
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

 Thermal-Aware Standby-Sparing Technique on
Heterogeneous Real-Time Embedded Systems

Mohsen Ansari, Sepideh Safari, Sina Yari-Karin, Pourya Gohari-Nazari, Heba Khdr,
Muhammad Shafique, Senior Member, IEEE, and Jörg Henkel, Fellow, IEEE, and Alireza Ejlali

Abstract—Low power consumption, real-time computing, and high reliability are three key requirements/design objectives of
real-time embedded systems. The standby-sparing technique can improve system reliability while it might increase the
temperature of the system beyond safe limits. In this paper, we propose a thermal-aware standby-sparing (TASS) technique that
aims at maximizing the Quality of Service (QoS) of soft real-time tasks, which is defined as a function of the finishing time of
running tasks. The proposed technique tolerates permanent and transient faults for multicore real-time embedded systems
while meeting the Thermal Safe Power (TSP) as the core-level power constraint, which avoids thermal emergencies in on-chip
systems. Executing the main and backup tasks on the cores at any power consumption below TSP guarantees that no thermal
violation occurs. Our TASS proposed method provides an opportunity to remove the overlaps of the execution of main and
backup tasks to prevent extra power consumption due to applying the fault-tolerant technique. Meanwhile, in order to maximize
the QoS, we employ a heterogeneous platform to execute the main tasks as soon as possible on high-performance cores with
more power budget. The backup tasks are executed on low power cores after finishing the main tasks. In this case, when the
main task finishes successfully, the whole of its corresponding backup task can be dropped, resulting in a significant amount of
power and temperature reduction. Therefore, in the fault-free scenarios, the spare cores can be powered down, and only the
main tasks are scheduled and executed on the primary cores. Experiments show that our proposed method improves QoS up to
39.78% (on average by 18.40%) and reduces the peak power consumption and temperature by up to 40.21% and 15.47˚C (on
average 28.31% and 13.60˚C), respectively, at runtime, while keeping the system reliability at the required level.

Index Terms— Thermal Management, Power Consumption, Standby-Sparing, Real-Time Embedded Systems, QoS, Thermal
Safe Power.

—————————— ——————————

1 INTRODUCTION
HIP manufacturers have introduced Thermal Design
Power (TDP) as the chip-level power constraint for a

specific chip used in multicore real-time embedded sys-
tems [1][2]. Several hardware-level and software-level
techniques are proposed to dissipate the power consump-
tion up to TDP, e.g., cooling techniques as the hardware-
level technique and peak-power-aware scheduling policies
as the software-level techniques [2][3]. TDP, as the power
constraint of the system, could be either pessimistic or
thermally unsafe [4]. TDP as the pessimistic constraint is
not the maximum accessible power that can be consumed

on the chip and can result in significant performance losses
[4][5]. On the other hand, if TDP as a chip-level power con-
straint is not a pessimistic constraint, TDP can be thermally
unsafe and can lead to thermal violations [4][5]. In order to
avoid thermal violations, Dynamic Thermal Management
(DTM) technique is employed on the chip to throttle down
the cores using Dynamic Voltage and Frequency Scaling
(DVFS) and Dynamic Power Management (DPM)
[2][5][37]. However, the DVFS technique might lead to
missing the deadlines of the real-time tasks and degrading
the system reliability due to increasing the worst-case exe-
cution time, and hence, this is not acceptable in real-time
embedded systems [7][8]. Therefore, in this paper, we em-
ploy the Thermal Safe Power (TSP) [4] as the per-core
power constraint, which is defined as a function of the
number of simultaneously operating cores [4]. Executing
cores at any power consumption below TSP guarantees to
avoid thermal violations, and thereby DTM will not be
triggered [36].

In addition to timeliness requirements of the tasks,
Quality of Service (QoS) requirements must be considered
in multicore real-time embedded systems. The QoS re-
quirement refers to the utility function of tasks after they
proceeded. It should be noted that the QoS-aware real-time
embedded systems should incorporate inherent high reli-
ability features to tolerate different types of faults [2]. This

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

C

————————————————
• M. Ansari, S. Safari, S. Yari-Karin, P. Gohari-Nazari, and A. Ejlali are with

the Department of Computer Engineering, Sharif University of Technology,
Tehran, Iran (e-mail: {mansari, ssafari sinayari, gohary}@ce.sharif.edu, and
ejlali@sharif.edu).

• M. Ansari, S. Safari, H. Khdr, and J. Henkel are with the Karlsruhe Institute
of Technology, Karlsruhe 76131, Germany (e-mails: {Mohsen.ansari, Sepi-
deh.safari; Heba.Khdr, Henkel}@kit.edu).

• M. Shafique is with the Division of Engineering, New York University Abu
Dhabi (NYU AD), Abu Dhabi, United Arab Emirates (e-mail: muham-
mad.shafique@nyu.edu).

Manuscript received D. M. Y; revised D. M. Y; accepted D. M. Y. Date of
publication D. M. Y; date of current version D. M. Y.
(Corresponding author: Alireza Ejlali.)
Recommended for acceptance by X. X.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. X.X.X

mailto:ejlali@sharif.edu
mailto:Henkel%7d@kit.edu

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

is because the system must guarantee that each task is ex-
ecuted within its deadline, even in the presence of different
faults [10]. For example, in the signal processing systems,
although missing the deadline for some tasks may not re-
sult in failure, the outdated or half-baked processed data
may be useless for users [13]. Therefore, the system must
guarantee its functionality and maximize the QoS of the
tasks even when faults occur. Consequently, employing a
system-level fault-tolerant technique for such systems is
mandatory. Some fault-tolerant techniques like Check-
pointing and task re-execution can just tolerate transient
faults, but the standby-sparing technique is a common
fault-tolerant approach to deal with both transient and per-
manent faults. Two well-known standby-sparing tech-
niques are Hot Standby-Sparing (HSS) and Cold Standby-
Sparing (CSS). In the HSS technique, both primary and
spare cores are active simultaneously, but in the CSS tech-
nique, the spare core is inactive and is activated when a
fault occurs on the primary core. For low power system de-
sign, it is preferable to avoid as far as possible the simulta-
neous execution of the main and backup tasks for prevent-
ing peak power escalation, and hence, the CSS technique
can be more suitable. However, since in real-time embed-
ded systems, meeting deadlines is one of the requirements,
using the CSS technique in a straightforward way may not
be a feasible solution. Therefore, the CSS technique should
be exploited intelligently because otherwise, it imposes ex-
tra time overhead. Moreover, although the CSS technique
has less power overhead compared to HSS and N-Modular
Redundancy (NMR) [2][8], it still might lead to violating
the power and thermal constraints.

This paper proposes a Thermal-Aware Standby-Sparing
technique (called TASS) that exploits the CSS technique on
the heterogeneous multicore platforms to maximize the
quality of service for soft real-time tasks while at the same
time meeting the Thermal Safe Power (TSP) constraint.
Our proposed method tries to schedule the backup tasks
after finishing the main tasks on the spare cores to remove
the overlaps between the main and backup tasks. In this
case, when the main task finishes successfully, the whole
of its corresponding backup task can be dropped, resulting
in a significant amount of power reduction.
The main contributions of this work are:
• A thermal-aware standby-sparing system that maxim-

izes QoS of soft real-time tasks for real-time embedded
systems.

• A mapping scheme that assigns soft real-time tasks to
core pairs of the heterogeneous multicore platform

(i.e., each core pair has one primary core and one spare
core) and balances the utilization of core pairs and de-
termines the voltage-frequency levels of the cores,
keeping the power consumption of each underlying
core under the TSP.

• Employing Thermal Safe Power (TSP) as the power
constraint instead of TDP. This is because using TDP
as the power constraint of a system might lead to ther-
mal violations and thereby increasing the probability
of missing deadlines.

In order to compare our TASS method with state-of-the-art
methods, we have performed full system simulations us-
ing well-established frameworks like gem5 [15], McPAT
[16], HotSpot [17], and TSP [4]. Our experiments show that
TASS provides up to 40.21% (on average by 28.31%) peak
power reduction compared to state-of-the-art methods.
Also, our TASS method achieves up to 15.47˚C tempera-
ture reduction compared to other methods while keeping
the system reliability at a required level.

The following motivational example shows how our
proposed TASS method can satisfy timing and core-level
power constraints compared to one of the state-of-the-art
methods.
1.1 Motivational Example
This example provides some insight on the disadvantage
of using the constant chip-level power constraint in fault-
tolerant systems. For simplicity of presentation, consider a
heterogeneous multicore system with two islands which
each of them has two homogenous cores. In this example,
the system executes a synthetic application task graph with
nine dependent tasks {T1, …, T9}. Fig. 1a shows dependen-
cies between the tasks where each task has a triple of pa-
rameters {WCLO, WCHI, Di}, in which WCLO and WCHI are
the worst-case execution time on the low-power and high-
performance cores, respectively, and Di is the dedicated
deadline of Ti. The peak power consumption of the tasks
on different types of cores is shown in Table 1. In this ex-
ample, we compare our proposed method with a TMR sys-
tem (i.e., NMR system with N=3) where each task has three
copies, and the result of them is compared to perform a
complete majority voting.

