IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Peak Power Management to Meet Thermal Design
Power in Fault-Tolerant Embedded Systems

Mohsen Ansari, Sepideh Safari, Amir Yeganeh-Khaksar, Mohammad Salehi, and Alireza Ejlali

Abstract— Multicore platforms provide a great opportunity for implementation of fault-tolerance techniques to achieve high
reliability in real-time embedded systems. Passive redundancy is well-suited for multicore platforms and a well-established
technique to tolerate transient and permanent faults. However, it incurs significant power overheads, which go wasted in fault-
free execution scenarios. Meanwhile, due to the Thermal Design Power (TDP) constraint, in some cases, it is not feasible to
simultaneously power on all cores on a multicore platform. Since TDP is the maximum sustainable power that a chip can
consume, violating TDP makes some cores automatically restart or significantly reduce their performance to prevent a
permanent damage. This may affect timeliness of the system, and hence, designers face a challenge in deciding how to use
multicore platforms in real-time embedded systems. In this paper, at first, we study how the use of passive redundancy
(especially for Triple Modular redundancy) can violate TDP on multicore platforms. Then, we propose a scheme for scheduling
real-time tasks in multicore systems to conquer the peak power problem in NMR systems. This is because in multicore
embedded systems an efficient solution for meeting the TDP constraint is reducing the peak power consumption. The proposed
scheme tries to remove overlaps of the peak power of concurrently executing tasks to keep the maximum power consumption
below the chip TDP. In the proposed scheme, we devised a policy called PPA-LTF to manage peak power consumption. This
policy prevents tasks execution that consume higher power according to the tasks’ power traces. Our experimental results show
that our scheme provides up to 50% (on average by 39%) peak power reduction compared to state-of-the-art schemes.

Index Terms— Peak Power Consumption, Fault Tolerance, Embedded Systems, Multicore Platforms, Thermal Design Power.

1 INTRODUCTION

ITH the advance of VLSI technology, due to the per-

formance and power efficiency, multicore platforms
are becoming the dominant trend in embedded sys-
tems [1], [2], [3], [4]. This is the main reason for moving
from single-core to multicore platforms to balance the
power consumption and computation performance. Mean-
while, technology scaling has increased the number of
transistors onto a multicore chip while power budget con-
straints restrict the design of multicore embedded sys-
tems [1], [3], [5], [6]. In spite of the high potential for fault-
tolerance techniques in multicore platforms, due to the
Thermal Design Power (TDP) constraint, designers of
fault-tolerant embedded systems face a challenge in decid-
ing how to use them. TDP is considered as the highest sus-
tainable power that a chip can dissipate without triggering
any performance throttling mechanisms [19], e.g. Dynamic
Thermal Management (DTM) [20]. Keeping the peak
power consumption below the TDP value causes that the

o M. Ansari, S. Safari, A. Yeganeh-Khaksar and A. Ejlali are with the De-
partment of Computer Engineering, Sharif University of Technology, Teh-
ran 14588, Iran (e-mail: mansari@ce.sharif.edu; ssafari@ce.sharif.edu;
ayeganeh@ce.sharif.edu; ejlali@sharif.edu).

o M. Salehi is with the University of Guilan, Rasht, Iran (e-mail: moham-
mad.salehi@guilan.ac.ir).

Manuscript received 14 Jan. 2018; revised 22 June 2018; accepted 8 July

2018. Date of publication X Y Z; date of current version X Y Z.

(Corresponding author: Alireza Ejlali.)

Recommended for acceptance by X. X.

For information on obtaining reprints of this article, please send e-mail to:

reprints@ieee.org, and reference the Digital Object Identifier below. Digital

Object Identifier no. 10.1109/TPDS.2018.2858816

XXXX-XXXX/Ox/$xx.00 © 200x |IEEE

system can execute its tasks without reducing reliability
and performance. If a chip violates its TDP, it automati-
cally restarts or significantly reduces its performance to
prevent a permanent damage. Therefore, reducing the
peak power consumption is the main step towards dealing
with thermal constraints such as TDP [1], [3], [5]. Mean-
while, the scaling of the feature size raises the susceptibil-
ity of digital systems to transient faults [7], [8], [9], [10].
Transient faults in underlying hardware (e.g. Soft er-
rors [11]) are the major reliability concerns in digital sys-
tems, especially due to the continuously decreasing feature
size [12]. Multicore systems provide a great opportunity to
implement reliability mechanisms against transient faults,
such as redundant multithreading (RMT) [13], [14], pro-
cess level redundancy [15] and task-level redun-
dancy [2], [16], [17]. The task-level redundancy is a well-
established technique to achieve high reliability against
different fault types [2] and is well-suited for multicore
platforms. On the other hand, passive redundancy per-
forms fault masking on the basis of voting. In the passive
redundancy, N copies of each module are combined as an
N-modular redundant set that tolerates multiple
faults [16]. The best-known example of this technique is
TMR, which consists of three identical copies whose results
are voted on [2].

In this paper, at first, we show how the TMR technique
may increase peak power consumption and consequently
may result in a chip TDP violation (see Motivational Ex-
ample). Then, we propose a two-phase peak power man-
agement (TP3M) scheme which manages peak power con-
sumption for the NMR technique on multicore platforms

Published by the IEEE Computer Society

—— Peak Power TDP

Cored

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Ts |To[Ts

Core3 L[T [Ta [T To |

Ts Ta |To[Ts

Core2 LBl 15 [Ta [Ts] Te |

[Efrfr] [T[T

Corel [Tl 15 | 7o [To| Te |

TalTe| Ts |Te

3.6W 1

8w

ssw| |zew

T

]
er.zswT

0 100 160
Time (ms)

(a) (b)

0 10 50 60 9 110
Time (ms)

(c)

50 60 90 110 16¢
Time (ms)

(d)

Fig. 1. Motivational example of peak power problem of a TMR system (i.e. NMR with N=3) on a multicore system with 4 cores. a) An example
task graph, b) Parallel execution of all tasks (the conventional triple modular redundancy), c) Delayed execution of the third copy of the tasks,

d) Scheduling the tasks according to the TP3M policy (our scheme).

(Section 4). This scheme schedules hard real-time tasks on
cores in a multicore system without violating real-time and
TDP constraints. Our TP3M scheme aims at removing
overlaps of the peak power of concurrently executing tasks
to keep the power consumption below the chip TDP. To do
this, considering the tasks” power traces, at first, we parti-
tion the tasks into parts where different parts have differ-
ent peak power values (Section 4.3). Then, we have used
two phases for scheduling the partitioned tasks. In these
phases, we have devised a policy called PPA-LTF to reduce
peak power consumption. In the first phase, the proposed
scheme schedules more than half the number of copies for
each task based on the Peak-Power-Aware Longest Task
First (PPA-LTF) policy. When no fault occurs during this
phase, the remaining copies of the tasks are not required.
Otherwise, the remaining copies of the tasks are scheduled
in the second phase to perform a complete majority voting.
In this phase, we use PPA-LTF to manage peak power con-
sumption. This leads to a smoothly consumed power and
results in a reduced peak power. In summary, our scheme
tries to separate execution of the essential tasks and the re-
dundant tasks to remove overlaps of the peak power of
them. In this scheme, the tasks that consume higher power
overlap with the other tasks that consume lower power
with the aim of keeping the total peak power below the
chip TDP.

Motivational Example: This example provides some in-
sight into how the different scheduling algorithms work to
meet power budget (TDP). Let us consider a quad-core
chip with 3W of TDP that executes an application tasks
graph with six tasks {T1, Tz, T3, Ty, T5, Te}. Fig. 1a shows
dependencies between the tasks where the number above
each task is its worst-case execution time at the maximum
supply voltage and the maximum operational frequency.
The tasks share a common deadline D=160ms. For simplic-
ity of presentation, we temporarily assume that the tasks’
peak power is equal to a constant value so that each task
consumes 1.2W of power during its execution. After finish-
ing the task, the underlying core goes to sleep mode and
consumes no power. In the rest of this paper, when we pre-
sent our method each task consumes a different amount of
power during its execution, depending on its characteris-
tics and computational load and, different tasks have dif-
ferent power traces. In this example, we consider a TMR
system (i.e. NMR with N=3) where each task has three cop-

ies and the result of them are compared to perform a com-
plete majority voting. Fig. 1 shows three possible schedules
where meet timing constraint. One way to execute this task
graph is the parallel execution of all copies of each task on
three cores of the chip (the conventional triple modular re-
dundancy), as shown in Fig. 1.b. In this way, all copies of
T1 to Ts are scheduled from t=0ms to t=100ms and all cores
go to sleep mode after t=100ms (Fig. 1b). Here, the total
peak power of the system is 3.6W during the time interval
between 0 and 100ms, and hence, it violates the chip TDP
of 3W. Another possible execution scenario for this task set
is shown in Fig. 1c where the system operates in two
phases, which has been presented in [2]. At first, the sys-
tem operates in its indispensable phase where two copies
of each task are scheduled using list scheduling with the
longest task first (LTF) policy. Then, in the conservative
phase, the third copy of each task is scheduled on the
schedule to obtain three results for performing a complete
majority voting. This method effectively reduces energy
consumption through dropping the third copy of the tasks
when no fault occurs. Since this method does not consider
peak power consumption, it may violate the chip TDP. As
shown in Fig. 1c, in the time interval 20ms to 40ms and the
time interval 70ms to 80ms all the four cores are active at
the same time, and hence, the total power consumption of
the chip is 4.8W that is higher than the chip TDP (i.e. 3W).
In Fig. 1d, a scheduling method is shown that does not vi-
olate the chip TDP. In this method, at first from the begin-
ning of the execution frame, two copies of each task are
scheduled on cores with the lowest utilization such that the
peak power consumption is kept below the chip TDP.
Then, for scheduling the third copy of the tasks, starting
from the end of the execution of two other copies of the
same task, the third copy is scheduled on a core with the
lowest utilization such that the peak power consumption
is kept below the chip TDP. In this execution scenario, at
most time instants at most two cores are active. Since each
task consumes 1.2W on each core, the maximum total
power consumption in this scenario is equal to 2.4W (i.e.
less than the chip TDP).

