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Abstract—Low power consumption, real-time computing, and high reliability are three key requirements/design objectives of 
real-time embedded systems. The standby-sparing technique can improve system reliability while it might increase the 
temperature of the system beyond safe limits. In this paper, we propose a thermal-aware standby-sparing (TASS) technique that 
aims at maximizing the Quality of Service (QoS) of soft real-time tasks, which is defined as a function of the finishing time of 
running tasks. The proposed technique tolerates permanent and transient faults for multicore real-time embedded systems 
while meeting the Thermal Safe Power (TSP) as the core-level power constraint, which avoids thermal emergencies in on-chip 
systems. Executing the main and backup tasks on the cores at any power consumption below TSP guarantees that no thermal 
violation occurs. Our TASS proposed method provides an opportunity to remove the overlaps of the execution of main and 
backup tasks to prevent extra power consumption due to applying the fault-tolerant technique. Meanwhile, in order to maximize 
the QoS, we employ a heterogeneous platform to execute the main tasks as soon as possible on high-performance cores with 
more power budget. The backup tasks are executed on low power cores after finishing the main tasks. In this case, when the 
main task finishes successfully, the whole of its corresponding backup task can be dropped, resulting in a significant amount of 
power and temperature reduction. Therefore, in the fault-free scenarios, the spare cores can be powered down, and only the 
main tasks are scheduled and executed on the primary cores. Experiments show that our proposed method improves QoS up to 
39.78% (on average by 18.40%) and reduces the peak power consumption and temperature by up to 40.21% and 15.47˚C (on 
average 28.31% and 13.60˚C), respectively, at runtime, while keeping the system reliability at the required level. 

Index Terms— Thermal Management, Power Consumption, Standby-Sparing, Real-Time Embedded Systems, QoS, Thermal 
Safe Power.  

——————————      —————————— 

1 INTRODUCTION
HIP manufacturers have introduced Thermal Design 
Power (TDP) as the chip-level power constraint for a 

specific chip used in multicore real-time embedded sys-
tems [1][2]. Several hardware-level and software-level 
techniques are proposed to dissipate the power consump-
tion up to TDP, e.g., cooling techniques as the hardware-
level technique and peak-power-aware scheduling policies 
as the software-level techniques [2][3]. TDP, as the power 
constraint of the system, could be either pessimistic or 
thermally unsafe [4]. TDP as the pessimistic constraint is 
not the maximum accessible power that can be consumed 

on the chip and can result in significant performance losses 
[4][5]. On the other hand, if TDP as a chip-level power con-
straint is not a pessimistic constraint, TDP can be thermally 
unsafe and can lead to thermal violations [4][5]. In order to 
avoid thermal violations, Dynamic Thermal Management 
(DTM) technique is employed on the chip to throttle down 
the cores using Dynamic Voltage and Frequency Scaling 
(DVFS) and Dynamic Power Management (DPM) 
[2][5][37]. However, the DVFS technique might lead to 
missing the deadlines of the real-time tasks and degrading 
the system reliability due to increasing the worst-case exe-
cution time, and hence, this is not acceptable in real-time 
embedded systems [7][8]. Therefore, in this paper, we em-
ploy the Thermal Safe Power (TSP) [4] as the per-core 
power constraint, which is defined as a function of the 
number of simultaneously operating cores [4]. Executing 
cores at any power consumption below TSP guarantees to 
avoid thermal violations, and thereby DTM will not be 
triggered [36]. 

In addition to timeliness requirements of the tasks, 
Quality of Service (QoS) requirements must be considered 
in multicore real-time embedded systems. The QoS re-
quirement refers to the utility function of tasks after they 
proceeded. It should be noted that the QoS-aware real-time 
embedded systems should incorporate inherent high reli-
ability features to tolerate different types of faults [2]. This 
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is because the system must guarantee that each task is ex-
ecuted within its deadline, even in the presence of different 
faults [10]. For example, in the signal processing systems, 
although missing the deadline for some tasks may not re-
sult in failure, the outdated or half-baked processed data 
may be useless for users [13]. Therefore, the system must 
guarantee its functionality and maximize the QoS of the 
tasks even when faults occur. Consequently, employing a 
system-level fault-tolerant technique for such systems is 
mandatory. Some fault-tolerant techniques like Check-
pointing and task re-execution can just tolerate transient 
faults, but the standby-sparing technique is a common 
fault-tolerant approach to deal with both transient and per-
manent faults. Two well-known standby-sparing tech-
niques are Hot Standby-Sparing (HSS) and Cold Standby-
Sparing (CSS). In the HSS technique, both primary and 
spare cores are active simultaneously, but in the CSS tech-
nique, the spare core is inactive and is activated when a 
fault occurs on the primary core. For low power system de-
sign, it is preferable to avoid as far as possible the simulta-
neous execution of the main and backup tasks for prevent-
ing peak power escalation, and hence, the CSS technique 
can be more suitable. However, since in real-time embed-
ded systems, meeting deadlines is one of the requirements, 
using the CSS technique in a straightforward way may not 
be a feasible solution. Therefore, the CSS technique should 
be exploited intelligently because otherwise, it imposes ex-
tra time overhead. Moreover, although the CSS technique 
has less power overhead compared to HSS and N-Modular 
Redundancy (NMR) [2][8], it still might lead to violating 
the power and thermal constraints.  