Fig. 1 shows two possible schedules where meet differ-
ent power constraints, while one of them misses the timing
and temperature constraints. In Fig. 1b and Fig. 1c, a peak-
power-aware scheduling method is shown that meets dif-
ferent values of TDP. This method exploits N-Modular Re-
dundancy (NMR) to improve system reliability. In this
method, from the beginning of the execution, at first, two
copies of each task are mapped and scheduled on cores
based on the lowest utilization policy such that the chip
TDP is met [2]. For scheduling the last copies, starting from

Table 2. The core-level power constraint information of the cores
at different situations when the number of active cores are dif-

ferent on different islands
High Performance Island Lowe Power Island

Number of
active cores

The core-level
Power constraint

Number of
active cores

The core-level
Power constraint

1 5W 1 3W
2 3W 2 1W

Table 1. The peak power consumption of tasks running on differ-
ent types of cores

High Performance Island Lowe Power Island
Task Name Power value Task Name Power value

T1 2W T1 1W
T2 3W T2 2W
T3 2W T3 1W
T4 2W T4 1W
T5 4W T5 3W
T6 2W T6 1W
T7 3W T7 2W
T8 2W T8 1W
T9 2W T9 1W

ANSARI ET AL.: THERMAL-AWARE STANDBY-SPARING TECHNIQUE ON HETEROGENEOUS REAL-TIME EMBEDDED SYSTEMS 3

the end of the execution of two other copies of the same
task, the third copy is scheduled such that the chip TDP is
met [2]. In Fig. 1b and Fig. 1c, we assume that the chip TDP
is equal to 6W and 9W, respectively. As seen in these fig-
ures, when the chip TDP of 6W is considered (see Fig. 1b),
as a pessimistic constraint, which is not the maximum ac-
cessible power that can be consumed on the chip, it can re-
sult in both deadline and thermal violations (see Fig. 1e).
On the other hand, when the chip TDP of 9W is considered
(see Fig. 1c) as an upper-case constraint (not a pessimistic
constraint), it does not lead to deadline violations; how-
ever, thermal violations still happen (see Fig. 1e).

In Fig. 1d, we consider a cold standby-sparing system
where only two copies of each task are executed on the sys-
tem such that the core-level power constraint is met. To do
this, we consider two core pairs so that each core pair is
included one low-power core and one high-performance
core. In our proposed method, we employ a core-level
power constraint, which we empirically set its value to
avoid thermal violations. The core-level power constraint
information of the cores is shown in Table 2. This table
shows the value of the power constraint that the cores can
consume when the number of active cores is different.
Note that for simplicity of presentation, we have calculated
the core-level power constraint values for the number of
active cores per island individually. However, in the rest
of this paper, when we present our method, and in the

evaluation section, we consider that the numbers of active
cores in both islands are required together to calculate the
core-level power constraint for any type of cores; i.e., we
employ Thermal Safe Power (TSP). Fig. 1d shows our pro-
posed method such that it meets the core-level power and
timing constraints simultaneously. The proposed method
executes the backup tasks after finishing the main tasks on
the spare core to delete the overlapping execution between
the main and the backup tasks. For example, at first, we
schedule T1 on HP_C1, and then after finishing the men-
tioned main task, the backup task of T1 is scheduled on
LP_C1. This leads to turning off all of the spare cores at
fault-free execution scenario.

It is worthy to mention that the backup task can be man-
aged in different ways like Hot Standby-Sparing (HSS),
Cold Standby-Sparing (CSS), and Warm Standby-Sparing
(WSS). In HSS and WSS, we should execute the backup
tasks in the overlap form with the execution of the main
tasks, and therefore, the peak power consumption and the
temperature increase in all fault scenarios.
Paper Organization: The rest of this paper is formed as fol-
lows. Section 2 reviews related work and Section 3 presents
models and assumptions. In Section 4, we present the de-
tails of our proposed method. The experimental results of
the proposed method are shown in Section 5, and we con-
clude the paper in Section 6.

(a)

(b)

(d)

(c) (e)

Fig. 1. The motivational example for showing advantages of using the core-level power constraint instead of TDP and standby-sparing
instead of TMR on a heterogeneous multicore system with two islands which each of them has two homogenous cores; (a) an application
tasks graph with nine tasks; Scheduling the tasks according to the TP3M method [2] in the worst-case fault-scenario (b) by considering a
lower-case TDP constraint; (c) by considering a upper-case TDP constraint; (d) Applying our proposed method (TASS) in the worst-case
fault scenario; (e) Maximum temperature profile of different methods.

T9T8

T6
T7

T5T4
T3

T2T1

{4,9,35} {15,20,40}

{7,12,65} {10,15,60} {5,10,70}

{21,26,121} {8,13,100}

{15,20,155} {6,11,130}

HP_C1

B2

HP_C2

LP_C1

LP_C2

B4

B3

B7

T6

T8

D1 D2 D4 D3 D5 D7 D6 D9 D8

T3

T4

B5 B8

B6

Po
w

er
 (W

)

15 35 40 45 50 60 7065 78 91 97 100 113 119 130 140
Time (ms)

T1 T5

T2

B1

T7 T9

B9

1554

HP
_C

1
HP

_C
2

LP
_C

2
LP

_C
1

3 -
5 -
7 -

Power Profile The Core-level Power Constraint

3 -
5 -
7 -

1 -
3 -
5 -

1 -
3 -
5 -

HP_C1

T2

HP_C2

LP_C1

LP_C2

T4

T3

T7

T7

T6 T8

D1 D2 D4 D3 D5 D7 D6 D9 D8

T3

T4

T5

T9

T8T6

Power (W)
15 35 40 45 50 60 7065 77 90 98 100 111 119 130 140

Time (ms)

T2

T1

T1

T1

T3 T5

T4

T5

T6

T7

T9 T9

T8

TDP = 6 w

1

1

1

1

1

1 Deadline is missed

T2

155

Power Profile TDP

24 124

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Time (ms)

40

45

50

55

60

65

70

75

80

M
ax

.T
em

pe
ra

tu
re

 (°
C

)

TP3M (TDP = 9W)

TP3M (TDP = 6W)

TASS

Temperature Threshold

HP_C1

T2

HP_C2

LP_C1

LP_C2 T3

T7

T7

T6 T8

D1 D2 D4 D3 D5 D7 D6 D9 D8

T3

T4

T5

T9

T8T6

Power (W)

15 35 39 45 50 60 7065 81 86 94 100 107 122 130 147
Time (ms)

T2

T1

T1

T1

T3 T5

T4

T5

T6

T7

T9 T9

T8

TDP = 9 w

T2

155

Power Profile TDP

9 18 22 29

T4

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

2 RELATED WORK
Researches related to TASS are discussed here. Ejlali et al.
in [23] have proposed a hardware redundancy technique
for dual-core real-time systems that execute frame-based
tasks without any dependencies. In this work, the primary
core uses DVS, and the spare core uses DPM. It should be
noted that the DVS method is used for energy manage-
ment, and it has a negative impact on reliability. Also, the
mentioned method uses an analytical approach to assign
the supply voltage value of the primary core at runtime to
reduce energy consumption by exploiting dynamic slack
times and meet the reliability target. In [24], the standby-
sparing technique is used for reliability improvement for
fixed-priority periodic real-time tasks. Indeed in [24], the
SSFP algorithm has proposed to delay the execution of the
backup task as much as possible by using a dual-queue
mechanism to reduce energy consumption. Roy et al. in
[25] have used a standby-sparing technique for heteroge-
neous multicore systems included high-performance and
low-power cores. The proposed method in [25] has consid-
ered the challenge of heterogeneous multicore system de-
sign and has answered two questions. First, which type of
core should be selected for main and backup tasks to min-
imize energy consumption? Secondly, how much should
the frequency of the primary core be for the purpose of en-
ergy reduction? Also, the authors have shown that the se-
lection of LP (Low Power) or HP (High Performance) cores
and allocation of frequency on the primary core has a sig-
nificant impact on energy consumption. The proposed
standby-sparing method in [8] employs EDF scheduling
on the primary core and EDL scheduling on the spare core
for periodic real-time tasks to execute main tasks as soon
as possible and delay the execution of backup tasks. The
standby-sparing method proposed in [27] exploits task
partitioning and assigns the frequency of tasks at runtime
to hold energy consumption at a minimum level and meet
fault-tolerant constraints for real-time tasks on heterogene-
ous multicore systems. Moreover, the proposed method in
this paper takes into account the different execution time
and power parameter scaling factor.

The works [28] and [29] have proposed the Paired-
Standby-Sparing (Paired-SS) and Generalized-Standby-
Sparing (Generalized-SS) methods based on the standby-
sparing technique. In the Paired-SS method, cores are di-
vided into pairs, and the standby-sparing method applies
to pairs. On the other hand, the Generalized-SS divides the
cores into two categories, primary cores and secondary
cores. The main tasks are executed in the primary cores un-
der partitioned-EDF, and the DVFS technique and backup
tasks are executed in secondary cores under the parti-
tioned-EDL and DPM mechanism. Also, Preference-Ori-
ented Earliest Deadline (POED) scheduler has been stud-
ied, and experimental results have shown that POED-
based methods perform better than SS-based methods in
terms of energy, especially for high-loaded systems. The
proposed three-layer framework in [30] consists of a feed-
back system in the primary cores. The proposed method
spreads the slack time by a heuristic approach to minimize
overall energy consumption. Also, real-time constraints
are considered in the feedback system. The proposed

method in [31] is a low-energy standby-sparing system.
The proposed method is an online energy management
technique for a low-energy standby-sparing (LESS) system
which considers voltage transition and activation over-
heads forced by DVS and DPM. This method is used in a
dual-core hard real-time system and uses dynamic slack
times to reduce energy consumption while guaranteeing
hard deadlines. In [32], the authors have proposed a peak-
power-aware standby-sparing technique for periodic real-
time tasks to keep peak power consumption under TDP
constraint. In this method, the primary and spare cores ex-
ploit PPA-EDF and PPA-EDL, respectively. The proposed
method delays the execution of backup tasks as much as
possible and tries to cancel the execution of backup tasks
to reduce power consumption. As discussed in the previ-
ous sentences, none of the mentioned works consider a
temperature threshold.

Table 3 summarizes the state-of-the-art works discussed
in this paper. The works in [8][23][25]-[31] focus on Hot
Standby-Sparing (HSS) systems for reducing energy con-
sumption. The work in [24] focuses on Cold Standby-Spar-
ing (CSS) systems for reducing energy consumption. Fi-
nally, only [32] has considered meeting TDP in HSS sys-
tems for periodic real-time tasks. Also, in Table 3, we show
the features of TASS compared to the state-of-the-art
works.