Objective: The objective of this paper is to present a Two-
Phase Peak-Power Management (TP3M) scheme. TP3M is
a method that uses N-modular redundancy (NMR) tech-
nique to achieve fault tolerance in real-time multicore em-
bedded systems such that timing and TDP constraints are
met. In this method, we focus on scheduling a task set in

ANSARI ET AL.: PEAK POWER MANAGEMENT TO MEET THERMAL DESIGN POWER IN FAULT-TOLERANT EMBEDDED SYSTEMS 3

two phases. In the first phase, more than half the number
of copies for each task are scheduled based on the Peak-
Power-Aware Longest Task First policy. If no fault occurs
during this phase, the results must be identical and hence
the remaining copies are not required. Otherwise, the re-
maining copies must be scheduled and executed in the sec-
ond phase based on PPA-LTF to perform a complete ma-
jority voting. To the best of our knowledge, the power
management techniques for fault-tolerant systems that
have been presented in the literature only try to reduce the
average power consumption and cannot provide a deter-
ministic guarantee to keep power consumption below the
chip TDP.
Our Contribution: The main contributions of this work
are:
e Proposing a peak-power-aware reliability man-
agement method that manages peak power
overlaps between concurrently executing tasks.

e Enabling task replication such that the system
reliability is preserved while guaranteeing to
keep the total power consumption of cores be-
low the chip TDP and the power consumption
of each underlying core below the core TDP con-
straint.

e Developing a new scheduling algorithm that
avoids concurrent execution of tasks based on
the peak-power-aware longest task first policy.

e Determining the voltage-frequency levels such
that the tasks meet their timing constraints while
keeping the total power consumption under the
chip TDP at each time interval.

Evaluation: We ran simulations with gem5 [34] and
MCcPAT [35] to compare our TP3M method with state-of-
the-art methods (especially with LE-NMR presented in [2])
for the worst-case and actual-case scenarios. Our experi-
ments show that TP3M provides up to 50% (on average by
39%) peak power reduction compared to the other schemes
in the worst-case scenario. Also, TP3M provides up to
443% energy saving in the actual-case condition through
canceling unnecessary execution when no fault occurs.

Organization: The remainder of this paper is organized
as follows. In Section 2 we review related work. Section 3
presents models and assumptions. In Section 4, we present
our TP3M scheme in details. The experimental results are
presented and discussed in Section 5. Finally, we conclude
the paper in Section 6.

2 REeLATED WORK

Some related works have addressed both fault tolerance
and low power consumption in fault-tolerant real-time
embedded systems with two processors [21], [22], [23]. To
reduce the average power consumption, Ejlali et al. [21]
have proposed a technique where DVS is used for the first
processor (primary processor) while the second processor
(spare processor) does not use DVS to preserve the relia-
bility of the system when a fault occurs. The scheme pro-
posed in this work is suitable for non-preemptive and ape-
riodic tasks, while most of the real-time applications on

embedded systems are inherently periodic [22]. The work
in [22] has proposed an energy-aware scheduling scheme
for a standby-sparing system that executes preemptive pe-
riodic real-time applications. They apply Earliest-Dead-
line-First (EDF) scheduling with DVS on the primary pro-
cessor, while the backup tasks are executed on the spare
processor according to Earliest-Deadline-Late (EDL)
scheduling. Haque et al. [23] have proposed an energy-
management technique for a standby-sparing system that
executes preemptive fixed-priority real-time tasks. Tasks
on the primary processor are scheduled by the Cycle-Con-
serving DVS algorithm that has been proposed for Rate
Monotonic Scheduling (RMS) in [24]. While the spare core
uses DPM and dual-queue mechanism that tries to maxi-
mally delay the backup tasks to save more energy. These
works have not considered multiple faults per task execu-
tion. Some research works, e.g. References [2] and [25]
have proposed voltage-scaling techniques to reduce the
energy consumption of N-modular redundancy (NMR).
The reference [25] reduces the energy consumption of tri-
ple-modular redundancy (TMR) by exploiting voltage-
scaling techniques. Salehi et al. [2] have proposed an N-
modular redundancy (NMR) technique with low energy
consumption for hard real-time multicore systems. All of
these works have focused on reducing the average power
and energy consumption and have not considered peak
power management.

Some studies concentrated on thermal management in
multicore systems [26], [27], [3]. Fisher et al. [26] have pro-
posed a global thermal-aware scheduling to reduce the
temperature for sporadic tasks. Jejurikar et al. [27] reduce
energy consumption by using deferment interval for each
task by considering real-time constraints. [3] has presented
a new power budget concept, called Thermal Safe Power
(TSP), which is an abstraction that provides safe power and
power density constraints as a function of the number of
simultaneously active cores. Some related works have fo-
cused on reducing the peak power consumption under
real-time constraints [1], [5], [28]. Lee et al. [1] have pro-
posed a new scheduling algorithm for real-time tasks to re-
duce chip-level peak power consumption, without relying
on any extra hardware (e.g. DVFS controller). This algo-
rithm restricts the concurrent execution of tasks that are as-
signed to different cores, and perform its schedulability
analysis. Lee et al. [28] have proposed a task scheduling
that prevents the occurrence of the peak power consump-
tion for task-graph models. The proposed algorithm in this
work schedules the tasks by considering data dependency
information while reduces the peak power. As one of the
most related work, Munawar et al. [5] have presented a
scheme to minimize the peak power for frame-based and
periodic tasks with real-time constraints on multicore sys-
tems. The reference [5] schedules the sleep cycles for each
active core to manage the peak power. Pagani et al. [29]
have presented a solution both for energy minimization
and peak power reduction for periodic real-time tasks on
multicore systems. These researches that try to reduce the
peak power do not consider any fault-tolerance techniques
to deal with transient and permanent faults.

Generally, the previous works in the context of multicore

embedded systems either propose peak power reduction
techniques without considering reliability like [1] and [5]
or consider reliability without considering peak power re-
duction like [2], [8], [11], and [22]. In this paper, we exploit
a fault-tolerance technique (N-modular redundancy) to
achieve high reliability for real-time multicore systems and
propose a scheme to keep the chip peak power consump-
tion under its TDP constraint. In this section, we discussed
the differences between our work and the previous works.

3 MODELS AND PRELIMINARIES

In this section, we present our system, application, power
and fault models. We also provide reliability modeling of
our system in this section.

3.1 System and Application Model

This paper focuses on a multicore system with m cores
C={Cy, Cy, ..., Cy} similar to Intel SCC [38]. The system ex-
ecutes frame-based applications with hard real-time re-
quirements consisting of n dependent tasks @={Ty, T, ...,
T.}. These tasks share a common global deadline D, which
is also the period (or frame) of the task set [30], [31], [32].
The group of tasks is scheduled based on the precedence
which modeled by a task graph. A sample task graph is
composed of some nodes and vertices (see Fig. 1a). Each
node in the task graph represents a task while the directed
edges represent data dependencies between the tasks. The
worst-case execution time for the task T; at the maximum
frequency fua is denoted by Wi and has been written above
each node. The utilization of a task T; is defined as
u=W;/D. Also, the total utilization of the system U is the
sum of all the task utilizations.

3.2 Power Consumption Model

We adopt a system-level power model where total power
consumption consists of a static and a dynamic compo-
nent. The dynamic power P, includes a frequency-inde-
pendent power consumption and a frequency-dependent
power consumption that are defined as P4 and Pag,, re-
spectively. P4 is driven by the peripheral modules such as
I/0 in the activation mode. On the other hand, the static
power, P, consists of the reverse and sub-threshold leak-
age power that are consumed even when no computation
are carried out. Since the sub-threshold leakage and the
frequency-dependent power are dominant in the static and
dynamic power, respectively, the total power of each core
can be written as [2], [4], [8], [11], [21], [22], [23]:
P=P+P =1,V +C,V2.f 1)

sub

where Ce, V4, and f are the effective switched capacitance,
supply voltage and operational frequency, respectively. In
this paper, we use Dynamic Power Management (DPM) to
manage peak power where whenever a core is temporarily
idle, it goes into sleep mode to reduce power consumption.
In addition, we use Dynamic Voltage Scaling (DVS) for re-
ducing total power consumption. When DVS is used, each
task T is executed at a voltage V;, which is less than V.
(the maximum supply voltage). By considering an almost

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

linear relationship between voltage and fre-
quency [2], [25], [31], when a task T; is executed at the
scaled voltage V, = pV,,, , the operational frequency can be
written as:

fi =h fmax (2)
where f; is the operational frequency corresponding to V;
and fu.» is the maximum operating frequency correspond-
ing to Vyux. Therefore, the total power consumption which
is consumed to execute the task T; is given by:

P = Isubpivmax +Ceff plzvnfaxpl fmax =6 Ps +pi3Pd (3)
where P; and P; are respectively the static and dynamic
powers at the maximum voltage and frequency.