This paper proposes a Thermal-Aware Standby-Sparing 
technique (called TASS) that exploits the CSS technique on 
the heterogeneous multicore platforms to maximize the 
quality of service for soft real-time tasks while at the same 
time meeting the Thermal Safe Power (TSP) constraint. 
Our proposed method tries to schedule the backup tasks 
after finishing the main tasks on the spare cores to remove 
the overlaps between the main and backup tasks. In this 
case, when the main task finishes successfully, the whole 
of its corresponding backup task can be dropped, resulting 
in a significant amount of power reduction.  
The main contributions of this work are: 
• A thermal-aware standby-sparing system that maxim-

izes QoS of soft real-time tasks for real-time embedded 
systems. 

• A mapping scheme that assigns soft real-time tasks to 
core pairs of the heterogeneous multicore platform 

(i.e., each core pair has one primary core and one spare 
core) and balances the utilization of core pairs and de-
termines the voltage-frequency levels of the cores, 
keeping the power consumption of each underlying 
core under the TSP. 

• Employing Thermal Safe Power (TSP) as the power 
constraint instead of TDP. This is because using TDP 
as the power constraint of a system might lead to ther-
mal violations and thereby increasing the probability 
of missing deadlines.  

In order to compare our TASS method with state-of-the-art 
methods, we have performed full system simulations us-
ing well-established frameworks like gem5 [15], McPAT 
[16], HotSpot [17], and TSP [4]. Our experiments show that 
TASS provides up to 40.21% (on average by 28.31%) peak 
power reduction compared to state-of-the-art methods. 
Also, our TASS method achieves up to 15.47˚C tempera-
ture reduction compared to other methods while keeping 
the system reliability at a required level. 

The following motivational example shows how our 
proposed TASS method can satisfy timing and core-level 
power constraints compared to one of the state-of-the-art 
methods.  
1.1 Motivational Example 
This example provides some insight on the disadvantage 
of using the constant chip-level power constraint in fault-
tolerant systems. For simplicity of presentation, consider a 
heterogeneous multicore system with two islands which 
each of them has two homogenous cores. In this example, 
the system executes a synthetic application task graph with 
nine dependent tasks {T1, …, T9}. Fig. 1a shows dependen-
cies between the tasks where each task has a triple of pa-
rameters {WCLO, WCHI, Di}, in which WCLO and WCHI are 
the worst-case execution time on the low-power and high-
performance cores, respectively, and Di is the dedicated 
deadline of Ti. The peak power consumption of the tasks 
on different types of cores is shown in Table  1. In this ex-
ample, we compare our proposed method with a TMR sys-
tem (i.e., NMR system with N=3) where each task has three 
copies, and the result of them is compared to perform a 
complete majority voting.   

Fig. 1 shows two possible schedules where meet differ-
ent power constraints, while one of them misses the timing 
and temperature constraints. In Fig. 1b and Fig. 1c, a peak-
power-aware scheduling method is shown that meets dif-
ferent values of TDP. This method exploits N-Modular Re-
dundancy (NMR) to improve system reliability. In this 
method, from the beginning of the execution, at first, two 
copies of each task are mapped and scheduled on cores 
based on the lowest utilization policy such that the chip 
TDP is met [2]. For scheduling the last copies, starting from 

Table 2. The core-level power constraint information of the cores 
at different situations when the number of active cores are dif-

ferent on different islands 
High Performance Island Lowe Power Island 

Number of 
active cores 

The core-level 
Power constraint 

Number of  
active cores 

The core-level 
Power constraint 

1 5W 1 3W 
2 3W 2 1W 

 

Table 1. The peak power consumption of tasks running on differ-
ent types of cores  

High Performance Island Lowe Power Island 
Task Name Power value Task Name Power value 

T1 2W T1 1W 
T2 3W T2 2W 
T3 2W T3 1W 
T4 2W T4 1W 
T5 4W T5 3W 
T6 2W T6 1W 
T7 3W T7 2W 
T8 2W T8 1W 
T9 2W T9 1W 
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the end of the execution of two other copies of the same 
task, the third copy is scheduled such that the chip TDP is 
met [2]. In Fig. 1b and Fig. 1c, we assume that the chip TDP 
is equal to 6W and 9W, respectively. As seen in these fig-
ures, when the chip TDP of 6W is considered (see Fig. 1b), 
as a pessimistic constraint, which is not the maximum ac-
cessible power that can be consumed on the chip, it can re-
sult in both deadline and thermal violations (see Fig. 1e). 
On the other hand, when the chip TDP of 9W is considered 
(see Fig. 1c) as an upper-case constraint (not a pessimistic 
constraint), it does not lead to deadline violations; how-
ever, thermal violations still happen (see Fig. 1e).  

