, and H. Zeng, “A four-mode

model for efficient fault-tolerant mixed-criticality systems,”

IEEE Design Auto. and Test in Europe Conf. and Exhibition (DATE),

2016.

[31] V. Legout, M. Jan, and L. Pautet, “Mixed-criticality multiproces-

sor real-time systems: Energy consumption vs deadline misses,”

Workshop on Real-Time Mixed Criticality Syst. (ReTiMiCS), 2013.

[32] M. Völp, M. Hähnel, and A. Lackorzynski, “Has energy

surpassed timeliness? Scheduling energy-constrained mixed-

criticality systems,” 19th IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2014.

[33] A. Naghavi, S. Safari, and S. Hessabi, “Tolerating permanent

faults with low-energy overhead in multicore mixed-criticality

systems,” IEEE Trans. on Emerging Topics in Computing (TETC),

2021.

[34] S. Safari, G. Ershadi, and S. Hessabi, “LESS-MICS: A low energy

standby-sparing scheme for mixed-criticality systems,” IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), vol. 39, no. 12, pp. 4601-4610, 2020.

[35] M. Ansari, S. Safari, A. Yeganeh-Khaksar, M. Salehi, and A.

Ejlali, “Peak power management to meet thermal design power

in fault-tolerant embedded systems,” IEEE Trans. on Parallel and

Distributed Systems (TPDS), vol. 30, no. 1, pp. 161-173, 2019.

[36] M. Ansari, A. Yeganeh-Khaksar, S. Safari, and A. Ejlali, “Peak-

power-aware energy management for periodic real-time

applications,” IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), vol. 39, no. 4, pp. 779-788, 2019.

[37] H. Khdr, S. Pagani, E. Sousa, V. Lari, A. Pathania, F. Hannig, M.

Shafique, J. Teich, and J. Henkel, “Power density-aware resource

management for heterogeneous tiled multicores,“ IEEE Trans. on

Computers (TC), vol. 66, no. 3, pp. 488-501, 2017.

[38] M. Ansari, M. Salehi, S. Safari, A. Ejlali and M. Shafique, “Peak-

power-aware primary-backup technique for efficient fault-

tolerance in multicore embedded systems,” IEEE Access, vol. 8,

pp. 142843-142857, 2020.

[39] H. Khdr, S. Pagani, M. Shafique and J. Henkel, “Thermal

constrained resource management for mixed ILP-TLP

workloads in dark silicon chips,“ 52nd ACM/EDAC/IEEE Design

Auto. Conf. (DAC), 2015, pp. 1-6.

https://ieeexplore.ieee.org/ielx7/12/7847504/7524768/tc-khdr-2595560-mm.zip?tp=&arnumber=7524768
https://ieeexplore.ieee.org/ielx7/12/7847504/7524768/tc-khdr-2595560-mm.zip?tp=&arnumber=7524768

SAFARI ET AL.: THERMA-MICS: THERMAL-AWARE SCHEDULING FOR FAULT-TOLERANT MIXED-CRITICALITY SYSTEMS 17

[40] J. Henkel, H. Khdr, and M. Rapp, “Smart Thermal Management

for Heterogeneous Multicores (Special Session),” IEEE/ACM

22nd Design, Auto. and Test in Europe Conf. (DATE), 2019.

[41] B. Pourmohseni, F. Smirnov, H. Khdr, S. Wildermann, J. Teich,

and J. Henkel, “Thermally composable hybrid application

mapping for real-time applications in heterogeneous many-core

systems,” IEEE Real-Time Systems Symp. (RTSS), Hong Kong,

2019.

[42] H. Khdr, H. Amrouch, and J. Henkel, “Aging-aware boosting,”

IEEE Trans. on Computers (TC), vil. 67, no. 9, pp. 1217-1230, 2018.

[43] S. Pagani, H. Khdr, W. Munawar, J-J Chen, M. Shafique, M. Li,

and J. Henkel, “TSP: Thermal Safe Power-Efficient power

budgeting for many-core systems in dark dilicon,” Int’l Conf. on

Hardware-Software Codesign and System Synthesis (CODES+ISSS),

2014.