3.3 Fault Model and Reliability Analysis

Computer systems are susceptible to faults due to various
runtime errors. Faults can be categorized into transient and
permanent faults [16], [21]. Transient faults may manifest
in the form of single event upset or soft errors with incor-
rect results. These faults are commonly caused by alpha
particles and cosmic rays that strike chips in unpredictable
ways. These errors are called soft because they do not lead
to permanent failure. Transient faults are typically mod-
eled using a Poisson distribution with an average arrival
rate A [30]. When the frequency is scaled down using DVS,
the fault rate A increases significantly [21]. Therefore, the
fault rate at frequency fis modeled as [22], [23]:
d@-t)

A(F)=2,10% fo)
where Ao is the average fault rate at the maximum fre-
quency and the exponent d (sensitivity factor) is a measure
of how the transient fault rate increases when the supply
voltage and frequency are scaled [30], [31]. Considering (4)
the reliability of a task T; running at frequency f; can be ex-
pressed as [2], [22]:

R(fy=e " ©)
where A(f) is given by (4) and ¢ is the actual execution
time of the task T;. Conversely, the probability of failure of
the task T; is given by [21]:

_/‘L(fl)i
F(fi):l_Ri(fi):l_e f (6)

The reliability of the proposed method is calculated by
considering the two conditions, i.e., (1) the fault-free con-
dition when all [N / 2] copies of each task are executed cor-
rectly, (2) the faulty condition when some tasks become
faulty and we require the results of the remaining [N/2]
copies of tasks. Therefore, the reliability of each task in the
fault-free condition can be calculated as [2]:

Rere(T) = R(fi)mm (7)
where Ri(f) is given by (5). When up to LN /2] copies of a
task T; become faulty, the reliability of a task T; can be cal-
culated as [2], [17]:

[N/2

Roay (T) =Pk <[N/2])= ZJP(# of faults=k)

IN/2J(N . (8)
= IZ: [I]Fi(fi)l Ri(fi)NJ

ANSARI ET AL.: PEAK POWER MANAGEMENT TO MEET THERMAL DESIGN POWER IN FAULT-TOLERANT EMBEDDED SYSTEMS 5

where Fi(f) is given by (6) and k is the number of faults.
According to Equations (7) and (8), the reliability of a task
T; in both the fault-free and faulty conditions can be writ-
ten as:

Rtotal (TI) = Rfaultffree(Ti) + Rfaulty(-ri)
= Ri(fi)m/ﬂ +L%J[Tjﬁ(fi)l Ri(fi)NiI

Generally, the reliability of a system with 7 tasks running
by our proposed method can be calculated as:

©)

n

Rsystem = H Rlotal (T|)

i=1

(10)

4 OUR PROPOSED METHOD

In this section, at first, we represent a high-level overview
of our TP3M system. Then, in Section 4.2, we define the
problem of the task scheduling and mapping on a multi-
core system. In Section 4.3, we explain our proposed Two-
Phase Peak-Power Management (TP3M) scheme, and in
Section 4.4 we use an example to illustrate how our pro-
posed scheme works.

4.1 System Overview

To fulfill the objective of the paper, we propose a peak-
power management scheme that provides a right design of
the system and ensures that the power dissipation of cores
meets peak power constraints. Based on a chip-level power
constraint, the proposed scheme parcels this power budget
into local power budgets for each core. The local power
budget is calculated by determining the worst-case
mapping of cores. These local power budgets can be used
as power constraints for any possible mapping of cores
and, as a result, DTM is not triggered at any time. As
different application tasks have different power traces,
reliability, failure rates, and execution time properties, the
proposed method considers all of them. Our proposed
Two-Phase Peak-Power Management (TP3M) scheme con-
sists of an offline part and an online part that are explained
in Section 4.3. Also, the TP3M scheme consists of the
mandatory and conservative phases to take the advantages
of fault-free scenario. In the offline phase, after scheduling
the tasks, we apply two different techniques, DVFS and
DPM, to reduce peak power dissipation and average
power consumption. For the sake of completeness, in the
mandatory phase, only half-plus-one copies of each task
are scheduled according to the PPA-LTF policy and the
remaining copies must be scheduled in the conservative
phase according to the PPA-LTF policy to perform a
complete majority voting. Meanwhile, for the proposed
scheme, we have exploited different types of slack time to
reduce the average power consumption through DVS. Al-
gorithm 1 in Section 4.3 shows the pseudo code of the task
scheduling mechanism of our TP3M scheme. Also, Fig. 2
shows the overview of our TP3M system along with differ-
ent inputs from the hardware and software components.
In the following (Section 4.4), we use an example to illus-
trate how our proposed scheme works.

Design Flow

Software-Level Parameters Hardware-Level Parameters

(Core-to-Core Process Variation Map)

V-f levels :1 :
N ng| :
i Chip TDP i :
8 :l:=€||'|.'1=|-'.
2)’

 Calculate worst-case A A

A
execution time for each H ‘| J_/
[lnlnlls , ;
~ > >

task on all cores
Execution Time Power Trace

Task sets

A

Timing & Reliability
Requirements

Intended task
dependencies

© Obtain power trace for
each task on all cores

Scheduler (TP3M:Two-Phase Peak-Power Management)

v [
Mandatory Phase Conservative Phase

Schedule| 7 /' 2| copies of the
selected task T; one by one based
on the PPA-LTF policy on the core
+ with lowest utilization

Schedule TV / X copies of the +
selected task T; one by one based
lon the PPA-LTF policy on the core scheduled, return infeasible.

with lowest utilization I

v v

If not all the copies are
scheduled, return infeasible.

Select the largest unscheduled
task whose predecessors have
all scheduled;

If not all the copies are

Iterate until all the tasks in the
ready queue are scheduled.

Y .

L 2
*—| Voltage-and-Frequency selection |
| Offline Scheduling |) 4

| Idle time extraction |
S — |

Fig. 2. The operational flow of our TP3M system.

4.2 Problem Definition

In the following, we define the problem of the task sched-
uling and mapping on a multicore system when exploiting
the NMR technique and different V-f levels for different
application tasks such that the peak power consumption is
kept below the chip TDP. To do this, we use the following
notation to represent the peak power consumption, the re-
liability of the system, V-f levels, and task mapping. In the
problem formulation, n is the number of tasks, m is the
number of available and free cores and [is the number of
V-f levels for each core. Table 1 shows the notation used
for variables throughout this section.

e The peak power consumption is represented by
the matrix PPC € ™™ “in which PPCj is the
peak power consumption for the task i when is ex-
ecuted on the core j under the V-f level k at time 5.

e The V-f level assignment and task mapping are
represented by the matrixY €{0,3"™', in which
the task i is mapped to the core j and is executed
under the V-f level k if and only if Yix is equal to 1.

o The reliability of the system is represented by the
matrix ReR™™' in which each element Ry de-
notes the reliability of task i when is executed on
the core j under the V-f level k.

Besides the technique introduced in this paper, we formu-
late the peak-power-aware scheduling problem as a con-
strained 0-1 integer linear program (ILP). Since the goal of
the paper is to meet reliability, TDP and timing constraints
in a multicore embedded system that consists of a set of
tasks with different arrival times and deadlines, the objec-
tive function should be the constant value.

Minimize F(x) =1
vx e R

(11)

The total power consumption (i.e. the sum of the instanta-
neous power of all underlying cores) should be less than
the chip TDP constraint at each time interval. Furthermore,
the peak power of each underlying core should be less than
the core TDP constraint.

Z YijthPCijkh < PTDP,chip

ikl

Yijkh PPCijkh < PTDP‘k

(12)

(13)

For timing constraints, the worst-case execution time Wy/fi
for the task 7 on the core j and at the V-f level k should not
exceed the task timing constraint (defined by the D).

Yi'kh —+< Di
] fjk

(14)

The system reliability is defined by the successful execu-
tion of all tasks. Therefore, the reliability mechanism satis-
fies the reliability requirement R, when:

Hxi,j,kRi‘j,k 2 Rreq (15)
i,jk
Also, each task can be only mapped to a single core.
Vi, D Y =1 (16)
h

The formulated problem is usually classified as an NP-
complete problem [1], [5], and hence we use a heuristic
method.

4.3 Algorithm Discussion

Our proposed Two-Phase Peak-Power Management
(TP3M) scheme consists of the offline part and online parts
that are explained as follows. Meanwhile, the offline part
consists of two phases: mandatory and conservative
phases. In the offline phase, after scheduling the tasks, we
apply two different techniques, DVFS and DPM, to reduce
peak power dissipation and average power consumption.