In Fig. 1d, we consider a cold standby-sparing system 
where only two copies of each task are executed on the sys-
tem such that the core-level power constraint is met. To do 
this, we consider two core pairs so that each core pair is 
included one low-power core and one high-performance 
core. In our proposed method, we employ a core-level 
power constraint, which we empirically set its value to 
avoid thermal violations. The core-level power constraint 
information of the cores is shown in Table 2. This table 
shows the value of the power constraint that the cores can 
consume when the number of active cores is different. 
Note that for simplicity of presentation, we have calculated 
the core-level power constraint values for the number of 
active cores per island individually. However, in the rest 
of this paper, when we present our method, and in the 

evaluation section, we consider that the numbers of active 
cores in both islands are required together to calculate the 
core-level power constraint for any type of cores; i.e., we 
employ Thermal Safe Power (TSP). Fig. 1d shows our pro-
posed method such that it meets the core-level power and 
timing constraints simultaneously. The proposed method 
executes the backup tasks after finishing the main tasks on 
the spare core to delete the overlapping execution between 
the main and the backup tasks. For example, at first, we 
schedule T1 on HP_C1, and then after finishing the men-
tioned main task, the backup task of T1 is scheduled on 
LP_C1. This leads to turning off all of the spare cores at 
fault-free execution scenario.  

It is worthy to mention that the backup task can be man-
aged in different ways like Hot Standby-Sparing (HSS), 
Cold Standby-Sparing (CSS), and Warm Standby-Sparing 
(WSS). In HSS and WSS, we should execute the backup 
tasks in the overlap form with the execution of the main 
tasks, and therefore, the peak power consumption and the 
temperature increase in all fault scenarios. 
Paper Organization: The rest of this paper is formed as fol-
lows. Section 2 reviews related work and Section 3 presents 
models and assumptions. In Section 4, we present the de-
tails of our proposed method. The experimental results of 
the proposed method are shown in Section 5, and we con-
clude the paper in Section 6.     

(a)  

 

 
 
 
 
 
 
 
 

 
(b) 

(d) 

 

 
 
 
 
 
 
 
 

 
(c) (e) 

Fig. 1. The motivational example for showing advantages of using the core-level power constraint instead of TDP and standby-sparing 
instead of TMR on a heterogeneous multicore system with two islands which each of them has two homogenous cores; (a) an application 
tasks graph with nine tasks; Scheduling the tasks according to the TP3M method [2] in the worst-case fault-scenario (b) by considering a 
lower-case TDP constraint; (c) by considering a upper-case TDP constraint; (d) Applying our proposed method (TASS) in the worst-case 
fault scenario; (e) Maximum temperature profile of different methods. 
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2 RELATED WORK 
Researches related to TASS are discussed here. Ejlali et al. 
in [23] have proposed a hardware redundancy technique 
for dual-core real-time systems that execute frame-based 
tasks without any dependencies. In this work, the primary 
core uses DVS, and the spare core uses DPM. It should be 
noted that the DVS method is used for energy manage-
ment, and it has a negative impact on reliability. Also, the 
mentioned method uses an analytical approach to assign 
the supply voltage value of the primary core at runtime to 
reduce energy consumption by exploiting dynamic slack 
times and meet the reliability target. In [24], the standby-
sparing technique is used for reliability improvement for 
fixed-priority periodic real-time tasks. Indeed in [24], the 
SSFP algorithm has proposed to delay the execution of the 
backup task as much as possible by using a dual-queue 
mechanism to reduce energy consumption. Roy et al. in 
[25] have used a standby-sparing technique for heteroge-
neous multicore systems included high-performance and 
low-power cores. The proposed method in [25] has consid-
ered the challenge of heterogeneous multicore system de-
sign and has answered two questions. First, which type of 
core should be selected for main and backup tasks to min-
imize energy consumption? Secondly, how much should 
the frequency of the primary core be for the purpose of en-
ergy reduction? Also, the authors have shown that the se-
lection of LP (Low Power) or HP (High Performance) cores 
and allocation of frequency on the primary core has a sig-
nificant impact on energy consumption. The proposed 
standby-sparing method in [8] employs EDF scheduling 
on the primary core and EDL scheduling on the spare core 
for periodic real-time tasks to execute main tasks as soon 
as possible and delay the execution of backup tasks. The 
standby-sparing method proposed in [27] exploits task 
partitioning and assigns the frequency of tasks at runtime 
to hold energy consumption at a minimum level and meet 
fault-tolerant constraints for real-time tasks on heterogene-
ous multicore systems. Moreover, the proposed method in 
this paper takes into account the different execution time 
and power parameter scaling factor.  