In summary, the previous works in the context of
standby-sparing embedded systems did not consider ther-
mal violations on the chip. In this paper, we propose a cold
standby-sparing system where the main tasks and the
backup tasks are scheduled on the primary and spare
cores, respectively, such that the Thermal Safe Power (TSP)
and real-time constraints are met.

Table 3. Summary of state-of-the-art works focusing on differ-
ent types of standby-sparing with different objectives

of R
eference

Task
Model

Architecture
Technique(s)

O
bjective

Pow
er

 C
onstraint

SS type

D
ual-C

ore

M
ulticore

H
om

ogeneous

H
eterogeneous

[23] Frame-
Based Energy - HSS

[24] Periodic Energy - CSS

[25] Frame-
Based Energy - HSS

[8] Periodic Energy - HSS

[27] Frame-
Based Energy - HSS

[28] Periodic Energy - HSS

[29] Task
Graph Energy - HSS

[30] Periodic Energy - HSS

[31] Frame-
Based Energy - HSS

[32] Periodic Power TDP HSS

TASS Task
Graph

QoS
and

Power
TSP CSS

ANSARI ET AL.: THERMAL-AWARE STANDBY-SPARING TECHNIQUE ON HETEROGENEOUS REAL-TIME EMBEDDED SYSTEMS 5

3 MODELS AND PRELIMINARIES
In this section, we introduce the system, task, power con-
sumption, and fault models used in this paper.

3.1 System and Power Consumption Model
We consider a heterogeneous multicore system that con-
sists of High_Performance (HP) cores and Low_Power
(LP) cores. In this paper, we consider that the system con-
sists of k=m/2 core pairs CP={CP1, CP2, …, CPk}. Each core
pair consists of one primary core (HP core) and one spare
core (LP core). When a task (Ti) is mapped to the primary
core, a backup copy (Bi) is also mapped to the correspond-
ing spare core.

The power consumption of our TASS system consists of
static and dynamic power components in which the static
power (Pstatic) is dominated by the leakage current, and the
dynamic power (Pdynamic) is commonly dissipated due to
system activity [7][9] (See Eq. 1).

2

0(,)
Vth
VT

total static dynamic L ii i i iiP V f P P I e V C V fη α
−

= += + (1)

Where CL is the switched capacitance, η is a technology pa-
rameter, Vi and fi are supply voltage and operational fre-
quency, and (𝛼𝛼i) is the activity factor for the task Ti. Due to
the heterogeneity nature of our proposed system, each task
exhibits different power consumption characteristics on
different types of cores. Therefore, we use the superscripts
HP and LP cores to distinguish between the values of the
task power consumption parameters on the HP and LP
cores, respectively (e.g., 𝛼𝛼𝑖𝑖𝐻𝐻𝐻𝐻 and 𝛼𝛼𝑖𝑖𝐿𝐿𝐻𝐻).
Under the DVFS technique, the voltage Vi used for the ex-
ecution of the tasks on a core may be less than the maxi-
mum voltage Vmax. We denote the normalized voltage 𝜌𝜌i as
[10]:

maxV
Vi

i =ρ

(2)

where Vmax is the maximum voltage corresponding to the
maximum frequency fmax. Note that according to the almost
linear relationship between voltage and frequency
[7][8][10], we can write: 𝜌𝜌i=Vi/Vmax=fi/fmax. Therefore, Eq. 1
can be rewritten as:

2

0 max max max

3 _ _(,) () ()
Vth
VT

total L

HP or LP
i i i i iP V f I e V C V fηρ ρ α

−

+= (3)

3.2 Task Model
In this paper, task graphs with soft real-time requirements
are considered, where each task graph is a directed acyclic
graph (DAG) and has n dependent non-preemptive tasks
Φ={T1, T2, …, Tn} with the same criticality level
[2][20][39][40][41][42]. In a task graph, a task is scheduled
only after that all its predecessors are executed completely.
The result of a predecessor task is passed to its successors
upon completion. Each task Ti in the mentioned task graph
has a triple of parameters {𝑤𝑤𝑤𝑤𝑖𝑖𝐻𝐻𝐻𝐻, 𝑤𝑤𝑤𝑤𝑖𝑖𝐿𝐿𝐻𝐻, Di}:

• 𝑤𝑤𝑤𝑤𝑖𝑖𝐿𝐿𝐻𝐻: The worst-case execution time on the low-
power cores at the maximum supply voltage and
operational frequency.

• 𝑤𝑤𝑤𝑤𝑖𝑖𝐻𝐻𝐻𝐻: The worst-case execution time on the high-
performance cores at the maximum supply volt-
age and frequency.

• Di: the dedicated deadline of Ti.

It should be noted that since the main and backup tasks are
executed on the HP and LP cores, respectively, 𝑤𝑤𝑤𝑤𝑖𝑖𝐻𝐻𝐻𝐻 and
𝑤𝑤𝑤𝑤𝑖𝑖𝐿𝐿𝐻𝐻 are considered for the main and backup tasks, respec-
tively.

3.3 Fault Model
High reliability, as one of the major design objectives in
multicore embedded systems, is subjected to different
types of faults [6][19]. In this paper, we consider both per-
manent and transient faults. Transient faults are com-
monly modeled as a Poisson distribution with a fault rate
that is based on a function of the supply voltage changes
[2][7]. In our evaluations, the transient fault rate is consid-
ered as [6][7]:

max

0() 10
iV V

d
iVλ λ

−

= × (4)

Where λ0 is the transient fault rate at Vmax, and d determines
the sensitivity of the system to voltage scaling. The func-
tional reliability of a task can be written as [2][7][9][38]:

()() i i
i

V wcR T e λ− ×
= (5)

Where wci is the worst-case execution time of Ti. If the reli-
ability of the main and backup tasks be independent be-
cause of the heterogeneity, the reliability of the cold
standby-sparing technique for each task is:

,() () (1 ()) ()i i i i iR T B R T R T R B= + − × (6)
The reliability of a standby-sparing system with n tasks ex-
ecuting by our proposed method can be calculated as:

1

(,)
n

system i i
i

R R T B
=

=∏ (7)

Note that our standby-sparing system can tolerate a per-
manent fault for each core pair. For tolerating the transient
faults, the standby-sparing system requires a fault detec-
tion method. For this purpose, our processing cores exploit
a low-cost and low power hardware checker like Argus
[12]. In this paper, if during the execution of an original
task, the fault has not been detected, its results are applied
to the system, and the whole of its corresponding backup
task is canceled. However, when a fault occurs, we do not
consider the faulty task and continue with its backup task
and apply the results of the backup task as the correct re-
sults.

4 OUR PROPOSED METHOD
4.1 Concept Overview and Our Novel Contribution
This paper proposes a Thermal-Aware Standby-Sparing
Technique (called TASS) in heterogeneous multicore real-
time embedded systems. It should be noted that using a
temperature threshold directly within mapping and sched-
uling is difficult and complex because when a task is exe-
cuted on a core, it leads to increase the temperature of that
core and the other core temperatures as well. In this paper,
we employ Thermal Safe Power (TSP) as the power con-
straint, which is an abstraction that provides thermally safe
power constraint as a function of the number of simultane-
ously operating cores [4]. Executing cores at any power
consumption below TSP guarantees avoiding thermal vio-
lations, and thereby DTM will not be triggered. We should

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

mention that calculating TSP values are independent of
different types of running tasks, but when we schedule a
task on a time slot we update the TSP values of the cores
based on activated the number of cores due to our sched-
uling. In our method, we map and schedule the tasks such
that main tasks are executed as soon as possible on the high
performance cores and the backup tasks on the low power
cores to reduce the peak power. Our proposed method
tries to schedule the backup tasks on the spare cores after
the main tasks finish their execution in order to remove the
overlapping between the main and backup tasks. In this
case, when the main task finishes successfully, the whole
of its corresponding backup task can be dropped, resulting
in a significant amount of power reduction. The overview
of TASS is shown in Fig. 2.
4.2 Problem Definition
Given a multicore system with m cores that executes a set
of n soft real-time tasks. The problem is how to find the
task-to-core assignment, the scheduling of the tasks (the
start time si and the finish time fi of all main and backup
tasks), and the V-F level of each task to achieve the target
goal.

In this formulation, v is the number of available V-f lev-
els for each core. The V-f level assignments and task-to-
core mapping are represented by the matrix Xϵ{0,1}n×m×v.
The task Ti is assigned to the core k and is executed under
the V-f level l if and only if Xikl = 1.

The goal of our method is to maximize the QoS of the
system while keeping the power consumption of each core
under the TSP constraint (PTSP,core). We have formulated the
mentioned problem in the following.
Optimization Goal: Maximize the QoS of the system de-
fined by the average of the QoS of all tasks. Note that the
probability of successful execution of each main task Ti is
defined by Pi, and the probability of its failure is defined
by 1-Pi.
Maximize 𝑄𝑄𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 =

∑ 𝐻𝐻𝑖𝑖×𝑈𝑈𝑈𝑈𝑖𝑖(𝑓𝑓𝑇𝑇𝑖𝑖 ,𝐷𝐷𝑖𝑖)𝑖𝑖∈Φ +∑ (1−𝐻𝐻𝑖𝑖)×𝑈𝑈𝑈𝑈𝑖𝑖(𝑓𝑓𝐵𝐵𝑖𝑖 ,𝐷𝐷𝑖𝑖)𝑖𝑖

𝑛𝑛
 (8)

where UFi is the utility function of task Ti that describes the
utility value of the mentioned task as a function of its fin-
ishing time, and fi is the finish time of Ti. In this paper, we
have considered the linear function and can be rewritten
as [14][34]:

𝑈𝑈𝑈𝑈𝑖𝑖 =

⎣
⎢
⎢
⎡

1 𝑓𝑓𝑖𝑖 ≤ 𝐷𝐷𝑖𝑖
(𝐷𝐷𝑖𝑖 − 𝑓𝑓𝑖𝑖)
𝐷𝐷𝑖𝑖(𝑥𝑥 − 1)

+ 1 𝐷𝐷𝑖𝑖 < 𝑓𝑓𝑖𝑖 ≤

0 𝑓𝑓𝑖𝑖 > 𝑥𝑥 × 𝐷𝐷𝑖𝑖

𝑥𝑥 × 𝐷𝐷𝑖𝑖 (9)

where x is a variable bigger than 1 in order to determine
the maximum deadline violation and is received by the de-
signer.
Core Power Constraint: The power consumption of each
underlying core at each time slot t must be less than the
core TSP constraint.
∀ 𝑘𝑘: 𝑃𝑃𝑘𝑘(𝑡𝑡) ≤ 𝑃𝑃𝑇𝑇𝑇𝑇𝐻𝐻,𝑘𝑘(# 𝑎𝑎𝑤𝑤𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑄𝑄𝑐𝑐𝑎𝑎𝑐𝑐) at each time t (10)

Timing Constraint: The finish time of each task should be
less than its deadline.