[44] H. Khdr, S. Pagani, E. Sousa, V. Lari, A. Pathania, F. Hannig, M.

Shafique, J. Teich, and J. Henkel, “Power density-aware resource

management for heterogeneous tiled multicores,“ IEEE Trans. on

Computers (TC), vol. 66, no. 3, pp. 488-501, 2017.

[45] M. Ansari, J. Saberlatibari, S. M. Pasandideh, and A. Ejlali,

“Simultaneous Management of Peak-Power and Reliability in

Heterogeneous Multicore Embedded Systems,” IEEE Trans. on

Parallel and Distributed Systems (TPDS), vol. 31, no. 3, pp. 623-633,

2020.

[46] B. Acun et al., “Power, reliability, and performance: One system

to rule them all,” in Computer, vol. 49, no. 10, pp. 30-37, Oct. 2016.

[47] A. Langer, H. Dokania, L. V. Kalé and U. S. Palekar, “Analyzing

energy-time tradeoff in power overprovisioned HPC data

centers,” IEEE Int’l Parallel and Distributed Processing Symp.

Workshop, 2015.

[48] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri, “From a

Federated to an Integrated Architecture for Dependable

Embedded Real-Time Systems,” Tech. Rep. 22, TU Vienna, 2003.

[49] J. Henkel, H. Khdr, S. Pagani, and M. Shafique, “New trends in

dark silicon,” ACM/EDAC/IEEE Design Auto. Conf. (DAC), 2015.

[50] Z. Lia, C. Guo, X. Hua, and S. Ren, “Reliability guaranteed

energy minimization on mixed-criticality systems,” Journal of

Syst. and Software, vol. 112, pp. 1-10, 2016.

[51] A. Yeganeh-Khaksar, M. Ansari, S. Safari, S. Yari-Karin, and A.

Ejlali, “Ring-DVFS: Reliability-aware reinforcement learning-

based DVFS for real-time embedded systems,” IEEE Embedded

Systems Letters, 2020.

[52] A. Ejlali, B. M. Al-Hashimi, and P. Eles, “Low-energy standby-

sparing for hard real-time systems,” IEEE Trans. on Computer-

Aided Design of Integrated Circuits and Systems (TCAD), vol. 31, no.

3, pp. 329–342, 2012.

[53] R. Medina, E. Borde, and L. Pautet, “Scheduling multi-periodic

mixed-criticality DAGs on multi-core architectures,” IEEE Real-

Time Systems Sympo. (RTSS), 2018.

[54] B. W. Johnson, Design and Analysis of Fault Tolerant Digital

Systems. Addison-Wesley Longman Publishing Co., Inc., USA.

1988.

[55] K. S. Trivedi, Probability and statistics with reliability, queuing

and computer science applications, (2nd edition), John Wiley

and Sons Ltd., GBR. 2001.

[56] I. Koren, and C.M. Krishna, “Fault-Tolerant Systems,” Morgan

Kufman, Elsevier, San Fransisco, 2007.

[57] M. A. Haque, H. Aydin, and D. Zhu, “On reliability management

of energy-aware real-time systems through task replication,”

IEEE TPDS, vol. 28, no. 3, pp. 813-825, 2017.

[58] J. R. Sklaroff, “Redundancy management technique for space

shuttle computers,” IBM Journal of Research and Development, vol.

20, no. 1, pp. 20-28, 1976.

[59] L. E. P. Rice, and A. M. K. Cheng, “Timing analysis of the X-38

space station Crew Return Vehicle avionics,” Proc. IEEE-CS Real-

Time Technology and Applications Symp., 1999.

[60] Y. C. B. Yeh, “Design Considerations in Boeing 777 Fly-By-Wire

Computers,” Proc. IEEE Int’l High-Assurance Systems Engineering

Symp., 1998.