The works [28] and [29] have proposed the Paired-
Standby-Sparing (Paired-SS) and Generalized-Standby-
Sparing (Generalized-SS) methods based on the standby-
sparing technique. In the Paired-SS method, cores are di-
vided into pairs, and the standby-sparing method applies 
to pairs. On the other hand, the Generalized-SS divides the 
cores into two categories, primary cores and secondary 
cores. The main tasks are executed in the primary cores un-
der partitioned-EDF, and the DVFS technique and backup 
tasks are executed in secondary cores under the parti-
tioned-EDL and DPM mechanism. Also, Preference-Ori-
ented Earliest Deadline (POED) scheduler has been stud-
ied, and experimental results have shown that POED-
based methods perform better than SS-based methods in 
terms of energy, especially for high-loaded systems. The 
proposed three-layer framework in [30] consists of a feed-
back system in the primary cores. The proposed method 
spreads the slack time by a heuristic approach to minimize 
overall energy consumption. Also, real-time constraints 
are considered in the feedback system. The proposed 

method in [31] is a low-energy standby-sparing system. 
The proposed method is an online energy management 
technique for a low-energy standby-sparing (LESS) system 
which considers voltage transition and activation over-
heads forced by DVS and DPM. This method is used in a 
dual-core hard real-time system and uses dynamic slack 
times to reduce energy consumption while guaranteeing 
hard deadlines. In [32], the authors have proposed a peak-
power-aware standby-sparing technique for periodic real-
time tasks to keep peak power consumption under TDP 
constraint. In this method, the primary and spare cores ex-
ploit PPA-EDF and PPA-EDL, respectively. The proposed 
method delays the execution of backup tasks as much as 
possible and tries to cancel the execution of backup tasks 
to reduce power consumption. As discussed in the previ-
ous sentences, none of the mentioned works consider a 
temperature threshold.  

Table  3 summarizes the state-of-the-art works discussed 
in this paper. The works in [8][23][25]-[31] focus on Hot 
Standby-Sparing (HSS) systems for reducing energy con-
sumption. The work in [24] focuses on Cold Standby-Spar-
ing (CSS) systems for reducing energy consumption. Fi-
nally, only [32] has considered meeting TDP in HSS sys-
tems for periodic real-time tasks. Also, in Table 3, we show 
the features of TASS compared to the state-of-the-art 
works. 

In summary, the previous works in the context of 
standby-sparing embedded systems did not consider ther-
mal violations on the chip. In this paper, we propose a cold 
standby-sparing system where the main tasks and the 
backup tasks are scheduled on the primary and spare 
cores, respectively, such that the Thermal Safe Power (TSP) 
and real-time constraints are met. 

Table 3. Summary of state-of-the-art works focusing on differ-
ent types of standby-sparing with different objectives 

# of R
eference 

Task 
Model 

Architecture 
Technique(s) 

O
bjective 

Pow
er 

 C
onstraint 

SS type 

D
ual-C

ore 

M
ulticore 

H
om

ogeneous 

H
eterogeneous 

[23] Frame-
Based     Energy - HSS 

[24] Periodic     Energy - CSS 

[25] Frame-
Based     Energy - HSS 

[8] Periodic     Energy - HSS 

[27] Frame-
Based     Energy - HSS 

[28] Periodic     Energy - HSS 

[29] Task 
Graph     Energy - HSS 

[30] Periodic     Energy - HSS 

[31] Frame-
Based     Energy - HSS 

[32] Periodic     Power TDP HSS 

TASS Task 
Graph     

QoS 
and 

Power 
TSP CSS 
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3 MODELS AND PRELIMINARIES 
In this section, we introduce the system, task, power con-
sumption, and fault models used in this paper. 

3.1 System and Power Consumption Model  
We consider a heterogeneous multicore system that con-
sists of High_Performance (HP) cores and Low_Power 
(LP) cores. In this paper, we consider that the system con-
sists of k=m/2 core pairs CP={CP1, CP2, …, CPk}. Each core 
pair consists of one primary core (HP core) and one spare 
core (LP core). When a task (Ti) is mapped to the primary 
core, a backup copy (Bi) is also mapped to the correspond-
ing spare core. 

The power consumption of our TASS system consists of 
static and dynamic power components in which the static 
power (Pstatic) is dominated by the leakage current, and the 
dynamic power (Pdynamic) is commonly dissipated due to 
system activity [7][9] (See Eq. 1). 