Algorithm 1 shows the pseudo code of the task scheduling
mechanism of our TP3M scheme that receives an applica-
tion task graph (®) to make schedules for the mandatory
and conservative phases. At first, we determine the size of
the time slots in line 1. For this purpose, the execution
frame is divided into h=D/ CLK_C slots (CLK_C is the clock
cycle time). In this algorithm, we use a peak power array
including h slots that determines the peak power con-
sumption of the system in each time slot (i.e. the list PPL in
line 2). In line 3 to 5, we partition all the tasks into parts
with different peak power values. Here, the number of
parts of the task T;is W//CLK_C. In line 6, the algorithm in-
itializes a schedule S; to Null for each core of C (C is the set

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Table 1. The Notation of the Parameters

Notation Description
PPC Peak power consumption matrix
The peak power consumption for task i when is
PPCijn executed on the core j under the V-flevel k at time
h
Prpp,chip Chip TDP constraint
Prork Core TDP constraint
Y The V-f level assignment and task mapping
matrix
Yir The task i mapped to the core j and executed
under the V-f level k
R Reliability matrix
R The reliability of the task i when is executed on
the core j under the V-f level k
Rreq Reliability requirement

of cores). Next, the algorithm iterates until all the tasks are
selected (lines 7-61). In line 8, we select the largest unsched-
uled task T; whose predecessors have all been scheduled.
We use the variable g to count the number of scheduled
copies of each task and make the temporary set of available
cores MC (lines 9 and 10). In line 11 to 31, the algorithm
iterates until [N / 2] copies of each task are scheduled based
on the PPA-LTF policy. In order to provide core usage ef-
ficiency, we select a core with the lowest utilization to
schedule the selected task on it (denoted by ¢ in line 12).
We use the variable k to determine where the current part
of T; (T;) can be placed. The variable k is initialized to the
first free time slot after which all predecessors of the se-
lected task have scheduled (line 13). Now, starting from k,
we check free time slots of the core ¢ one after another and
place each part Tj; on the first free time slot ¢ (t=k—h) such
that the peak power consumption of T;; does not exceed the
core TDP constraint and also does not increase the total
power consumption beyond the chip TDP. Therefore, we
place Tj in # time slot of ¢.S in line 18 and update the
power consumption list PPL in line 19, and update the var-
iable k in line 20. Otherwise, if the core TDP constraint
(p.TDP) is not met, the scheduled parts of the selected task
T; are deleted from ¢.S and the selected core ¢ is removed
from MC, then, the algorithm goes back to line 12 to try
again for scheduling the selected task T; on another core. If
not all the copies are scheduled in the mandatory phase,
the algorithm returns infeasible in line 33. After the manda-
tory phase, we schedule IN/2] copies of the tasks based on
the PPA-LTF policy in the conservative phase. In line 37 to
57, the algorithm iterates until LN /2] copies of each task
are scheduled based on the PPA-LTF policy. To do this, we
choose a core with the lowest utilization to increase the
efficiency of the cores. In this phase, the variable k is initial-
ized to the first free time slot after the finish time of the last
copy of the selected task in the mandatory phase (line 39).
We place the parts of the tasks, beginning from the first
part, on time slots that come sooner in the schedule ¢.S.
Then, we check free time slots of the core ¢ one after an-
other and place each part T; on the first free time slot ¢
(t=k—h) such that the peak power consumption of T; does

ANSARI ET AL.: PEAK POWER MANAGEMENT TO MEET THERMAL DESIGN POWER IN FAULT-TOLERANT EMBEDDED SYSTEMS

not exceed the core TDP constraint and also does not in-
crease the total power consumption beyond the chip TDP
(lines 40-43). In this case, T} is placed in the time slot ¢ of
@.S in line 44. The power consumption list PPL is updated
in line 45 and the variable k is updated in line 46. If the core
TDP constraint (¢.TDP) is violated, the scheduled parts of
the selected task T; are deleted from ¢.S and the selected
core @ is removed from MC, then, the algorithm goes back
to line 38 to choose another core. It should be noted that
when the current part of the selected task T; is placed on a
time slot ¢, the next part Tjj+1 can be placed on the next time
slot starting from t+1. Finally, if not all the copies are
scheduled, the algorithm returns infeasible in line 59.

As explained later, when no fault occurs, we do not exe-
cute LN/2] copies for each task, which results in consider-
able power saving as compared with conventional NMR.
In the following, we explain how the proposed method ex-
ploits static and dynamic slack times to reduce power con-
sumption. The dynamic slack is created when [N /2] cop-
ies of a task are successfully finished during the mandatory
phase; therefore, the additional LN /2] copies of the task
are not executed in the conservative phase. In the offline
part, we assume that no dynamic slack time exists because
the amount of dynamic slack times is unknown at the de-
sign time. The challenge of the offline phase is to make ap-
propriate decisions to guarantee the timing requirements
while also considering the chip TDP in a system. As each
part of the task Tj is executed at the scaled supply voltage
PijVmax, its worst-case execution time of each part increases
from W;; to Wj;/ p;;. Since the power trace of a task depends
on the supply voltage, operational frequency, and input
data switching activity, the power traces of the tasks are
changed whenever DVFS is used. For applying DVES, we
exploit free time slots on all the schedules such that the
power constraints are met. When a part of a task Tj is exe-
cuted at the scaled voltage Vi=p;jVux, considering a linear
relationship between voltage and frequency, we have:
fi=piifmax, Where f; is the operational frequency correspond-
ing to Vjj and fu is the maximum operational frequency.
Therefore, the execution time of each part of the task Tj is
lengthened from W; to W/, and by considering
Vii=piiVinax and fi=pjjfuax, the total power dissipation which
is consumed to execute each part of the task is given by Eq.
3. But, when the execution time of a part Tj is lengthened
from W;; to Wiy/p;;, this part may overlap with other tasks
that have high power consumption. In this case, if the chip
TDP constraint is violated, we do not use DVFS and reduce
peak power and average power consumptions through
DPM. In order to apply DPM, let assume we have a break
to sleep time (twriticat). Therefore, if the idle time of a core is
greater than f.iic, the core switches to sleep mode. To
identify when to apply DVFS and DPM in the above dis-
cussion, core utilization is often used to assist the determi-
nation of the use of the techniques. The core utilization re-
fers to the fraction of the time that the core spends non-
idle. When the core utilization is low and slack time is
greater than feiic, we can use DPM. If slack time is less
than teiica, we try to apply DVFS such that the chip TDP
and core TDP constraints are met.

As the final discussion of this section, we discuss the time

Algorithm 1: The task scheduling mechanism of our TP3M scheme

Inputs: @: Application task graph, D: Deadline, N: Parameter N of
NMR, C: Set of cores, Available V-f levels for each core,
Tasks’ power trace, and Chip TDP and Core TDP constraints.
Output: The task scheduling Si on each core C;.

BEGIN:

1: h=D/CLK_C; //Total # of time slots in the frame
2: PPL[1...h]={0}; //nitialize the total power consumption array
3: for all tasks in ® do

4: Ti=({Tj, 1sj<Wi/CLK_C}; //partition all the tasks into parts
5: end for;

6: S={Null, 1<i<m}; //Initialize S with an empty schedule
7: while (all tasks in @ are not selected) do

8: Ti= D.select(); //Select the largest unscheduled task whose predecessors
- have all scheduled;

9: ¢=1;

10: MC=C;

-~ //Mandatory phase: Schedule[N | 7]copies

11: while (3<[N/2]& MC# @) do

12: o= MC.minutiization;

13: k= Finish_time_of_predecessor(Ti);

14: foreach part Tj starting from the first part do

15: foreach free slot t=k—h in ¢.S do

16: if PPL[t]+peak_power(Ty) < Chip_TDP then

17: if peak_power(Tyj) < ¢.TDP then

18: @.S.add(t,Ti);

19: PPL[t] = PPL[t]+ peak_power(Tj);

20: k=t+1;

21: break;

22: else

23: @.S.delete(Ti); //Delete the task T: from ¢.S
24: MC.remove(ep); //Remove ¢ from MC for the task T:
25: goto line 12;

26: end if;

27: end if;

28: end for;

29: end for;

30: g=gq+1;

31: end while;

32: if not all the copies are scheduled then

33: return infeasible;

34: end if;

35 g¢=1;

36: MC=C;

--//Conservative phase: Schedule [N/2] copies

37: while (4<|[N /2] & MC# @) do

38: @=MC.minuiizaion;

39: k= Finish_time_of_last_copy(Ti); ~ //Last copy in the Mandatory phase
40: foreach part Tj starting from the first part do

41: foreach free slot t=k—h in ¢.S do

42: if PPL[t]+peak_power(Ti) < Chip_TDP then

43: if peak_power(Ti) < . TDP then

44: @.S.add(t,Ti);

45: PPL[t] = PPL[t]+ peak_power(T);

46: k=t+1;

47: break;

48: else

49: @.S.delete(Ti); //Delete the task T: from ¢.S
50: MC.remove(ep); //Remove ¢ from MC for the task T:
51: goto line 36;

52: end if;