[61] H. Kopetz, H. Kantz, G. Grunsteidl, P. Puschner, and J. Reisinger,

“Tolerating transient faults in MARS,” Int’l Symp. Fault-Tolerant

Comput., 1990.

[62] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga,

“Multiprocessor scheduling of precedence-constrained mixed

critical jobs,” IEEE Int’l Symp. on Real-Time Distributed

Computing, 2015.

[63] http://www.mrtc.mdh.se/projects/wcet/sweet.html.

[64] “aiT Worst-Case Execution Time Analyzer - Homepage,”

http://www.absint.com/ait/, 2009.

[65] S. Petersson, et al. “Using a WCET analysis tool in real-time

systems education,” WCET, 2005.

[66] M. R. Guthaus, et. al., “MiBench: A free, commercially

representative embedded benchmark suite,” 4th IEEE Ann.

Workshop Workload Characterization, pp. 3–14, 2001.

[67] “MiBench homepage.” [Online]. Available:

http://vhosts.eecs.umich.edu/mibench/.[Accessed: Nov-2020].

[68] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A comparison of

list schedules for parallel processing systems,” Communications

of the ACM, vol. 17, no. 12, pp 685-690, 1974.

[69] T. Wei, P. Mishra, K. Wu, and H. Liang, “Fixed-priority

allocation and scheduling for energy-efficient fault tolerance in

hard real-time multiprocessor systems,” IEEE Trans. on Parallel

and Distributed Systems (TPDS), vol. 19, no. 11, pp. 1511-1526,

Nov. 2008.

[70] N. Binkert, et. al., “The gem5 simulator,” ACM SIGARCH

Comput. Archit. News, vol. 39, no. 2, pp. 1-7, May 2011.

[71] S. Li, et. al., “McPAT: An integrated power, area, and timing

modeling framework for multicore and manycore

architectures,” Annual Int’l Symp. on Microarchitecture, 2009.

[72] G. J. Briggs, E. J. Tan, N. A. Nelson, and D. H. Albonesi, “QUILT:

a GUI-based integrated circuit floorplanning environment for

computer architecture research and education,” Workshop on

Computer Architecture Education, 2005.

[73] W. Huang, et. al., “HotSpot: A compact thermal modeling

methodology for early-stage VLSI design,” in IEEE Trans. on Very

Large Scale Integration (VLSI) Systems, vol. 14, no. 5, pp. 501-513,

2006.

[74] J. Caplan, Z. Al-bayati, H. Zeng and B. H. Meyer, “Mapping and

scheduling mixed-Criticality systems with on-demand

redundancy," IEEE Trans. on Computers (TC), vol. 67, no. 4, pp.

582-588, 2018.

[75] E. Yip, M. M. Kuo, P. S. Roop, and D. Broman, “Relaxing the

synchronous approach for mixed-criticality systems,” IEEE Real-

Time and Embedded Technology and Applications Symp., 2014.

[76] S. K. Mandal, G. Bhat, J. R. Doppa, P. P. Pande, and U. Y. Ogras,

“An energy-aware online learning framework for resource

management in heterogeneous platforms,” ACM Trans. on

Design Auto. of Electronic Systems, no. 25, vol. 3, 2020.

Sepideh Safari received the M.Sc. degree in

computer engineering from Sharif University of

Technology, Tehran, Iran, in 2016 with an excel-

lent grade and the first rank. She received the

Ph.D. degree in computer engineering from

Sharif University of Technology, Tehran, Iran, in

2021. She was a visiting researcher in the Chair

http://www.mrtc.mdh.se/projects/wcet/sweet.html

18 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

for Embedded Systems (CES), Karlsruhe Institute of Technology

(KIT), Germany, from 2019 to 2021. Her research interests include

low-power design of cyber-physical systems, energy management in

fault-tolerant embedded systems, and multi-/many-core systems with

a focus on dependability/reliability.