2

0( , )
Vth
VT

total static dynamic L ii i i iiP V f P P I e V C V fη α
−

= += +  (1) 

Where CL is the switched capacitance, η is a technology pa-
rameter, Vi and fi are supply voltage and operational fre-
quency, and (𝛼𝛼i) is the activity factor for the task Ti. Due to 
the heterogeneity nature of our proposed system, each task 
exhibits different power consumption characteristics on 
different types of cores. Therefore, we use the superscripts 
HP and LP cores to distinguish between the values of the 
task power consumption parameters on the HP and LP 
cores, respectively (e.g., 𝛼𝛼𝑖𝑖𝐻𝐻𝐻𝐻 and 𝛼𝛼𝑖𝑖𝐿𝐿𝐻𝐻). 
Under the DVFS technique, the voltage Vi used for the ex-
ecution of the tasks on a core may be less than the maxi-
mum voltage Vmax. We denote the normalized voltage 𝜌𝜌i as 
[10]: 

maxV
Vi

i =ρ
 

(2) 

where Vmax is the maximum voltage corresponding to the 
maximum frequency fmax. Note that according to the almost 
linear relationship between voltage and frequency 
[7][8][10], we can write: 𝜌𝜌i=Vi/Vmax=fi/fmax. Therefore, Eq. 1 
can be rewritten as: 

2

0 max max max

3 _ _( , ) ( ) ( )
Vth
VT

total L

HP or LP
i i i i iP V f I e V C V fηρ ρ α

−

+=  (3) 

3.2 Task Model 
In this paper, task graphs with soft real-time requirements 
are considered, where each task graph is a directed acyclic 
graph (DAG) and has n dependent non-preemptive tasks 
Φ={T1, T2, …, Tn} with the same criticality level 
[2][20][39][40][41][42]. In a task graph, a task is scheduled 
only after that all its predecessors are executed completely. 
The result of a predecessor task is passed to its successors 
upon completion. Each task Ti in the mentioned task graph 
has a triple of parameters {𝑤𝑤𝑤𝑤𝑖𝑖𝐻𝐻𝐻𝐻, 𝑤𝑤𝑤𝑤𝑖𝑖𝐿𝐿𝐻𝐻, Di}: 

• 𝑤𝑤𝑤𝑤𝑖𝑖𝐿𝐿𝐻𝐻: The worst-case execution time on the low-
power cores at the maximum supply voltage and 
operational frequency. 

• 𝑤𝑤𝑤𝑤𝑖𝑖𝐻𝐻𝐻𝐻: The worst-case execution time on the high-
performance cores at the maximum supply volt-
age and frequency. 

• Di: the dedicated deadline of Ti. 

It should be noted that since the main and backup tasks are 
executed on the HP and LP cores, respectively, 𝑤𝑤𝑤𝑤𝑖𝑖𝐻𝐻𝐻𝐻 and 
𝑤𝑤𝑤𝑤𝑖𝑖𝐿𝐿𝐻𝐻 are considered for the main and backup tasks, respec-
tively. 

3.3 Fault Model 
High reliability, as one of the major design objectives in 
multicore embedded systems, is subjected to different 
types of faults [6][19]. In this paper, we consider both per-
manent and transient faults. Transient faults are com-
monly modeled as a Poisson distribution with a fault rate 
that is based on a function of the supply voltage changes 
[2][7]. In our evaluations, the transient fault rate is consid-
ered as [6][7]: 

max

0( ) 10
iV V

d
iVλ λ

−

= ×  (4) 

Where λ0 is the transient fault rate at Vmax, and d determines 
the sensitivity of the system to voltage scaling. The func-
tional reliability of a task can be written as [2][7][9][38]: 

( )( ) i i
i

V wcR T e λ− ×
=  (5) 

Where wci is the worst-case execution time of Ti. If the reli-
ability of the main and backup tasks be independent be-
cause of the heterogeneity, the reliability of the cold 
standby-sparing technique for each task is: 

,( ) ( ) (1 ( )) ( )i i i i iR T B R T R T R B= + − ×  (6) 
The reliability of a standby-sparing system with n tasks ex-
ecuting by our proposed method can be calculated as: 

1

( , )
n

system i i
i

R R T B
=

=∏  (7) 

Note that our standby-sparing system can tolerate a per-
manent fault for each core pair. For tolerating the transient 
faults, the standby-sparing system requires a fault detec-
tion method. For this purpose, our processing cores exploit 
a low-cost and low power hardware checker like Argus 
[12]. In this paper, if during the execution of an original 
task, the fault has not been detected, its results are applied 
to the system, and the whole of its corresponding backup 
task is canceled. However, when a fault occurs, we do not 
consider the faulty task and continue with its backup task 
and apply the results of the backup task as the correct re-
sults. 