∀𝑎𝑎: 𝑓𝑓𝑖𝑖 ≤ 𝐷𝐷𝑖𝑖 (11)
Core Assignment Constraint: Each task can only be

mapped to a core.
∀𝑎𝑎, 𝑙𝑙: �𝑋𝑋𝑖𝑖𝑘𝑘𝑖𝑖

𝑘𝑘

= 1 (12)

Task’s Reliability Constraint: Since we exploit DVFS for
tasks, the reliability of tasks should satisfy a minimum re-
liability threshold after DVFS.

𝑎𝑎−𝜆𝜆(𝑉𝑉𝑖𝑖)×
𝑤𝑤𝑤𝑤𝑖𝑖

𝐻𝐻𝐻𝐻 𝑜𝑜𝑜𝑜 𝐿𝐿𝐻𝐻

𝜌𝜌𝑖𝑖 ≥ 𝑅𝑅𝑡𝑡ℎ (13)

Dependency Constraint: Dependency constraints be-
tween tasks should not be violated. If there is a depend-
ency between two tasks, the completion time of the previ-
ous task should be smaller than the start time of its de-
pendent task.

∀𝑎𝑎, 𝑗𝑗: 𝑓𝑓𝑖𝑖 ≤ 𝑐𝑐𝑗𝑗 , 𝑎𝑎𝑓𝑓 𝑇𝑇𝑖𝑖 is the predecessor of 𝑇𝑇𝑗𝑗 (14)
This problem is known to be an NP-hard problem in a
strong sense [7][10][35]. Indeed, finding an optimal solu-
tion will have exponential-time complexity. Therefore, we
propose a heuristic for mapping and scheduling method
the tasks that aim at maximizing the QoS of the system un-
der the aforementioned constraints.
4.3 Algorithm Discussion
The main idea of our proposed scheduling method is to
provide an opportunity to remove the overlaps of the exe-
cution of main and backup tasks to prevent extra peak
power consumption due to applying the cold standby-
sparing technique for improving reliability.
The Latest Deadline First (LDF) scheduling policy is an op-
timal policy that minimizes the maximum lateness of a set
of tasks with data dependency and the same arrival times

Fig. 2. Overview of our proposed method, TASS.

Design Flow

The offline phase: Mapping and Scheduling part of TASS

Hardware-Level Parameters

Free
cores

V-f
levels

Software-Level Parameters

Graphs
T1

T2 T3 T4

Tn Tn-1

Timing
Requirements,
Execution Time

Intended task
dependencies TSP

Select the task Ti with the latest
deadline

Offline Scheduling

O3 Aloha

O3 Aloha

O3 Aloha

ARM
A15
ARM
A15

ARM A9
ARM A9

ARM
 A7

ARM
 A7

Simple
Alpha

Platform (Floorplan)

Select leaves of graph

Iterate until all the tasks in the
graph are selected.

Put Ti to the priority queue

Selects the core pair CPm with
the lowest utilization

Select the task Ti with the highest
priority from the priority queue

Scheduling Ti on the primary core
of CPm such that TSP is met

Scheduling Bi on the spare core of
CPm such that TSP is met

Iterate until all the tasks in the
graph are scheduled.

The run-time phase: Task Dropping and Shifting the Primary task

Shifting the main tasks to the
earlier time slots in order to

improve QoS, then applying DVFS

Detecting the main tasks that
are faulty (exploiting Argus

Checker [12])

Dropping the backup tasks that
the corresponding main tasks

are not faulty

Applying DPM technique on the
spare cores that have not any

tasks for execution

O3 Alpha

O3 Alpha

O3 Alpha

ARM
A15
ARM
A15

ARM A9
ARM A9

ARM
 A7

ARM
 A7

Simple
Alpha

Platform (Floorplan)

ANSARI ET AL.: THERMAL-AWARE STANDBY-SPARING TECHNIQUE ON HETEROGENEOUS REAL-TIME EMBEDDED SYSTEMS 7

[14]. It should be noted that EDF is not optimal under de-
pendency constraints because it achieves greater lateness
with respect to LDF [14]. LDF makes the scheduling queue
from the tail to the head of the graph. This policy selects
the task with the latest deadline one by one to set the pri-
ority of tasks. This process is repeated until all tasks in the
graph are selected and put in the scheduling queue. Then,
tasks are selected from the head of the scheduling queue
such that the first task inserted in the queue has the last
priority and will be executed last, and the last task inserted
in the scheduling queue has the first priority and will be
executed first.

Algorithm 1 shows the details of our proposed mapping
and scheduling method. This algorithm receives a task
graph application with all its information, the list of TSPs
for all cores at different times, and the set of core pairs, and
provides tasks mapping and scheduling in each core pair.
Lines 1-7 extract the priority of tasks according to the LDF
policy. As it was mentioned before, LDF builds the priority
queue from the tail to the head of the graph. Among the
tasks that have not successors or whose successors have all
been selected, the LDF policy selects the task with the latest
deadline to be scheduled last. The algorithm at first selects
the leaves of the graph in the temporary queue TQ in line
3. Then, it selects the task with the latest deadline in Line
4. The selected task Ti is put in the priority queue, which is
a Double-Ended queue (Line 5). In line 6, the selected task
Ti is removed from the graph. This process is repeated until
all tasks in the graph are selected and put in the priority
queue. It should be noted that the tasks are selected from
the head of the priority queue to be scheduled, such that
the first task inserted in the priority queue will be sched-
uled last. Therefore, the algorithm selects the tasks in the
priority queue one by one and schedules them.

In lines 8-29, the algorithm schedules the tasks such that
the TSP of all cores is met, and the QoS of backup tasks are
maximized. To do this, the algorithm iterates until all main
and backup tasks are scheduled. In line 9, the algorithm
selects the task with the highest priority in the priority
queue.

Then, in order to balance the utilization of the core pairs,
the algorithm selects the core pair with the lowest utiliza-
tion (denoted by φ in line 10) to map the selected task. In
order to schedule the selected task (its main and backup),
the algorithm finds the maximum finish time of all prede-
cessors of the selected task in line 11. Then, in lines 12-21,
the main task is scheduled such that the power constraint
is met. TSP values are computed for all possibilities of the
number of active cores using the algorithm proposed in [4].
On the primary core of φ, the algorithm finds the first free
time slot after the finish time of the predecessors of Ti.
Then, it checks whether the maximum power consumption
of Ti is equal or less than the TSP value of the primary core
of φ at the time slot t. If the mentioned condition is satis-
fied, the algorithm schedules Ti on the time slot t on the
schedule of the primary core φ.Sprimary. Otherwise, until a
satisfactory time slot is found, the algorithm repeats this
process. After scheduling the main task, in lines 22-28, the
backup task of Ti is scheduled. To do this, we set the vari-

able k to the finish time of the corresponding main task be-
cause we want to prevent the overlap between the main
and backup tasks. It should be noted that the backup tasks
can miss their deadlines because the task model is soft real-
time. Therefore, the backup task of Ti is scheduled on the
spare core of φ such that the power constraint is met.

In runtime, we exploit the opportunities created during
the actual execution of the tasks to reduce further power
consumption and improve QoS. This can be provided
through an online monitor for the system at runtime. The
online monitor works to control the execution accuracy of
the main tasks to handle the runtime state of the system
and apply DPM and DVFS. The online monitor needs to
find the main tasks that have finished successfully and can-
cels the execution of their corresponding backup tasks.
Since the fault rate is rare, most of the time, there is no need
to be executed the backup tasks. Therefore, as soon as the
main task finishes successfully, the online monitor drops
the execution of the backup tasks.