Heba Khdr is a postdoctoral researcher and a

group leader at the Chair for embedded Sys-

tems (CES) in Karlsruhe Institute of Technology

(KIT) in Germany. She received her Ph.D. (Dr.-

Ing.) in Computer Science from Karlsruhe Insti-

tute of Technology (KIT) in 2018.

In 2005, she received her Diploma in Informat-

ics Engineering from Aleppo University in Syria

with an excellent grade and the first rank. From 2005 until 2007 she

worked as a software engineer in in the industry sector in Syria. She

worked as an assistant in Aleppo University from 2008 until 2010. In

2011 she did an equivalent master thesis at KIT.

Her research interests are thermal management and resource man-

agement in multi- and many-core systems. In 2012 she received Re-

search Student Award from KIT. She received Best Paper Award from

IEEE/ACM International Conference on Hardware/Software Codesign

and System Synthesis (CODES+ISSS) in 2014, and four HiPEAC pa-

per awards.

Pourya Gohari-Nazari received the B.Sc. de-

gree in computer engineering from the University

of Isfahan. He is currently working toward the

M.Sc. degree in the Department of Computer En-

gineering at Sharif University of Technology,

Tehran, Iran. His research interests are thermal

management in multi-/many-core systems and

design of embedded systems with a focus on

low-power and reliability.

Mohsen Ansari received his M.Sc. and Ph.D.

degrees in computer engineering from Sharif Uni-
versity of Technology, Tehran, Iran, in 2016 and
2021, respectively. He was a visiting researcher

in the Chair for Embedded Systems (CES), Karls-
ruhe Institute of Technology (KIT), Germany, from
2019 to 2021. Now, he is a postdoctoral re-

searcher and a research group leader of Embed-
ded Systems Research Laboratory (ESR-LAB),
and a lecturer at the department of computer sci-

ence and engineering, Sharif University of Technology. His research
interests include low-power design of embedded systems and multi-
/many-core systems with a focus on dependability/reliability.

Shaahin Hessabi received the BS and MS de-

grees in electrical engineering from Sharif Uni-

versity of Technology, Tehran, Iran, in 1986 and

1990, respectively, and the Ph.D. degree in elec-

trical and computer engineering from the Univer-

sity of Waterloo, Ontario, Canada. He joined Sha-

rif University of Technology, in 1996. Since 2007,

he has been an associate professor in the De-

partment of Computer Engineering, Sharif Uni-

versity of Technology, Tehran, Iran. He has published more than 100

refereed papers in the related areas. His research interests include

cyber-physical systems, reconfigurable and heterogeneous architec-

tures, network-on-chip, and system-on-chip. He has served as the

program chair, general chair, and program committee member of var-

ious conferences, like DATE, NOCS, NoCArch, and CADS.

Jörg Henkel (M’95-SM’01-F’15) is currently

with the Karlsruhe Institute of Technology (KIT),

Germany, where he is directing the Chair for

Embedded Systems (CES). Prof. Henkel re-

ceived the masters and the Ph.D. (Summa cum

laude) degrees, both from the Technical Uni-

versity of Braunschweig, Germany. He then

joined the NEC Laboratories, Princeton, NJ,

USA. His current research interests include design and architectures

for embedded systems with focus on low power and reliability. Prof.

Henkel has received the 2008 DATE Best Paper Award, the 2009

IEEE/ACM William J. Mc Calla ICCAD Best Paper Award, the

CODES+ISSS 2011, 2014 and 2015 Best Paper Awards. He was the

General Chair of major CAD events incl. ICCAD and ESWeek. He is

the Chairman of the IEEE Computer Society, Germany Section, and

was the Editor-in-Chief of the ACM Transactions on Embedded Com-

puting Systems for two terms. He is currently the Editor-in-Chief of the

IEEE Design&Test Magazine. He is also an Initiator and Spokesper-

son of the national priority program on Dependable Embedded Sys-

tems of the German Science Foundation and the site coordinator

(Karlsruhe site) of the three-university collaborative research center

on invasive computing. He is a Fellow of the IEEE and holds ten US

patents.