4 OUR PROPOSED METHOD 
4.1 Concept Overview and Our Novel Contribution 
This paper proposes a Thermal-Aware Standby-Sparing 
Technique (called TASS) in heterogeneous multicore real-
time embedded systems. It should be noted that using a 
temperature threshold directly within mapping and sched-
uling is difficult and complex because when a task is exe-
cuted on a core, it leads to increase the temperature of that 
core and the other core temperatures as well. In this paper, 
we employ Thermal Safe Power (TSP) as the power con-
straint, which is an abstraction that provides thermally safe 
power constraint as a function of the number of simultane-
ously operating cores [4]. Executing cores at any power 
consumption below TSP guarantees avoiding thermal vio-
lations, and thereby DTM will not be triggered. We should 
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mention that calculating TSP values are independent of 
different types of running tasks, but when we schedule a 
task on a time slot we update the TSP values of the cores 
based on activated the number of cores due to our sched-
uling. In our method, we map and schedule the tasks such 
that main tasks are executed as soon as possible on the high 
performance cores and the backup tasks on the low power 
cores to reduce the peak power. Our proposed method 
tries to schedule the backup tasks on the spare cores after 
the main tasks finish their execution in order to remove the 
overlapping between the main and backup tasks. In this 
case, when the main task finishes successfully, the whole 
of its corresponding backup task can be dropped, resulting 
in a significant amount of power reduction. The overview 
of TASS is shown in Fig. 2.  
4.2 Problem Definition 
Given a multicore system with m cores that executes a set 
of n soft real-time tasks. The problem is how to find the 
task-to-core assignment, the scheduling of the tasks (the 
start time si and the finish time fi of all main and backup 
tasks), and the V-F level of each task to achieve the target 
goal.  

In this formulation, v is the number of available V-f lev-
els for each core. The V-f level assignments and task-to-
core mapping are represented by the matrix Xϵ{0,1}n×m×v. 
The task Ti is assigned to the core k and is executed under 
the V-f level l if and only if Xikl = 1. 

The goal of our method is to maximize the QoS of the 
system while keeping the power consumption of each core 
under the TSP constraint (PTSP,core). We have formulated the 
mentioned problem in the following.  
Optimization Goal: Maximize the QoS of the system de-
fined by the average of the QoS of all tasks. Note that the 
probability of successful execution of each main task Ti is 
defined by Pi, and the probability of its failure is defined 
by 1-Pi.  
Maximize 𝑄𝑄𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 =

∑ 𝐻𝐻𝑖𝑖×𝑈𝑈𝑈𝑈𝑖𝑖(𝑓𝑓𝑇𝑇𝑖𝑖 ,𝐷𝐷𝑖𝑖)𝑖𝑖∈Φ +∑ (1−𝐻𝐻𝑖𝑖)×𝑈𝑈𝑈𝑈𝑖𝑖(𝑓𝑓𝐵𝐵𝑖𝑖 ,𝐷𝐷𝑖𝑖)𝑖𝑖

𝑛𝑛
 (8) 

where UFi is the utility function of task Ti that describes the 
utility value of the mentioned task as a function of its fin-
ishing time, and fi is the finish time of Ti. In this paper, we 
have considered the linear function and can be rewritten 
as [14][34]: 

𝑈𝑈𝑈𝑈𝑖𝑖 =

⎣
⎢
⎢
⎡

1 𝑓𝑓𝑖𝑖 ≤ 𝐷𝐷𝑖𝑖
(𝐷𝐷𝑖𝑖 − 𝑓𝑓𝑖𝑖)
𝐷𝐷𝑖𝑖(𝑥𝑥 − 1)

+ 1 𝐷𝐷𝑖𝑖 < 𝑓𝑓𝑖𝑖 ≤

0 𝑓𝑓𝑖𝑖 > 𝑥𝑥 × 𝐷𝐷𝑖𝑖

𝑥𝑥 × 𝐷𝐷𝑖𝑖 (9) 

where x is a variable bigger than 1 in order to determine 
the maximum deadline violation and is received by the de-
signer. 
Core Power Constraint: The power consumption of each 
underlying core at each time slot t must be less than the 
core TSP constraint. 
∀ 𝑘𝑘: 𝑃𝑃𝑘𝑘(𝑡𝑡) ≤ 𝑃𝑃𝑇𝑇𝑇𝑇𝐻𝐻,𝑘𝑘(# 𝑎𝑎𝑤𝑤𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑄𝑄𝑐𝑐𝑎𝑎𝑐𝑐)  at each time t (10) 

Timing Constraint: The finish time of each task should be 
less than its deadline. 