For applying the DVFS technique, when the dynamic
slacks are released at runtime, our method uses DVFS to

Algorithm 1. The mapping and scheduling policy of TASS
Inputs: Φ: The set of tasks in graph, TSP for all possible num-
ber of active cores, the set of core pairs CP={CP1, CP2, …, CPk}.
Output: The task scheduling Si on each core Cj.
BEGIN
1. TQ = Ø, PQ = Ø; // Initialize the Temp. and priority queues
2. while Φ ≠Ø do
3. TQ = Φ.return(); // Return leaves of graph
4. Ti = TQ.select(); // Return the task with the latest
 deadline in PQ
5. PQ.put(Ti); // Put Ti to the priority queue (a double-
 ended queue)
6. Φ.remove(Ti); // Remove Ti from the graph
7. end while
8. while PQ ≠ Ø do
9. Ti = PQ.select(); // Select Ti from the priority queue PQ
10. φ = minutilization{CPm, 1≤m≤k};
11. k =Max.Finish_time_of_predecessors(Ti);
--- Scheduling Ti on the primary core of CPm

12. while k ≤ Di-𝑊𝑊𝑊𝑊𝑖𝑖𝐻𝐻𝐻𝐻 do
13. t←Find first free time slot after k on φ.Sprimary;
14. TSP.φ.Sprimary = TSP(#active_cores at t); // Return TSP
 of φ.Sprimary in HP island at t
15. if Max.Power(Ti) ≤ TSP.φ.Sprimary at time t do
16. Schedule Ti at t on φ.Sprimary;
17. PQ.remove(Ti);
18. break;
19. k=t+1;
20. end while
21. k = Finish time of Ti on φ.Sprimary;
--- Scheduling Bi on the spare core of CPm

22. while Bi is not scheduled do
23. t←Find first free time slot after k on φ.Sprimary;
24. TSP.φ.Sspare = TSP(#active_cores at t); // Return TSP
 of φ.Sspare in LP island at t
25. if Max.Power(Bi) ≤ TSP.φ.Sspare do
26. Schedule Bi at t on φ.Sspare;
27. break;
28. end while
29. end while
END

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

further reduce the power consumption. Therefore, at
runtime, we determine static and dynamic slacks on all HP
cores and apply the EVEN-DVFS technique for the main
tasks [21]. The EVEN-DVFS technique distributes slacks
evenly among all tasks that can use them. The advantage
of the EVEN-DVFS technique is its linear time complexity
when compared to the quadratic complexity of other DVFS
techniques [10]. Like the previous works in the literature,
we have considered the time overhead of applying DVFS
on the WCET of the tasks [6][7][9][42]. Therefore, when we
want to apply DVFS, we add its time overhead to the
WCET of tasks. However, this overhead is negligible.

5 EXPERIMENTAL SETUPS AND RESULTS
In this section, the effectiveness of TASS is evaluated, em-
ploying the well-established frameworks: the gem5 full-
system simulator [15], McPAT [16], HotSpot [17], QUILT
[33], and TSP [4]. We ran our simulations with various task
graphs, including real-life applications of the MiBench
benchmark suite [18] running on a heterogeneous multi-
core platform, which has two types of cores: (i) ARM Cor-
tex-A7 as LP core, (ii) ARM Cortex-A15 as HP core. Mean-
while, we considered that the system supports per-core
DVFS. The details of simulation configurations for the pro-
cessing cores of our system are summarized in Table 4. Fig.
3 shows our tool flow for evaluating TASS. We simulate
our experiments conducted on gem5 [15] and McPAT [16]
for the technology node of 14nm. As shown in Fig. 3, we
extract the power consumption, the worst-case execution
time, reliability, and temperature values via gem5 and
McPAT. The tool QUILT [33] generates the chip floorplan
based on the results of McPAT. For extracting the RC-ther-
mal model of the chip, which is necessary to compute TSP

[4], we use the HotSpot [17]. Fig. 4 shows the execution
time and average and peak power consumption of appli-
cations of the MiBench benchmark suite. Then, we employ
a system-level simulator for simulating different execution
scenarios.

We compare our proposed method with state-of-the-art
techniques. The comparison partners in our evaluations
are: (i) TP3M [2]: This method has proposed a peak-power-
aware reliability management approach for N-Modular re-
dundancy, which removes the overlaps of the peak power
of concurrently executing tasks to keep the maximum
power consumption below the chip TDP; (ii) ConvSS [19]:
The conventional standby-sparing scheme where each
backup task is executed in parallel with its main tasks.
In order to compare TASS with state-of-the-art techniques,
we have exploited the Standard Task Graph Set (STG),
which is a kind of benchmark for the evaluation of multi-
core scheduling algorithms [22]. We considered that the
tasks of task graphs were randomly selected from MiBench
[18]. In the experiments, each task graph has a different
parallelism degree [20]. In our experiments, we consider
three classes of task graphs with different parallelism de-
grees like [2]. For each graph, if n is the number of tasks
and h is the height of the task graph, h can vary between 1,
which is the highest parallelism degree, and n, which is the
chained task graph with the lowest parallelism degree. Ac-
cording to the above explanation, we consider the follow-
ing classes of graphs: 1) task graphs with high parallelism
degree 1≤h<n/3, 2) task graphs with medium parallelism

(a) (b) (c)

Fig. 4. MiBench benchmark characterization running on ARM Cortex-A7 and ARM Cortex-A15 cores. a) Execution time, b) Average power
consumption, and c) Peak power consumption.

0
50

100
150
200
250
300

Ba
si

cm
at

h

Bi
tc

ou
nt

C
R

C
32

D
ijk

st
ra

FF
T

Jp
eg

Pa
tri

ci
a

Q
so

rt

SH
A

St
rin

g
se

ar
ch

Su
sa

n

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Cortex-A7 Cortex-A15

0
0.2
0.4
0.6
0.8

1
1.2

Ba
si

cm
at

h

Bi
tc

ou
nt

C
R

C
32

D
ijk

st
ra

FF
T

Jp
eg

Pa
tri

ci
a

Q
so

rt

SH
A

St
rin

g
se

ar
ch

Su
sa

n

Av
er

ag
e

Po
w

er
 (W

)

Cortex-A7 Cortex-A15

0
0.3
0.6
0.9
1.2
1.5
1.8

Ba
si

cm
at

h

Bi
tc

ou
nt

C
R

C
32

D
ijk

st
ra

FF
T

Jp
eg

Pa
tri

ci
a

Q
so

rt

SH
A

St
rin

g
se

ar
ch

Su
sa

n

Pe
ak

 P
ow

er
 (W

)

Cortex-A7 Cortex-A15

Fig. 3. The tool flow of our proposed method.

For each application of MiBench executed on
different types of cores

HotSpotMcPATGem5

Core-Level
Power

Constraint
Calculation

Thermal
Safe Power

Fault Generator

Fault Injector

Fault Rate

Our Thermal-Aware Standby-Sparing Scheduler

Worst-Case Execution Scenario Power, QoS,
and Feasibility

Analysis Realistic Execution Scenario

Number of
Tasks and

Cores

Inputs

Execution Time

Power Profiles

Energy

Average Power

Processor Description
(TDTM, Pmax, Tinact iv e, etc)

QUILTTable 4. The details of system configuration

Parameter Configuration
LITTLE island big island

Core Type ARM Cortex-A7 ARM Cortex-A15
Machine

Type In-Order Out-Of-Order

Core Volt.
And Freq.

[0.78V, 0.4GHz] to
[0.93V, 1.4GHz]

[0.89V, 0.8GHz] to
[0.9995V, 2GHz]

Feature Size 14 nm
Core Microar-

chitecture ARMv7-A

L1 Cache 32KB, 8KB block-width, 4-way
L2 Cache 2MB, 16-way
Memory 2GB, 32-bit LPDDR3e

ANSARI ET AL.: THERMAL-AWARE STANDBY-SPARING TECHNIQUE ON HETEROGENEOUS REAL-TIME EMBEDDED SYSTEMS 9

degree n/3≤h<2n/3, and 3) task graphs with low parallel-
ism degree is 2n/3≤h<n.

We also considered a different number of tasks in our
experiments and conducted experiments on a platform
with 16 cores, including 8 high-performance and 8 low-
power cores. We compared TASS with two selected
schemes (TP3M and ConvSS) for: i) the worst-case scenario
when the system consumes the maximum possible power
(Section 5.1) and ii) the realistic scenario, including both
faulty and fault-free scenarios when the system consumes
real power (Section 5.2).

5.1 The Worst-Case Scenario
In the worst-case scenario, the maximum power consump-
tion by the system consumes because the main and backup
copies of each task are executed in this scenario. Therefore,
it can be considered a condition in which we compare fea-
sibility, maximum temperature, QoS, and peak and aver-
age power consumption of TASS with the state-of-the-art
methods. In order to analyze the feasibility, QoS, and peak
power consumption for each system configuration, we
used more task sets, and then the average results are re-
ported. Each case was simulated 100 times with different

a) Low parallelism degree

b) Medium parallelism degree

c) High parallelism degree

Fig. 6. Quality of service of schemes in the worst-case scenario
for different parallelism degrees. a) Low parallelism degree,
b) Medium parallelism degree, c) High parallelism degree.

0

0.15

0.3

0.45

0.6

36 45 54 63 72 81 90

Q
oS

Number of Tasks

TP3M TASS ConvSS

0
0.15
0.3

0.45
0.6

0.75

36 45 54 63 72 81 90

Q
oS

Number of Tasks

TP3M TASS ConvSS

0
0.2
0.4
0.6
0.8

1

36 45 54 63 72 81 90

Q
oS

Number of Tasks

TP3M TASS ConvSS

a) Low parallelism degree

b) Medium parallelism degree

c) High parallelism degree

Fig. 7. Normalized peak power consumption to TASS in the
worst-case scenario for different parallelism degrees. a) Low
parallelism degree, b) Medium parallelism degree, c) High par-
allelism degree.

0

0.5

1

1.5

2

2.5

36 45 54 63 72 81 90N
or

m
al

iz
ed

 P
ea

k
Po

w
er

Number of Tasks

TP3M TASS ConvSS

0

0.5

1

1.5

2

36 45 54 63 72 81 90N
or

m
al

iz
ed

 P
ea

k
Po

w
er

Number of Tasks

TP3M TASS ConvSS

0

0.5

1

1.5

2

36 45 54 63 72 81 90N
or

m
al

iz
ed

 P
ea

k
Po

w
er

Number of Tasks

TP3M TASS ConvSS

(a) (b) (c)

Fig. 5. Feasibility of schemes in the worst-case scenario for different parallelism degrees. a) Low parallelism degree, b) Medium parallelism
degree, c) High parallelism degree.

0
20
40
60
80

100

36 45 54 63 72 81 90

Fe
as

ib
ilit

y
(%

)

Number of Tasks

TP3M TASS ConvSS

0
20
40
60
80

100

36 45 54 63 72 81 90

Fe
as

ib
ilit

y
(%

)

Number of Tasks

TP3M TASS ConvSS

0
20
40
60
80

100

36 45 54 63 72 81 90

Fe
as

ib
ilit

y
(%

)

Number of Tasks

TP3M TASS ConvSS

10 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

parameters of the applications (i.e., tasks’ worst-case and
application deadline), and the average results are reported.