53: end if;

54: end for;

55: end for;

56: g=q+1;

57: end while;

58: if not all the copies are scheduled then

59: return infeasible;

60: end if;

61: end while;

END

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Peak Power TDP
5 TG sosvsiies 7 D
3 T
5 Nt {~ev—Ty alnlnl [& | [% [T
- TR AR \ 1.
E— g \\'.' s ‘\\ " (w2 Ts Ta T,
v £
2 ¥4 | B o] [T [T T;
Q U 1 '£4
< c4(n T Ts [l T
8o ¥ 2
3 T " . "
05
0 5 10 15 20 25 30 35 40
0 30 60 %0 120 150 180
Time (ms) Time (ms)
(b) (c)
D D D
= 1
cal T s iy T, T [Te almn —— [Tl cif 1| i | e
= 1
(o IEY Ts T T 2l T Ts Ty T; C2(Ty | T | T
G[T T T Ts T, G T Ts T, G] T | Ts | T.
caLs Ts T T ca T, ca[T1 i 1
3w 3W 3w
T AT P > -
PSSV wetoss unat N Rt WO Aok BOPY A fr | s [y |
0 30 60 EY 120 150 180 0 30 60 90 120 150 180 0 30 60 .90 120 150 180
Time (ms) Time (ms) Time (ms)

(d)

(e) (f)

Fig. 3. An example of how our proposed method works on a multicore system with 4 cores. a) An example task graph, b) Power traces of the
tasks, c) the schedule with two copies of each task for the mandatory phase and one copy for the conservative phase, d) Final schedule for
the worst-case scenario with applying DVS, e) Taking advantage of the fault-free execution, f) Applying DVS and DPM in the fault-free scenario.

required to meet the TDP, timing and reliability constraints
simultaneously. Since we shift some tasks to the next time
slots to reduce peak power, we need more time slots for
meeting the deadline. In order to shift tasks to the next time
slots for execution, we should find the exact execution time
because tasks should not miss their deadlines. It should be
noted that in this paper, we have focused on meeting TDP,
timing and reliability constraints simultaneously. There-
fore, our proposed scheme incurs more time overhead as
compared to other schemes that consider fewer con-
straints, e.g. the references [1], [2], and [5]. For example, in
the motivational example, the proposed scheme in [2] (Fig.
1c) schedules tasks before t=120ms, however, it violates
TDP in several time slots. Therefore, for meeting TDP, tim-
ing and reliability constraints simultaneously, we must
consider more time slots.

4.4 An lllustrative Example

In the following, using an example we illustrate how the
algorithm works. For simplicity in presentation, this exam-
ple is considered to show the effectiveness of our scheme,
however, the proposed scheme works for more complex
and larger task graphs. Let us consider a quad-core chip
with 3W of TDP that executes an application tasks graph
with 7 tasks {T1, Tz, Ts, T4, Ts, Ts, T7}. In this example, we
consider a TMR system (i.e., NMR with N=3). Fig. 3 shows
the step by step generation of our proposed schedule for a
given task graph (Fig. 3a) using list scheduling with our
proposed policy. Fig. 3a shows dependencies between the
tasks where the number placed above each task is its
worst-case execution time at the maximum supply voltage
and the maximum operational frequency. These tasks
share a common deadline D=180ms. At first, by the use of
the tasks’ power traces in Fig. 3b, we determine the peak
power values for the different parts of the tasks. Fig. 3¢
shows the schedule with two copies of each task for the

mandatory phase and with one copy of each task for the
conservative phase. Based on the lowest utilization first
policy, in the mandatory phase, two copies of the task T;
are respectively scheduled on C1 and C2 from the begin-
ning of the execution frame of their designated core. In the
conservative phase, the third copy of T is placed in the
time slots between 20ms and 40ms on the schedule of C3.
Then, based on the level-based longest task first policy, we
select T, and schedule two copies of T on C4 and C3, re-
spectively, such that the chip TDP and the core TDP con-
straints are met. The third copy of T>is mapped to C1 and
is scheduled in the time slots between 20ms and 30ms. For
simplicity, it is assumed that the tasks are not partitioned
into parts and the task T; has only one part. For the next
selected task T3, we map two copies of Ts to C2 and C4 sep-
arately and schedule T3 in the time slots between 40ms and
80ms on the schedule of C2 and C4. After scheduling two
copies of T3, we schedule another copy of Ts in the time
slots between 80ms and 120ms on the schedule of C1 to ob-
tain three results for performing a complete majority vot-
ing. Then, the algorithm selects Ts and schedules respec-
tively two copies of it on C1 and C3 in the time slot [40ms,
70ms] and the time slot [70ms, 100ms], respectively. Of
course, we can schedule the second copy of Ts in the time
slots between 40ms and 70ms on the schedule of C3, but
scheduling Ts in these time slots can result in the chip TDP
violation. For the next selected task T4, we place two copies
of this task after execution of T3z and Ts on C2 and C3, re-
spectively. Of course, we can schedule the second copy of
Ty in the time slots between 40ms and 70ms on the sched-
ule of C3, but scheduling T, in these time slots can result in
the chip TDP violation. The third copy of T4 is scheduled
on the schedule of C1 in the time slots between 120ms and
140ms after the execution of the second copy. To schedule
the tasks of the third level of the graph, at first, we select T7
and schedule two copies of it in the time slots between

ANSARI ET AL.: PEAK POWER MANAGEMENT TO MEET THERMAL DESIGN POWER IN FAULT-TOLERANT EMBEDDED SYSTEMS 9

Table 2. The details of simulation configuration

Single-core, five different voltage and
Processor | frequency levels between [0.85Volt, 1IGHz] and
[1.1Volt, 2GHz].
. 4GB, 1 channel, 2 ranks, 8 banks per
Main .
rank, Access time: 100 cycles,
Memory DRAM
Memory L1 32KB, 8KB block-width, 4-way,
Access time: 2 cycles, SRAM
Lo 1MB, 16-way, 64B line, Write back,
write: 20 cycles, STT-RAM

140ms and 160ms on C2 and C3, respectively. After sched-
uling the two copies, we schedule another copy of T7 on
the core with lowest utilization C4 in the time slots be-
tween 160ms and 180ms. For the next selected task Te, we
place two copies of it on C1 and C4 in the time slot [140ms,
150ms] and [150ms, 160ms], respectively. Of course, we
can schedule the second copy of Ts in the time slots be-
tween 140ms and 150ms on the schedule of C4, but sched-
uling T in these time slots can result in the chip TDP vio-
lation. Finally, we schedule the third copy of Ts in the time
slot [160ms, 170ms] such that the power constraints are
met. Fig. 3c shows the final schedule where the peak power
consumption of the system is kept below the chip TDP con-
straint. For applying DVS and DPM, we select tasks that
can exploit slack times to achieve even further power re-
duction. For this purpose, we allocate static slack times to
tasks at design time. When we allocate static slack times,
we assume that no dynamic slack exists, as the availability
and the amount of dynamic slack times are not known at
design time. However, at run-time, we also exploit dy-
namic slacks through our online power management for
further power reduction. In this example, to meeting task
precedence constraints, we apply the DVS technique to
some tasks such as Ty, T4, Ts, and Ts (see Fig. 3d). In Fig. 3,
the blue straight line shows the real power values at run-
time.

As we explained earlier, dynamic slack may create at
run-time due to correct execution and early completion of
tasks. As the actual execution time of a task is unknown at
design time, the amount of the dynamic slack time is also
not known. Meanwhile, when during the execution of
tasks no fault occurs, the execution of the tasks in the con-
servative phase can be canceled. Fig. 3e shows the case
where no fault occurs during the execution of the tasks in

the mandatory phase and causes the tasks in the conserva-
tive phase are dropped because when [N /2] copies of a
task are successfully finished during the mandatory phase,
the additional LN /2] copies of the task are not required.
Therefore, we drop all tasks of the conservative phase to
reduce further power consumption. For instance, in this
example, we drop the third copy of the tasks T, Ts and T4
from the schedule of C1, the tasks T and T from the sched-
ule of C3 and the task Ts from the schedule of C4 (see Fig.
3e). For the use of the dynamic slack, we apply the DVFS
technique to tasks that meet task precedence constraints af-
ter applying DVFS. In this example, we apply DVES to
some tasks from the schedule of all the cores (see Fig. 3f).

5 RESULTS AND DISCUSSION

In this section, we evaluate the effectiveness of our pro-
posed method via simulation with various task sets includ-
ing real-life embedded applications of MiBench Bench-
mark suite [33] running on a target multicore chip. At first,
we describe how to generate the task sets and obtain the
tasks’” power traces. Then we demonstrate substantial
quantitative improvements by the proposed method.

5.1 Experimental setup

In order to evaluate TP3M, we use gem5 full-system simu-
lator [34]. Since ARM processors are widely used in many
embedded systems, we consider an ARM processor.
Therefore, a detailed model of ARM processors provided
by gemb is used in this study. ARM processors adopt a
RISC architecture where only load/store instructions are
allowed to access the memory. Each component of this pro-
cessor is characterized by its static and dynamic power
consumption. Meanwhile, we considered that the system
supports DVS and can work at five different voltage and
frequency levels between [0.85Volt, 1GHz] and
[1.1Volt, 2GHz]. The details of simulation configurations
for a single core system are summarized in Table 2. This
ARM core has an area of 9.74mm? with 32KB L1 cache and
a shared 1MB L2 cache.