∀𝑎𝑎: 𝑓𝑓𝑖𝑖 ≤ 𝐷𝐷𝑖𝑖   (11) 
Core Assignment Constraint: Each task can only be 

mapped to a core. 
∀𝑎𝑎, 𝑙𝑙: �𝑋𝑋𝑖𝑖𝑘𝑘𝑖𝑖

𝑘𝑘

= 1 (12) 

Task’s Reliability Constraint: Since we exploit DVFS for 
tasks, the reliability of tasks should satisfy a minimum re-
liability threshold after DVFS. 

𝑎𝑎−𝜆𝜆(𝑉𝑉𝑖𝑖)×
𝑤𝑤𝑤𝑤𝑖𝑖

𝐻𝐻𝐻𝐻 𝑜𝑜𝑜𝑜 𝐿𝐿𝐻𝐻

𝜌𝜌𝑖𝑖 ≥ 𝑅𝑅𝑡𝑡ℎ (13) 

Dependency Constraint: Dependency constraints be-
tween tasks should not be violated. If there is a depend-
ency between two tasks, the completion time of the previ-
ous task should be smaller than the start time of its de-
pendent task. 

∀𝑎𝑎, 𝑗𝑗: 𝑓𝑓𝑖𝑖 ≤ 𝑐𝑐𝑗𝑗 ,         𝑎𝑎𝑓𝑓 𝑇𝑇𝑖𝑖   is the predecessor of 𝑇𝑇𝑗𝑗    (14) 
This problem is known to be an NP-hard problem in a 
strong sense [7][10][35]. Indeed, finding an optimal solu-
tion will have exponential-time complexity. Therefore, we 
propose a heuristic for mapping and scheduling method 
the tasks that aim at maximizing the QoS of the system un-
der the aforementioned constraints.  
4.3 Algorithm Discussion 
The main idea of our proposed scheduling method is to 
provide an opportunity to remove the overlaps of the exe-
cution of main and backup tasks to prevent extra peak 
power consumption due to applying the cold standby-
sparing technique for improving reliability.  
The Latest Deadline First (LDF) scheduling policy is an op-
timal policy that minimizes the maximum lateness of a set 
of tasks with data dependency and the same arrival times 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.  2. Overview of our proposed method, TASS. 
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[14]. It should be noted that EDF is not optimal under de-
pendency constraints because it achieves greater lateness 
with respect to LDF [14]. LDF makes the scheduling queue 
from the tail to the head of the graph. This policy selects 
the task with the latest deadline one by one to set the pri-
ority of tasks. This process is repeated until all tasks in the 
graph are selected and put in the scheduling queue. Then, 
tasks are selected from the head of the scheduling queue 
such that the first task inserted in the queue has the last 
priority and will be executed last, and the last task inserted 
in the scheduling queue has the first priority and will be 
executed first. 

Algorithm 1 shows the details of our proposed mapping 
and scheduling method. This algorithm receives a task 
graph application with all its information, the list of TSPs 
for all cores at different times, and the set of core pairs, and 
provides tasks mapping and scheduling in each core pair. 
Lines 1-7 extract the priority of tasks according to the LDF 
policy. As it was mentioned before, LDF builds the priority 
queue from the tail to the head of the graph. Among the 
tasks that have not successors or whose successors have all 
been selected, the LDF policy selects the task with the latest 
deadline to be scheduled last. The algorithm at first selects 
the leaves of the graph in the temporary queue TQ in line 
3. Then, it selects the task with the latest deadline in Line 
4. The selected task Ti is put in the priority queue, which is 
a Double-Ended queue (Line 5). In line 6, the selected task 
Ti is removed from the graph. This process is repeated until 
all tasks in the graph are selected and put in the priority 
queue. It should be noted that the tasks are selected from 
the head of the priority queue to be scheduled, such that 
the first task inserted in the priority queue will be sched-
uled last. Therefore, the algorithm selects the tasks in the 
priority queue one by one and schedules them.  

In lines 8-29, the algorithm schedules the tasks such that 
the TSP of all cores is met, and the QoS of backup tasks are 
maximized. To do this, the algorithm iterates until all main 
and backup tasks are scheduled. In line 9, the algorithm 
selects the task with the highest priority in the priority 
queue.  