5.1.1 Evaluating Feasibility
We define feasibility as the percentage of satisfying both
timing and power constraints in the resulting schedule. In
Fig. 5, we show our comparison with two state-of-the-art
techniques in terms of feasibility with different parallelism
of the graph and the different number of tasks. The results
consider the worst-case scenario where the main and
backup copies of tasks will be executed completely. The
parallelism degree is increased from Fig. 5a to Fig. 5c. Alt-
hough a high parallelism degree implies higher feasibility,
the power consumption will increase, and more thermal
violations occurred, and therefore it can be observed how
the state-of-the-art methods suffer from low feasibility.

5.1.2 Evaluating QoS
Fig. 6 represents the QoS of TASS in the worst-case sce-
nario. In this evaluation, task-graphs with different paral-
lelism degrees are considered, and evaluations are re-
peated for a different number of tasks. The amount of QoS
of the worst-case scenario is computed based on the linear
utility function (see Eq. 9). By changing the degree of the
graphs, the QoS improvement is evaluated. In Fig. 6a to
Fig. 6c, by increasing the degree of the graphs, the QoS im-
provement is increased because the tasks can execute in
parallel. Note that the results of Fig. 6 are calculated based
on Eq. 8 and have not the unit because in Eq. 8 we have
divided the utility function which is a constant value and
has not the unit (see Eq. 9) to the maximum number of
tasks. Also, Eq. 9 is shown the linear utility function that
has not the unit.

5.1.3 Evaluating Peak Power Consumption
In order to provide a more detailed analysis of peak power
consumption, for each system configuration, we used

more task sets, and then the average results of peak power
consumption are reported in Fig. 7. This figure shows the
normalized peak power consumption of different schemes
to TASS in the worst-case scenario for different parallelism
degrees. When the number of tasks increases, the peak
power reduction of TASS is higher than other schemes.
Also, when the parallelism degree of task graphs increases,
the peak power consumption of TASS does not increase,
while other schemes increase it. The peak power consump-
tion of TASS is always less than the other two schemes.
The results of peak power consumption show that TASS
provides up to 51.94% (on average by 34.06%) peak power

a) Low parallelism degree

b) Medium parallelism degree

c) High parallelism degree

Fig. 10. Quality of service of schemes in the realistic scenario
for different parallelism degrees. a) Low parallelism degree,
b) Medium parallelism degree, c) High parallelism degree

0

0.2

0.4

0.6

0.8

36 45 54 63 72 81 90

Q
oS

Number of Tasks

TP3M TASS ConvSS

0

0.2

0.4

0.6

0.8

36 45 54 63 72 81 90

Q
oS

Number of Tasks

TP3M TASS ConvSS

0
0.2
0.4
0.6
0.8

1

36 45 54 63 72 81 90

Q
oS

Number of Tasks

TP3M TASS ConvSS

(a) (b) (c)

Fig. 8. The average transient temperature of a 16-core system for all methods by considering Tthreshold= 60 ͦC. a) TASS, b) TP3M, c) ConvSS.

core_11

router_0 core_12 router_1core_13 core_14 core_15

core_1core_0 core_3core_2
l2s_0

core_5 core_4

l2s_1

core_7 core_6

core_10 core_9 core_8 core_11

router_0 core_12 router_1core_13 core_14 core_15

core_1core_0 core_3core_2
l2s_0

core_5 core_4

l2s_1

core_7 core_6

core_10 core_9 core_8 core_11

router_0 core_12 router_1core_13 core_14 core_15

core_1core_0 core_3core_2
l2s_0

core_5 core_4

l2s_1

core_7 core_6

core_10 core_9 core_8

75

70.5

66

61.5

57

52.5

48

45

Fig. 9. The average results for peak temperature on the chip.

50

55

60

65

70

36 45 54 63 72 81 90

Te
m

pe
ra

tu
re

 (°
C

)

Number of Tasks

TP3M TASS ConvSS

ANSARI ET AL.: THERMAL-AWARE STANDBY-SPARING TECHNIQUE ON HETEROGENEOUS REAL-TIME EMBEDDED SYSTEMS 11

reduction compared to state-of-the-art schemes.

5.1.4 Evaluating Temperature
In this subsection, we evaluate the resulting maximum
temperature after applying the mapping and scheduling of
the methods for different numbers of cores. Fig. 8 shows
the average transient temperature of a 16-core system for
all methods. In Fig. 8, the maximum temperature of TASS
among all cores reaches about 59.96˚C, but other methods
violate the temperature threshold, i.e., Tthreshold= 60°C. For
better observation, we have reported the average result of
different methods when we have again simulated 1000
times with different parameters of the applications (see
Fig. 9). As shown in Fig. 9, the TASS method meets the
temperature threshold in all configurations. Note that
TASS meets the temperature constraint, but other methods
do not consider temperature constraint and miss the tem-
perature constraint. As it is shown in Fig. 9, in a higher
number of cores, the maximum temperature increases be-
cause the number of active cores is increased. Our TASS
method achieves up to 9.45˚C reduction in the system tem-
perature compared to state-of-the-art methods while keep-
ing the system reliability at a required level.

5.2 The Realistic Scenario
In this scenario, we investigate the realistic conditions
where the actual fault injection is considered. In order to
generate fault rate and pattern, transient faults are injected
using a Poisson process where the fault rate corresponding
to different voltage levels was generated using Eq. 4 under
the parameters λ0=10-6 faults/μs and d = 2. Therefore, the
fault rate varies between 10-6 faults/μs corresponding to
Vmax and 10-2 faults/μs corresponding to Vmin. We generate
a fault vector that determines at which times faults occur.
Based on the generated fault vector, we decide that the task
becomes faulty during the execution of a task set. Since
transient faults are rare in nature, TASS achieves further
temperature reduction in this scenario beyond what is
achieved through the worst-case scenario. In this scenario,
when the main task Ti is executed successfully, its corre-
sponding backup task is dropped from the schedule, and
the slack time is released that can be exploited to further
reduce the temperature. Fig. 10 represents the QoS of TASS
in a realistic scenario. In this evaluation, similar to the
worst-case scenario, task-graphs with different parallelism
degrees are considered, and simulations are repeated for
the different number of tasks. When the degree of the
graphs increases, the QoS improvement is evaluated. In
Fig. 10a to Fig. 10c, by increasing the degree of the graphs,
the QoS improvement is increased because the tasks can be
executed in parallel. Experimental results show that TASS
meets the power constraints while, at the same time, im-
proving the QoS of tasks, with an average of 18.40% (up to
39.78%). Fig. 11 shows the normalized peak power con-
sumption of different schemes to TASS in the realistic sce-
nario for different parallelism degrees. The results show

a) Low parallelism degree

b) Medium parallelism degree

c) High parallelism degree

Fig. 11. Normalized peak power consumption to TASS in the real-
istic scenario for different parallelism degrees. a) Low parallelism
degree, b) Medium parallelism degree, c) High parallelism degree.

0

0.5

1

1.5

2

36 45 54 63 72 81 90N
or

m
al

iz
ed

 P
ea

k
Po

w
er

Number of Tasks

TP3M TASS ConvSS

0

0.5

1

1.5

2

36 45 54 63 72 81 90N
or

m
al

iz
ed

 P
ea

k
Po

w
er

Number of Tasks

TP3M TASS ConvSS

0

0.5

1

1.5

2

36 45 54 63 72 81 90N
or

m
al

iz
ed

 P
ea

k
Po

w
er

Number of Tasks

TP3M TASS ConvSS

Fig. 12. The results of QoS and normalized energy consumption at
runtime for different fault rates.

0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8

0.4

0.6

0.8

1

1.2

1.4

1.6

10⁻³ 10⁻⁶ 10⁻⁸

Q
oS

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Fault Rate (fault/µs)

ConvSS-Energy TASS-Energy
TP3M-Energy ConvSS-QoS
TASS-QoS TP3M-QoS

Fig. 13. The results of reliability at runtime for different number of
permanent faults and the transient fault-rate modeled using Eq 4.

0.994
0.995
0.996
0.997
0.998
0.999

1

0 1 2 3

R
el

ia
bi

lit
y

Number of Permanent Faults

TP3M TASS ConvSS

12 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

that TASS provides up to 40.21% (on average by 28.31%)
peak power reduction compared to state-of-the-art
schemes.

It should be noted that our assumed fault rate is much
higher than real fault rates (i.e., 10-12 faults/us based on
[23]). Note that our assumption leads to lower QoS values.
If we consider the real fault rate, we can achieve a higher
QoS than our represented one. This is because using real
fault rate will require much more number of fault injec-
tions to cover different parts of applications like other
works in the literature [2][6][7][8][9][24][32], which will re-
quire months of simulations to ensure high coverage, and
hence, we used the high fault rates to evaluate our scheme.
Moreover, if we consider a higher fault rate than our as-
sumed (e.g, 10-3 faults/us), we can see that the QoS de-
creases and the energy consumption increases because
most of the backup tasks should be executed and we can-
not drop them for further power and energy reduction. In
order to verify this discussion, we have repeated our sim-
ulations for three different faults rates, i.e., 1) 10-3 faults/us,
2) 10-6 faults/us, and 3) 10-8 faults/us. As it can be seen
from Fig. 12, the above discussion is approved.

In order to analyze the reliability of TASS, the transient
fault-rate was modeled using Eq. 4 under parameters
𝜆𝜆0=10−6 faults/us and d=2 [2]. Also, we consider that the
permanent faults happen on the primary cores. Fig. 13 re-
ports the reliability of applications for ConvSS, TP3M with
N=3, and TASS. As seen in this figure, by increasing the
number of permanent faults on the primary cores, the reli-
ability of TASS is much higher than other schemes. Obvi-
ously, TP3M fails in tolerating permanent faults at differ-
ent fault-rates, since it does not support tolerating the per-
manent faults.