To determine the peak power consumption, we ran several
embedded benchmark applications with their various in-
puts in MiBench benchmark suites on gemb [34] and
MCcPAT [35]. For each task, 100 inputs were randomly gen-
erated as task inputs to obtain the power traces on different
executions. Also, the applications were selected such that

Table 3. Characteristics of the benchmark applications

BITCOUNT | SUSAN | MATH | CRC32 | SHA | QSORT | JPEG | FFT | DIJKSTRA | LAME | GSM
Execjriosr)‘ time 193.15 118.09 | 1098.40 | 207851 | 39.36 | 206.82 | 47.89 | 960.88 | 89.90 | 3055.44 | 704.46
Energy
, 112.21 67.95 | 60426 | 1107.95 | 22.51 | 12018 | 29.44 | 554.07 | 5659 | 192532 | 409.51
consumption (mJ)

Min. | Dynamic | 25583 27251 | 25319 | 21718 | 27274 | 197.61 | 281.73 | 25222 | 28813 | 282.229 | 282.34
Power Static 293.327

mW) | Total 549.16 565.83 | 546.52 | 510.51 | 566.07 | 490.93 | 575.05 | 54555 | 58145 | 575.56 | 575.67

Max. | Dynamic | 576.54 56261 | 473.69 | 43194 | 51579 | 479.84 | 536.81 | 494.01 | 43147 | 45852 | 4373
Power Static 293.327

mW) | Total 869.87 855.94 | 767.01 | 72527 | 809.12 | 773.17 | 830.14 | 787.33 | 72480 | 751.85 | 730.63

10

they introduce a variety of values for the simulation pa-
rameters, i.e. execution time, min/max power consump-
tion, energy consumption (see Table 3). Based on the peak
power values shown in Table 3, we set the peak power con-
sumption of each task between the minimum and maxi-
mum values of this table.

Previous work has studied reliability and energy issues
in embedded systems, but they do not consider peak
power management, therefore, we focus on peak power re-
duction such that preserve the reliability of the system at
an acceptable level. To the best of our knowledge, this pa-
per is the first attempt that addresses peak-power manage-
ment and fault-tolerance in conjunction. Therefore, we
compare our method with state-of-the-art power manage-
ment techniques. The comparison partners in our evalua-
tions are:

e LE-NMR: An implementation of the technique that
was presented in [2]. This technique proposed an N-
modular redundancy with low energy overhead for
multicore embedded systems. This technique executes
the tasks in two phases: the indispensable phase and
on-demand phase. In this paper, when a task has no
faulty during the indispensable phase, the time which
is reserved for its copies in the on-demand phase is re-
claimed to significantly reduce energy. We chose LE-
NMR to highlight the important differences between
peak-power management and energy management.
Another reason to select LE-NMR for the comparison
is that it is a recent work with similar situations to our
proposed method. Our implantation of the technique
in [2] only considers the two-phase execution of tasks
along with a simple DVS technique and the DVS opti-
mization proposed in [2] is not considered in this im-
plementation.

e RAPM: This technique is proposed in [30]. For the fair
comparison, we assumed that RAPM uses N-1 backup
tasks for each task to achieve fault tolerance. This tech-
nique proposed both individual-recovery and shared-
recovery based reliability-aware power management
heuristics.

e CNMR: The conventional NMR scheme, called
CNMR, we consider that each task has N-1 copies. All
N copies of each task are executed in parallel (see Fig.

s TP3M Vs. LE-NMR

35

TP3M Vs. LE-NMR

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

1b). The CNMR technique only uses the static slack
time to reduce average power consumption.

e [5]-NMR: This technique is proposed in [5], and we
have assumed that [5] uses N-1 backup tasks for each
task to achieve fault tolerance. This technique is pro-
posed by scheduling the sleep cycles for each core to
reduce peak power consumption.

To compare TP3M with state-of-the-art power manage-
ment techniques, we used both synthetic and practical ap-
plication task graphs. In order to cover both synthetic and
practical application task graphs, we used the Graphs For
Free (TGFF) task graph generator [36] and the Standard
Task Graph set (STG) [37]. The tasks of synthetic task
graphs were randomly selected from the MiBench bench-
mark and the different parameters of the selected tasks
were taken from Table 3. In the experiments, task graphs
with 10, 50, 100, 500 tasks were considered that each task
graph has different parallelism degree [2]. In our experi-
ments, we considered three classes of task graphs with dif-
ferent parallelism degrees (like the work [2]). We need the
mentioned parameter to analyze the effectiveness of our
technique. It is known the height of the task graph can be
used to take the parallelism degree for task graphs with the
specific number of tasks [2]. Based on it, in the
experiments, three classes of task graphs with different
parallelism degrees are considered. If n be the number of
tasks in a task graph and / be the task graph height, i can
vary between 1 (the highest parallelism degree) and n (a
chained task graph with the lowest parallelism degree).
Therefore, in the experiments, we consider the following
classes: i) task graphs with high parallelism degree that the
height of them is 1<h<n/3, ii) task graphs with medium
parallelism degree that the height of them is n/3<h<2n/3,
and iii) task graphs with low parallelism degree that the
height of them is 2n/3<h<n. We also considered a different
number of cores in our experiments. We conducted exper-
iments on chips with 4, 8, 12 and 16 cores. We compared
TP3M with the four selected schemes (LE-NMR, RAPM,
CNMR, and [5]-NMR) for: i) the worst-case scenario when
the system consumes the maximum possible power (Sec-
tion 5.2) and ii) the average-case scenario including both
faulty and fault-free scenarios when the system consumes
real power (Section 5.3).

TP3M Vs. LE-NMR

25 1 3 v

O

g, i ‘

U H iy

.5 Bl

Power Consumption (W)

Power Consumption (W)

05

1111
|quwwmww“‘x i "';'ymm

"
LE-NMR
TPAM ||

---ToP

35
3
25
2

Power Consumption (W)
&

Time (s)

(@)

Time (s)

Time (s)

(b) (c)

Fig. 4. Power consumption profile in the worst-case scenario on a 4-core system, a) Low parallelism degree, b) Medium parallelism degree,

¢) High parallelism degree.

ANSARI ET AL.: PEAK POWER MANAGEMENT TO MEET THERMAL DESIGN POWER IN FAULT-TOLERANT EMBEDDED SYSTEMS 11

o TP3M 2 LE-NMR BCNMR ®2RAPM 8[5]-NMR

[y

o !
o Uk, 1N

Normalized
Peak Power to TDP

Number of cores (m)
(@)

@ TP3M & LE-NMR o CNMR & RAPM 8[5]-NMR

=

o s

o o 0N
G
G

Normalized
Peak Power to TDP

12
Number of cores (m)

(b)

@ TP3M &LE-NMR OCNMR BRAPM O[5]-NMR

=

o b
o vk, N

Normalized
Peak Power to TDP

4 8 12
Number of cores (m)

(c)
Fig. 5. Normalized peak power to the chip TDP in the worst-case
scenario. a) Low parallelism degree, b) Medium parallelism de-
gree, c) High parallelism degree.

5.2 Worst-case Analysis

The worst-case scenario determines the maximum power
consumption by the system because all N copies of each
task are executed in this scenario (N=>5 in this subsection).
Therefore, it can be considered a good condition for com-
paring peak power and average power management tech-
niques. Fig. 4 shows the power consumption of our TP3M
scheme and the LE-NMR technique for different parallel-
ism degree with 100 tasks on a 4-core system. This figure
shows that TP3M consumes less peak power than LE-NMR
because TP3M distributes power consumption over the

TP3M Vs. LE-NMR 3

TP3M Vs. LE-NMR

whole execution frame. In this figure, the dashed line is the

TDP constraint. As Fig. 4 shows, the LE-NMR technique

misses this TDP constraint. In Fig. 4, we have used only

one random task set for each system configuration. To pro-
vide a more detailed analysis, for each system configura-
tion, we used more task sets and then the average results
are shown in Fig. 5. Each case of this figure was simulated
for 1000 times with different parameters of the applications

(i.e., tasks” worst-case and actual execution times and ap-

plication deadline) and the average results are reported.

This figure shows the maximum peak power consumption

for TP3M, LE-TMR, RAPM, CNMR, and [5]-NMR. From

Fig. 5 it can be concluded that:

¢ When the number of cores increases, the peak power
reduction of TP3M is higher than other schemes. In
this case, TP3M provides up to 45.3%, 47.6%, 50% and
27.5% peak power reduction as compared to the LE-
NMR, RAPM, CNMR, and [5]-NMR schemes, respec-
tively.

e It can be seen from Fig. 5 that, when the parallelism
degree of task graphs increases, the peak power con-
sumption of TP3M do not increase, while other
schemes increase it. The peak power consumption of
TP3M is always less than the other four systems.

e When the parallelism degree of task graphs increases,
the difference between the peak power consumption
of TP3M and the four schemes increase. In this case,
the effectiveness of our TP3M scheme than all the
other schemes has been demonstrated.