In the realistic scenario, due to task dropping, the max-
imum temperature decreases. As it is shown in Fig. 14, our
TASS method achieves up to 15.47˚C reduction in the sys-
tem temperature, more than what has been achieved in the
worst-case scenario compared to state-of-the-art methods
while keeping the system reliability at a required level.

For the final discussion, if we exploit homogeneous
multicore systems, we will face two situations: 1) if we con-
sider that all of the cores are from the type of Low-Power
cores, it may result in a lower QoS because the execution
time of the main tasks increases; 2) if all of the cores are
from the type of High-Performance cores, the peak power
consumption and temperature increase. In two cases,
when the main task finishes successfully, the whole of its
corresponding backup task can be dropped, resulting in a
significant amount of power and temperature reduction.

Since both of them have some negative effects, we ex-
ploited a heterogeneous multicore system as a tradeoff to
improve our goals.

6 CONCLUSIONS
In this paper, we have proposed a thermal-aware standby-
sparing system where the main tasks and the backup tasks
are scheduled on the primary and spare cores, respec-
tively, such that the Thermal Safe Power (TSP) and real-
time constraints are met. Our proposed method provides
an opportunity to remove the overlaps of the execution of
main and backup tasks to reduce temperature due to ap-
plying the fault-tolerant technique in fault-free scenarios.
We have evaluated our proposed method under various
system configurations and workloads. Our experiments
show that TASS improves QoS up to 39.78% (on average
by 18.40%) and reduces the peak power consumption and
temperature by up to 40.21% and 15.47˚C (on average
28.31% and 13.60˚C), respectively, at runtime, while keep-
ing the system reliability at the required level in realistic
scenarios. Also, in the worst-case fault scenario, by consid-
ering the available slack times, our proposed method
achieves, on average, 34.07% and up to 51.94% peak power
improvement in comparison to the state-of-the-art meth-
ods.

REFERENCES
[1] Intel Corporation, “Dual-core intel xeon processor 5100 series

datasheet, revision 003,” Aug. 2007.
[2] M. Ansari, S. Safari, A. Yeganeh-Khaksar, M. Salehi, and A.

Ejlali, “Peak Power Management to Meet Thermal Design Power
in Fault-Tolerant Embedded Systems,” in IEEE Transactions on
Parallel and Distributed Sys., vol. 30, no. 1, pp. 161-173, 1 Jan. 2019.

[3] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Au-
ricchio, P. Huang, M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swan-
son, and M. Taylor,“The greendroid mobile application proces-
sor: An architecture for silicon’s dark future,” IEEE Micro, vol.
31, no. 2, pp. 86–95, Mar./Apr. 2011.

[4] S. Pagani, H. Khdr, J. J. Chen, M. Shafique, M. Li and J. Henkel,
“Thermal Safe Power (TSP): Efficient Power Budgeting for Het-
erogeneous Manycore Systems in Dark Silicon,” IEEE Trans. on
Comp., vol. 66, no. 1, pp. 147-162, 2017.

[5] H. Khdr, S. Pagani, E. Sousa, V. Lari, A. Pathania, F. Hannig, M.
Shafique, J. Teich, and J. Henkel, “Power Density-Aware Re-
source Management for Heterogeneous Tiled Multicores,” IEEE
Trans. on Computers, vol. 66, no. 3, pp. 488-501, 1 March 2017.

[6] A. Roy, H. Aydin and D. Zhu, “Energy-aware standby-sparing
on heterogeneous multicore systems,” 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), Austin, TX, pp. 1-6, 2017.

[7] M. A. Haque, H. Aydin and D. Zhu, “On Reliability Management
of Energy-Aware Real-Time Systems Through Task Replica-
tion,” IEEE Trans. on Par. and Dis. Sys., vol. 28, no. 3, pp. 813-825,
2017.

[8] M.A. Haque, H. Aydin, and D. Zhu, “Energy-Aware Standby-
Sparing Technique for Periodic Real-Time Applications,” Proc.
IEEE 29th Int‘l Conf. Comput. Design (ICCD'11), pp. 190-197, Oct.
2011.

[9] S. Safari, M. Ansari, G. Ershadi, and S. Hessabi, “On the Sched-
uling of Energy-Aware Fault-Tolerant Mixed-Criticality Multi-
core Systems with Service Guarantee Exploration,” IEEE Trans.
on Par. and Dis. Sys., vol. 30, no. 10, pp. 2338-2354, 1 Oct. 2019.

[10] M. Ansari, J. Saberlatibari, S. M. Pasandideh and A. Ejlali, “Sim-
ultaneous Management of Peak-Power and Reliability in Heter-
ogeneous Multicore Embedded Systems,” IEEE Trans. on Par. and

Fig. 14. The result of peak temperature in runtime for different
methods.

50

55

60

65

70

36 45 54 63 72 81 90

Te
m

pe
ra

tu
re

 (°
C

)

Number of Tasks

TP3M TASS ConvSS

ANSARI ET AL.: THERMAL-AWARE STANDBY-SPARING TECHNIQUE ON HETEROGENEOUS REAL-TIME EMBEDDED SYSTEMS 13

Dis. Sys., vol. 31, no. 3, pp. 623-633, 1 March 2020.
[11] C. LaFrieda, E. Ipek, J. F. Martinez and R. Manohar, “Utilizing

Dynamically Coupled Cores to Form a Resilient Chip Multipro-
cessor,” 37th Annual IEEE/IFIP International Conference on Depend-
able Sys. and Networks (DSN'07), Edinburgh, pp. 317-326, 2007.

[12] A. Meixner, M. E. Bauer and D. Sorin, “Argus: Low-Cost, Com-
prehensive Error Detection in Simple Cores,” 40th Annual
IEEE/ACM International Symposium on MICRO, Chicago, IL, pp.
210-222, 2007.

[13] X. Zhu, X. Qin and M. Qiu, “QoS-Aware Fault-Tolerant Schedul-
ing for Real-Time Tasks on Heterogeneous Clusters,” IEEE
Transactions on Computers, vol. 60, no. 6, pp. 800-812, June 2011.

[14] G. Buttazzo, “Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications,” New York, NY:
Springer, 2011.

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A.
Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K.
L. Sewell, M. S. B. AltafN. Vaish, M. D. Hill, and D. A. Wood,
“The gem5 simulator,” ACM SIGARCH Comput. Archit. News,
vol. 39, no. 2, pp. 1–7, May 2011.

[16] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architec-
tures,” 42nd Annual IEEE/ACM Int. Symp. on MICRO, pp. 469-
480, 2009.

[17] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K.
Skadron and M. R. Stan, “HotSpot: A compact thermal modeling
methodology for early-stage VLSI design,” IEEE TVLSI, vol. 14,
no. 5, pp. 501–513, 2006.

[18] M.R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” Proc. 4th IEEE Ann. Workshop
Workload Characterization, 2001, pp. 3–14.

[19] D. Pradhan, Fault-tolerant computer system design. Upper Sad-
dle River, N.J.: Prentice Hall PTR, 1996.

[20] S. Safari, S. Hessabi, and G. Ershadi, “LESS-MICS: A Low Energy
Standby-Sparing Scheme for Mixed-Criticality Systems,” IEEE
Trans. on Comp.-Aid. Des. of Integ. Circ. and Sys., 2020.

[21] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, “System-Level De-
sign Techniques for Energy-Efficient Embedded Systems,” vol.
53, no. 9. Springer Science & Business Media, 2004.

[22] T. Tobita, H. Kasahara, “A Standard Task Graph Set for Fair
Evaluation of Multiprocessor Scheduling Algorithms,” J. Sched-
uling, vol. 5, no. 5, pp. 379-394, 2002.

[23] A. Ejlali, B.M. Al-Hashimi, and P. Eles, “A Standby-Sparing
Technique with Low Energy-Overhead for Fault-Tolerant Hard
Real-Time System,” Proc. International Conference on Hardware-
Software Codesign and System Synthesis (CODES+ISSS), pp. 193-
202, Grenoble, France, October 2009.

[24] M. A. Haque, H. Aydin, D. Zhu, “Energy-aware standby-sparing
for fixed-priority real-time task sets,” Sustainable Computing: In-
formatics and Systems, 2015, v. 6, pp. 81-93.

[25] A. Roy, H. Aydin and D. Zhu, “Energy-aware standby-sparing
on heterogeneous multicore systems,” 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), Austin, TX, pp. 1-6, 2017.

[26] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware Standby-
Sparing Technique for periodic real-time applications,” 2011
IEEE 29th International Conference on Computer Design (ICCD),
Amherst, MA, 2011, pp. 190-197.

[27] A. Roy, H. Aydin, and D. Zhu, “Energy-efficient pri-
mary/backup scheduling techniques for heterogeneous multi-
core systems,” 2017 Eighth International Green and Sustainable
Computing Conference (IGSC), Orlando, FL, 2017, pp. 1-8.

[28] Y. Guo, D. Zhu, H. Aydin, J.J. Han, and L. T. Yang, “Exploiting
primary/backup mechanism for energy efficiency in dependable
real-time systems,” Journal of Systems Architecture, 2017, v 78, pp.
68-80.

[29] Y. Guo, D. Zhu, and H. Aydin, “Generalized Standby-Sparing
techniques for energy-efficient fault tolerance in multiprocessor

real-time systems,” 2013 IEEE 19th International Conference on Em-
bedded and Real-Time Computing Systems and Applications, Taipei,
2013, pp. 62-71.

[30] M. K. Tavana, M. Salehi, and A. Ejlali, “Feedback-Based Energy
Management in a Standby-Sparing Scheme for Hard Real-Time
Systems,” IEEE 32nd Real-Time Systems Symposium, Vienna, 2011,
pp. 349-356.