We also compared TP3M with N=3 and N=7 with LE-
NMR, RAPM, CNMR, and [5]-NMR. The experiments
demonstrate that TP3M completely outperforms the four
schemes from the peak power consumption viewpoint.
The TP3M method with N=3 and N=7 provides on average
respectively 40.1% (up to 50%) and 38.7% (up to 50%) peak
power reduction as compared to the four schemes.

5.3 Actual-case Analysis

In this case, we investigate the actual conditions where
both faulty and fault-free execution scenarios were consid-
ered. To generate fault rate and pattern, in our experi-
ments, transient faults were generated using a Poisson pro-
cess where the fault rate A corresponding to different volt-
age levels was modeled using (4) under the parameters

TP3M Vs. LE-NMR

—LE-NMR
TP3M

25

2 “

1

b
l\‘“'“‘

Power Consumption (W)
Power Consumption (W)

0.

—LE-NMR
TP3M
---ToP

| O ——
A |

Power Consumption (W)

Time (s)

(a)

(b) (c

Time (s)

Fig. 6. Power consumption profile in the actual-case scenario on a 4-core system, a) Low parallelism degree, b) Medium parallelism degree,

c) High parallelism degree.

12

B TP3M ®LE-NMR 8CNMR ®&RAPM 8[5]-NMR

2
15 1
1 4

o
4

Normalized
Energy to TP3M

o

8 12 16
Number of cores (m)

(@)
BTP3M &LE-NMR 88CNMR 8RAPM 8[5]-NMR

1.5 A H =

0.5 1

Normalized
Energy to TP3M

4 8 12
Number of cores (m)

(b)

2TP3M ®LE-NMR 8CNMR @ RAPM =[5]-NMR

s 2
gE 15 1A
N~ —
e 11 =
£ > —
5505 =
g o =
4 8 12

Number of cores (m)

(c)
Fig. 7. Normalized energy consumption to TP3M in the worst-
case scenario. a) Low parallelism degree, b) Medium parallelism
degree, c) High parallelism degree.

Ao=10 faults/us and d=2 [22]. Therefore, the fault rate var-
ies between 10 faults/us corresponding to fmax and 102
faults/us corresponding to fmin. Therefore, at first, we gen-
erate a fault vector that determines at which times faults
occur. Then, based on the fault vector, we decide which
task becomes faulty during the execution of a task set.
Since transient faults are rare in nature, our TP3M scheme
achieves further power reduction at runtime beyond what
is achieved through the offline part of TP3M at design-
time. Meanwhile, when a task Ti is executed successfully in
the mandatory phase at runtime and is dropped its copies
from the schedule of the conservative phase, the dynamic
slack time is released that can be exploited by DVS to re-
duce the power consumption of the tasks in the mandatory
phase at runtime. Fig. 6 shows the power consumption
trace of the execution task sets that were deployed in Fig. 4
where some tasks may become faulty. Like the worst-case
scenario, in this case, TP3M consumes less power than LE-
NMR due to its different schedule and better peak power
management scheme. Also, TP3M distributes power con-
sumption over the whole execution frame and reduces
peak power over time. It can be seen from Fig. 6 that both
the schemes consume no power at the end of the execution
frame. This is because [N /2]copies of each task may have
already finished successfully (when no fault occurs) and
N/2 copies of the tasks are canceled. Therefore, consid-
ering that the fault rate is low, almost always at the end of
each execution frame, there is no task to be executed and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

the underlying cores go to sleep mode and consume no

power.

Fig. 7 shows the energy consumption of TP3M, LE-NMR,
RAPM, CNMR and [5]-NMR schemes where the energy
consumption has been normalized with respect to the en-
ergy consumption of TP3M. These observations can be
made from Fig. 7:

e Itcanbe seen from Fig. 7 that when the parallelism de-
gree of task graphs increases, the energy consumption
decreases. This is because the amount of dynamic
slack times increases, and hence we can achieve signif-
icant energy savings. However, the energy consump-
tion of TP3M is always less than the other three
schemes (RAPM, CNMR, and [5]-NMR).

e When the task graph parallelism degree increases
from low (Fig. 7a) to high (Fig. 7c), the energy con-
sumption of TP3M is always less than or equal to the
other schemes. TP3M provides in average respectively
30.7% (up to 37.8), 23.4% (up to 28%) and 36.5% (up to
42.5%) energy saving as compared to CNMR, RAPM
and [5]-NMR.

e While TP3M provides almost the same energy con-
sumption as LE-NMR (Fig. 6), but TP3M consumes
much less energy than CNMR, RAPM and [5]-NMR
(Fig. 7) and consumes much less peak power than four
schemes mainly because of the more sophisticated
power-management technique that TP3M uses.

We also compared TP3M with N=3 and N=7 with RAPM,
CNMR, and [5]-NMR. The experiments show that TP3M
completely outperforms the three schemes from both the
energy and peak power consumption viewpoints. The
TP3M scheme with N=3 and N=7 provides on average re-
spectively 22.6% (up to 32.7%) and 26.9% (up to 44.3%) en-
ergy saving as compared to three mentioned schemes.

6. Conclusion

In this paper, we have presented a solution to reduce peak
power consumption on multicore embedded systems,
which uses fault-tolerance techniques to achieve high reli-
ability. We have developed a new scheduling algorithm
(TP3M) that avoids concurrent execution of tasks based on
one policy called the peak-power-aware longest task first.
The proposed method tries to remove overlaps of the peak
power of concurrently executing tasks to keep the maxi-
mum power consumption below the chip TDP constraint.
Meanwhile, the proposed scheme considers that the power
consumption of the core must be less than the core TDP
constraint. Also, we use the DVS technique to reduce the
instantaneous power dissipation on each core. At runtime,
we exploit a scheme that provides further power reduction
in the realistic scenario. It cancels the execution of the
LN /2] copies of those tasks that during the execution of
their [N / 2] copies no fault has occurred. The experimental
results show that TP3M provides up to 50% peak power
reduction and 44.3% energy saving as compared to state-
of-the-art schemes.

ACKNOWLEDGMENT
Mohsen Ansari, Sepideh Safari, Amir Yeganeh-Khaksar

ANSARI ET AL.: PEAK POWER MANAGEMENT TO MEET THERMAL DESIGN POWER IN FAULT-TOLERANT EMBEDDED SYSTEMS 13

and Alireza Ejlali acknowledge Research Vice-Presidency
of Sharif University of Technology for funding this work
under grant no. G930827.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(%]

(10]

(11]

(12]

[13]

(14]

J. Lee, B. Yun and K. G. Shin, “Reducing Peak Power
Consumption in Multi-Core Systems without Violating Real-
Time Constraints,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 4, pp. 1024-1033, April 2014.

M. Salehi, A. Ejlali, and B.M. Al-Hashimi, “Two-Phase Low-En-
ergy N-Modular Redundancy for Hard Real-Time Multi-Core
Systems,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 25, no. 4, pp. 1024-1033, April 2015.

S. Pagani, H. Khdr, J. J. Chen, M. Shafique, M. Li and J. Henkel,
“Thermal Safe Power (TSP): Efficient Power Budgeting for Het-
erogeneous Manycore Systems in Dark Silicon,” IEEE Transac-
tions on Computers, vol. 66, no. 1, pp. 147-162, 2017.

M. A.Haque, H. Aydin and D. Zhu, “On Reliability Management
of Energy-Aware Real-Time Systems Through Task Replica-
tion,” IEEE Transactions on Parallel and Distributed Systems, vol.
28, no. 3, pp. 813-825, 2017.

W. Munawar, H. Khdr, S. Pagani, M. Shafique,]J.-J. Chen, and J.
Henkel, “Peak Power Management for Scheduling Real-time
Tasks on Heterogeneous Many-Core Systems,” in 20th IEEE In-
ternational Conference on Parallel and Distributed Systems
(ICPADS), Hsinchu, Taiwan, December 2014.

S. Pagani, H. Khdr, W. Munawar, J. J. Chen, M. Shafique, M. Li,
and J. Henkel “TSP: Thermal Safe Power - Efficient Power Budg-
eting for Many-Core Systems in Dark Silicon,” in IEEE/ACM In-
ternational Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), New Delhi, India, October 2014.

M. L. Bandan, S. Pagliarini, J. Mathew and D. Pradhan, “Im-
proved Multiple Faults-Aware Placement Strategy: Reducing the
Overheads and Error Rates in Digital Circuits,” IEEE Transactions
on Reliability, vol. 66, no. 1, pp. 233-244, 2017.

F.R. Poursafaei, S. Safari, M. Ansari, M. Salehi, and A. Ejlali, “Of-
fline Replication and Online Energy Management for Hard Real-
Time Multicore Systems,” Proc. of the 1th Int'l the CSI Symposium
on Real-Time and Embedded Systems and Technologies (RTEST-
2015), Tehran, Iran, October, 2015.

Q. Han, M. Fan, and G. Quan, “Energy Minimization for Fault
Tolerant Real-Time Applications on Multiprocessor Platforms
Using Checkpointing,” Proc. IEEE/ACM Int'l Symp. Low Power
Electronic and Design (ISLPED’13), pp. 76-81, 4-6 Sept. 2013.