[31] A. Ejlali, B. M. Al-Hashimi and P. Eles, “Low-Energy Standby-
Sparing for Hard Real-Time Systems,” IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Systems, vol. 31, no. 3,
pp. 329-342, March 2012.

[32] M. Ansari, A. Yeganeh. Khaksar, S. Safari and A. Ejlali, “Peak-
Power-Aware Energy Management for Periodic Real-Time Ap-
plications,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 39, no. 4, pp. 779-788, April 2020.

[33] G. J. Briggs, E. J. Tan, N. A. Nelson, and D. H. Albonesi, “QUILT:
a GUI-based integrated circuit floorplanning environment for
computer architecture research and education,” Proc. of Workshop
on Computer Architecture Education, 2005.

[34] Guocong Song and Ye Li, “Cross-layer optimization for OFDM
wireless networks-part II: algorithm development,” IEEE Trans-
actions on Wireless Communications, vol. 4, no. 2, pp. 625-634,
March 2005.

[35] J. Saber-Latibari, M. Ansari, P. Gohari-Nazari, S. Yari-Karin, A.
M. H. Monazzah, and A. Ejlali, “READY: Reliability-and Dead-
line-Aware Power-Budgeting for Heterogeneous Multi-Core
Systems,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 2020.

[36] B. Pourmohseni, F. Smirnov, H. Khdr, S. Wildermann, J. Teich
and J. Henkel, “Thermally Composable Hybrid Application
Mapping for Real-Time Applications in Heterogeneous Many-
Core Systems,” 2019 IEEE Real-Time Systems Symposium (RTSS),
Hong Kong, Hong Kong, 2019.

[37] H. Aydin, V. Devadas and D. Zhu, “System-Level Energy Man-
agement for Periodic Real-Time Tasks,” 2006 27th IEEE Int. Real-
Time Systems Symposium (RTSS'06), Rio de Janeiro, 2006.

[38] A. Yeganeh-Khaksar, M. Ansari, S. Safari, S. Yari-Karin and A.
Ejlali, “Ring-DVFS: Reliability-Aware Reinforcement Learning-
Based DVFS for Real-Time Embedded Systems,” in IEEE
Embedded Systems Letters, 2020.

[39] S. Rehman, F. Kriebel, Duo Sun, M. Shafique, and J. Henkel,
“dTune: Leveraging reliable code generation for adaptive de-
pendability tuning under process variation and aging-induced
effects,” 51st ACM/EDAC/IEEE Design Automation Conf. (DAC),
San Francisco, CA, 2014, pp. 1-6.

[40] J. Huang, K. Huang, A. Raabe, C. Buckl and A. Knoll, “Towards
fault-tolerant embedded systems with imperfect fault detec-
tion,” Design Automation Conf. (DAC), San Francisco, CA, 2012,
pp. 188-196.

[41] G. Xie, Y. Chen, X. Xiao, C. Xu, R. Li, and K. Li, “Energy-efficient
fault-tolerant scheduling of reliable parallel applications on het-
erogeneous distributed embedded systems,” in IEEE Trans. on
Sus. Comp. (TC), vol. 3, no. 3, pp. 167-181, 1 July-Sept. 2018.

[42] M. Salehi, M. Khavari Tavana, S. Rehman, F. Kriebel, M.
Shafique, A. Ejlali, and J. Henkel, “DRVS: Power-efficient relia-
bility management through dynamic redundancy and voltage
scaling under variations,” IEEE/ACM Int’l Symposium on Low
Power Electronics and Design (ISLPED), Rome, 2015, pp. 225-230.

Mohsen Ansari received the M.Sc. degree in com-
puter engineering from the Sharif University of
Technology, Tehran, Iran, in 2016. He is currently
working toward the Ph.D. degree in computer en-
gineering at Sharif University, Tehran, Iran, from
Sept. 2016 until now. He is now a visiting re-
searcher in the Chair for Embedded Systems
(CES), Karlsruhe Institute of Technology (KIT),

Germany, from Oct. 2019 until now. Also, he is a group leader of the
Embedded Systems Research Laboratory (ESR-LAB) at the depart-
ment of computer engineering, Sharif University of Technology. His

14 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

research interests include the low-power design of embedded sys-
tems and multi-/many-core systems with a focus on dependability/re-
liability.

Sepideh Safari received the M.Sc. degree in
computer engineering from the Sharif University
of Technology, Tehran, Iran, in 2016. She is cur-
rently working toward the Ph.D. degree in com-
puter engineering at the Sharif University of
Technology. She is now a visiting researcher in
the Chair for Embedded Systems (CES), Karls-
ruhe Institute of Technology (KIT), Germany. Her

research interests include the low-power design of cyber-physical sys-
tems, energy management in fault-tolerant embedded systems, and
multi-/many-core systems with a focus on dependability/reliability.

Sina Yari-Karin received his B.Sc. degree in com-
puter engineering from the Ferdowsi University of
Mashhad in 2017. He is currently an M.Sc. student
in computer engineering at the Sharif University of
Technology, Tehran, Iran. Also, he is a member of
the Embedded Systems Research Laboratory
(ESR-LAB) at the department of computer engi-
neering at the Sharif University of Technology. His
research interests are embedded system design,

low power system design, fault-tolerant system design, and computer
architecture.

Pourya Gohari-Nazari received the B.Sc. degree
in computer engineering from the University of Isfa-
han. He is currently working toward the M.Sc. de-
gree in the Department of Computer Engineering at
the Sharif University of Technology, Tehran, Iran.
His research interests are thermal management in
many-core systems and design embedded systems
with a focus on low-power and reliability.

Heba Khdr is a postdoctoral researcher and a
group leader at the Chair for Embedded Sys-
tems (CES) in Karlsruhe Institute of Technology
(KIT) in Germany. She received her Ph.D. (Dr.-
Ing.) in Computer Science from Karlsruhe Insti-
tute of Technology (KIT) in 2018.
In 2005, she received her Diploma in Informat-
ics Engineering from Aleppo University in Syria
with an excellent grade and the first rank.

From 2005 until 2007, she worked as a software engineer in the in-
dustry sector in Syria. She worked as an assistant at Aleppo Univer-
sity from 2008 until 2010. In 2011 she did an equivalent master thesis
at KIT. Her research interests are thermal management and resource
management in multi- and many-core systems. In 2012 she received
Research Student Award from KIT. She received Best Paper Award
from IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS) in 2014 and four
HiPEAC paper awards.

Muhammad Shafique (M’11-SM’16) received his
Ph.D. in computer science from Karlsruhe Institute
of Technology, Germany, in 2011. From Oct.2016
to Aug.2020, he was a full professor at the Institute
of Computer Engineering, TU Wien, Austria. Since
Sep.2020, he is with the Division of Engineering at
New York University Abu Dhabi (NYUAD) and is a
Global Network Faculty at the NYU Tandon School
of Engineering, USA. His research interests are in

system-level design for brain-inspired computing, AI/Machine Learn-
ing hardware, wearables, autonomous systems, energy-efficient and
robust computing, IoT, and Smart CPS. Dr. Shafique has given sev-
eral Keynotes, Talks, and Tutorials and organized special sessions at
premier venues. He has served as the PC Chair, General Chair, Track
Chair, and PC member for several conferences. He received the 2015
ACM/SIGDA Outstanding New Faculty Award, AI 2000 Chip Technol-
ogy Most Influential Scholar Award in 2020, six gold medals, and sev-
eral best paper awards and nominations.

Jörg Henkel (M’95-SM’01-F’15) received the Di-
ploma and Ph.D. (summa cum laude) degrees from
the Technical University of Braunschweig, Ger-
many. He was a Research Staff Member with NEC
Laboratories, Princeton, NJ, USA. His research
work is focused on co-design for embedded hard-
ware/software systems with respect to power, ther-

mal, and reliability aspects. Dr. Henkel has received six best paper
awards from, among others, ICCAD, ESWeek, and DATE. He served
as the Editor-in-Chief for the ACM TECS and IEEE Design&Test. He
is/has been an Associate Editor for major ACM and IEEE journals. He
was a General Chair ICCAD, ESWeek, etc., and serves as a Steering
Committee chair/member for leading conferences and journals. He
coordinates the DFG Program SPP 1500 “Dependable Embedded
Systems” and is a site coordinator of the DFG-TR89 collaborative re-
search center on “Invasive Computing.” He is the Chairman of the
IEEE Computer Society, Germany Chapter, and a Fellow of the IEEE.

Alireza Ejlali received the Ph.D. degree in com-
puter engineering from the Sharif University of
Technology in Tehran, Iran, in 2006. He is cur-
rently an associate professor of computer engi-
neering at the Sharif University of Technology.
From 2005 to 2006, he was a visiting researcher
in the Electronic Systems Design Group, Univer-
sity of Southampton, Southampton, United King-
dom. In 2006, he joined the Sharif University of

Technology as a faculty member in the department of computer engi-
neering, and from 2011 to 2015, he was the director of the Computer
Architecture Group in this department. He is now the director of
Embedded Systems Research Laboratory (ESR-LAB) and the head
of the department of computer science and engineering, Sharif
University of Technology. His research interests include low power
design, fault tolerance, real-time embedded systems, and Internet of
Things (IoT).

	1 Introduction
	1.1 Motivational Example

	2 Related Work
	3 Models and Preliminaries
	3.1 System and Power Consumption Model
	3.2 Task Model
	3.3 Fault Model

	4 Our Proposed Method
	4.1 Concept Overview and Our Novel Contribution
	4.2 Problem Definition
	4.3 Algorithm Discussion

	5 Experimental Setups And Results
	5.1 The Worst-Case Scenario
	5.1.1 Evaluating Feasibility
	5.1.2 Evaluating QoS
	5.1.3 Evaluating Peak Power Consumption
	5.1.4 Evaluating Temperature

	5.2 The Realistic Scenario

	6 Conclusions
	References