A. Mirhoseini, E.M. Songhori, and F. Koushanfar, “Automated
checkpointing for enabling intensive applications on energy har-
vesting devices,” Proc. IEEE/ACM Int'l Symp. Low Power
Electronic and Design (ISLPED’13), pp. 27-32, 4-6 Sept. 2013.

A. Ejlali, B.M. Al-Hashimi, M.T. Schmitz, P. Rosinger, S.G. Mire-
madi, “Combined time and information redundancy for SEU-
tolerance in energy-efficient real-time systems,” IEEE Trans. Very
Large Scale Integr, (VLSI) Syst., vol. 14, no. 4, pp. 323-335, 2006.

P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate
of combinational logic,” Proc. Int’l Conf. Dependable Syst. and Net-
works (DSN), pp. 389-398, 2002.

S. Reinhardt and S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” ACM SIGARCH Computer Archi-
tecture News, vol. 28, no. 2, pp. 25-36, 2000.

S. S. Mukherjee, M. Kontz and S. K. Reinhardt, “Detailed design
and evaluation of redundant multi-threading alternatives,” 29th

(15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

Annual International Symposium on Computer Architecture, pp. 99-
110, Anchorage, AK, 2002.

A. Shye, T. Moseley, V.]. Reddi,]. Blomstedt, and D. A. Connors,
“Using Process-Level Redundancy to Exploit Multiple Cores for
Transient Fault Tolerance,” 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. 297-306, Ed-
inburgh, 2007.

D.K. Pradhan, Fault-tolerant Computer System Design. Prentice-
Hall, Inc., Upper Saddle River, NJ, 1996.

I. Koren, and C.M. Krishna, Fault-Tolerant Systems. Morgan Kauf-
mann, Elsevier, San Francisco, CA, 2007.

A. Munir, S. Ranka, and A. Gordon-Ross, “High-Performance
Energy-Efficient Multicore Embedded Computing,” IEEE Trans.
Parall. Distr. Syst., vol. 23, no. 4, pp. 684-700, 2012.

Intel Corporation, “Dual-core intel xeon processor 5100 series
datasheet, revision 003,” August 2007.

Intel Corporation. Desktop 3rd generation intel core processor
family thermal mechanical specifications and design guidelines,
Jan 2013.

A. Ejlali, BM. Al-Hashimi, and P. Eles, “A Standby-Sparing
Technique with Low Energy-Overhead for Fault-Tolerant Hard
Real-Time Systems,” in Proc. International Conference on Hard-
ware-Software Codesign and System Synthesis (CODES+ISSS 2009),
pp- 193-202, Grenoble, France, October 2009.

M.A. Haque, H. Aydin, and D. Zhu, “Energy-Aware Standby-
Sparing Technique for Periodic Real-Time Applications,” Proc.
IEEE 29th Int‘l Conf. Comput. Design (ICCD’11), pp. 190-197, Oct.
2011.

M.A. Haque, H. Aydin, and D. Zhu, “Energy Management of
Standby-Sparing Systems for Fixed-Priority Real-Time Work-
loads,” Green Computing Conf. (IGCC), Arlington, June 2013.

P. Pillai, and K.G. Shin, “Real-time dynamic voltage scaling for
low-power embedded operating systems,” in SOSP ACM
Symposium on Operating Systems Principles, Dec. 2001.

D. Zhu, R. Melhem, D. Mosse, and E. Elnozahy, “Analysis of an
Energy Efficient Optimistic TMR Scheme,” Proc. Tenth Int’l
Conf. Parall. and Distr. Syst. ICPADS’04), pp. 559-568, 2004.

N. Fisher,]J. Chen, S. Wang, and L. Thiele, “Thermal-aware
global real-time scheduling and analysis on multicore sys-
tems,” Journal of Systems Architecture, vol. 57, no. 5, pp. 547-560,
2011.

R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic
voltage scaling for real-time embedded systems,” Design Auto-
mation Conference, 2004. Proceedings. 41st, pp. 275-280, 2004.

B. Lee, J. Kim, Y. Jeung, J. Chong, “Peak Power Reduction Meth-
odology for Multi-core Systems,” International SoC Design Confer-
ence (ISOCC), 2010, pp.233-235, 22-23 Nov. 2010.

S. Pagani,]. J. Chen and]. Henkel, “Energy and Peak Power Ef-
ficiency Analysis for the Single Voltage Approximation (SVA)
Scheme,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 34, no. 9, pp. 1415-1428, 2015.

Y. Guo, D. Zhu, and H. Aydin, “Reliability-Aware Power Man-
agement for Parallel Real-Time Applications with Precedence
Constraints,” Proc. Int’l Green Computing Conf. and Workshops
(IGCC), pp.1-8, July 2011.

A. Ejlali, B.M. Al-Hashimi, and P. Eles, “Low-Energy Standby-
Sparing for Hard Real-Time Systems,” IEEE Trans. Comput.-Aid.
Des. Integr. Circuits Syst., vol. 31, no. 3, pp. 329-342, March 2012.

M.K. Tavana, M. Salehi, and A. Ejlali, “Feedback-Based Energy
Management in a Standby-Sparing Scheme for Hard Real-Time

14

Systems,” Proc. IEEE 32nd Real-Time Systems Symposium
(RTSS’11), pp. 349-356, Nov. 2011-Dec. 2011.

[33] M.R. Guthaus,].S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge,
and R.B. Brown, “MiBench: A Free, Commercially Representa-
tive Embedded Benchmark Suite,” Proc. Fourth IEEE Ann. Work-
shop on Workload Characterization, pp. 3-14, 2001.

[34] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R.
Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood,
“The gem5 simulator,” ACM SIGARCH Computer Architecture
News,vol. 39, no. 2, pp. 1-7, May 2011.

[35] S. Li, J-H. Ahn, R. Strong,]. Brockman, D. Tullsen, and N.
Jouppi, “McPAT: An integrated power, area, and timing model-
ing framework for multicore and manycore architectures,” in
MICRO, pp. 469480, 2009.

[36] D.Rhodes and R. Dick, “TGFF: Task Graphs for Free,” Proc. 6th
Int’l Workshop on Hardware/Software Codesign (CODES/CASHE
'98), pp. 97-101, Mar 1998.

[37] T. Tobita and H. Kasahara, “A standard task graph set for fair
evaluation of multiprocessor scheduling algorithms,” J. Schedul-
ing, vol. 5, no. 5, pp. 379-394, Sep. 2002.

[38] Intel Corporation, “Single-chip cloud computer (SCC),” 2009.
[Online]. Available: http://www.intel.com/con-
tent/www/us/en/research/intel-labs-single-chip-cloud-over-
view-paper.html

Mohsen Ansari received the M.Sc. degree in
computer engineering from Sharif University of
Technology, Tehran, Iran, in 2016. He is cur-
rently working toward the PhD degree in com-
puter engineering at Sharif University, Tehran,
Iran, from 2016 until now. He is now the mem-
ber of Embedded Systems Research Labora-
tory (ESR-LAB) at the department of computer
engineering, Sharif University of Technology.
His research interests include low-power design of embedded sys-
tems and peak power management in embedded systems, and multi-
/many-core systems with a focus on dependability/reliability.

Sepideh Safari received the M.Sc. degree in
computer engineering from Sharif University
of Technology, Tehran, Iran, in 2016. She is
currently working toward the PhD degree in
computer engineering at Sharif University of
Technology. Her research interests include
low-power design of cyber physical systems,
energy management in fault-tolerant embed-
ded systems, and multi-/many-core systems
with a focus on dependability/reliability.

Amir Yeganeh-Khaksar is currently a M.Sc.
student in the Department of Computer
Engineering at Sharif University of
Technology, Tehran, Iran. He received the
B.Sc. degree in computer engineering from
Ferdowsi University of Mashhad. His
research interest lies in computer

s & architecture, especially in Low Power Design
and Embedded Systems.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Mohammad Salehi received the PhD degree
in computer engineering from Sharif University
of Technology, Tehran, Iran, in 2016. He is cur-
rently an assistant professor of computer engi-
neering at University of Guilan, Rasht, Iran.
From 2014 to 2015, he was a visiting re-
searcher in the Chair for Embedded Systems
(CES), Karlsruhe Institute of Technology (KIT),
Germany. His research interests include
design of low-power, reliable and real-time embedded systems with a
focus on dependability and energy efficiency in cyber-physical sys-
tems and Internet of Things (loT).

Alireza Ejlali received the PhD degree in com-
puter engineering from Sharif University of
Technology in, Tehran, Iran, in 2006. He is cur-
rently an associate professor of computer en-
gineering at Sharif University of Technology.
From 2005 to 2006, he was a visiting re-
searcher in the Electronic Systems Design
Group, University of Southampton, Southamp-
ton, United Kingdom. In 2006, he joined Sharif
University of Technology as a faculty member in the department of
computer engineering and from 2011 to 2015 he was the director of
Computer Architecture Group in this department. His research inter-
ests include low power design, real-time embedded systems, and
fault-tolerant embedded systems.

http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-overview-paper.html
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-overview-paper.html
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-overview-paper.html