Then, in order to balance the utilization of the core pairs, 
the algorithm selects the core pair with the lowest utiliza-
tion (denoted by φ in line 10) to map the selected task. In 
order to schedule the selected task (its main and backup), 
the algorithm finds the maximum finish time of all prede-
cessors of the selected task in line 11. Then, in lines 12-21, 
the main task is scheduled such that the power constraint 
is met. TSP values are computed for all possibilities of the 
number of active cores using the algorithm proposed in [4]. 
On the primary core of φ, the algorithm finds the first free 
time slot after the finish time of the predecessors of Ti. 
Then, it checks whether the maximum power consumption 
of Ti is equal or less than the TSP value of the primary core 
of φ at the time slot t. If the mentioned condition is satis-
fied, the algorithm schedules Ti on the time slot t on the 
schedule of the primary core φ.Sprimary. Otherwise, until a 
satisfactory time slot is found, the algorithm repeats this 
process. After scheduling the main task, in lines 22-28, the 
backup task of Ti is scheduled. To do this, we set the vari-

able k to the finish time of the corresponding main task be-
cause we want to prevent the overlap between the main 
and backup tasks. It should be noted that the backup tasks 
can miss their deadlines because the task model is soft real-
time. Therefore, the backup task of Ti is scheduled on the 
spare core of φ such that the power constraint is met. 

In runtime, we exploit the opportunities created during 
the actual execution of the tasks to reduce further power 
consumption and improve QoS. This can be provided 
through an online monitor for the system at runtime. The 
online monitor works to control the execution accuracy of 
the main tasks to handle the runtime state of the system 
and apply DPM and DVFS. The online monitor needs to 
find the main tasks that have finished successfully and can-
cels the execution of their corresponding backup tasks. 
Since the fault rate is rare, most of the time, there is no need 
to be executed the backup tasks. Therefore, as soon as the 
main task finishes successfully, the online monitor drops 
the execution of the backup tasks.   

For applying the DVFS technique, when the dynamic 
slacks are released at runtime, our method uses DVFS to 

Algorithm 1. The mapping and scheduling policy of TASS 
Inputs: Φ: The set of tasks in graph, TSP for all possible num-
ber of active cores, the set of core pairs CP={CP1, CP2, …, CPk}. 
Output: The task scheduling Si on each core Cj. 
BEGIN  
1.     TQ = Ø, PQ = Ø;     // Initialize the Temp. and priority queues  
2.     while Φ ≠Ø do 
3.          TQ = Φ.return();                          // Return leaves of graph 
4.          Ti = TQ.select();             // Return the task with the latest 
                                                           deadline in PQ 
5.          PQ.put(Ti); // Put Ti to the priority queue (a double-   
                                                                                            ended queue) 
6.          Φ.remove(Ti);                        // Remove Ti from the graph 
7.     end while 
8.     while PQ ≠ Ø do 
9.          Ti = PQ.select();    // Select Ti from the priority queue PQ 
10.        φ = minutilization{CPm, 1≤m≤k}; 
11.        k =Max.Finish_time_of_predecessors(Ti);         
---         Scheduling Ti on the primary core of CPm 

12.        while k ≤ Di-𝑊𝑊𝑊𝑊𝑖𝑖𝐻𝐻𝐻𝐻 do 
13.             t←Find first free time slot after k on φ.Sprimary; 
14.             TSP.φ.Sprimary = TSP(#active_cores at t);  // Return TSP   
                                                                    of φ.Sprimary in HP island at t 
15.             if Max.Power(Ti) ≤ TSP.φ.Sprimary  at time t do 
16.                  Schedule Ti at t on φ.Sprimary; 
17.                  PQ.remove(Ti); 
18.                  break; 
19.             k=t+1; 
20.        end while 
21.        k = Finish time of Ti on φ.Sprimary; 
---         Scheduling Bi on the spare core of CPm 

22.        while Bi is not scheduled do 
23.             t←Find first free time slot after k on φ.Sprimary; 
24.             TSP.φ.Sspare = TSP(#active_cores at t);  // Return TSP  
                                                                      of φ.Sspare  in LP island at t 
25.             if Max.Power(Bi) ≤ TSP.φ.Sspare do 
26.                  Schedule Bi at t on φ.Sspare; 
27.                  break; 
28.         end while 
29.   end while 
END 
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further reduce the power consumption. Therefore, at 
runtime, we determine static and dynamic slacks on all HP 
cores and apply the EVEN-DVFS technique for the main 
tasks [21]. The EVEN-DVFS technique distributes slacks 
evenly among all tasks that can use them. The advantage 
of the EVEN-DVFS technique is its linear time complexity 
when compared to the quadratic complexity of other DVFS 
techniques [10]. Like the previous works in the literature, 
we have considered the time overhead of applying DVFS 
on the WCET of the tasks [6][7][9][42]. Therefore, when we 
want to apply DVFS, we add its time overhead to the 
WCET of tasks. However, this overhead is negligible. 

5 EXPERIMENTAL SETUPS AND RESULTS 
In this section, the effectiveness of TASS is evaluated, em-
ploying the well-established frameworks: the gem5 full-
system simulator [15], McPAT [16], HotSpot [17], QUILT 
[33], and TSP [4]. We ran our simulations with various task 
graphs, including real-life applications of the MiBench 
benchmark suite [18] running on a heterogeneous multi-
core platform, which has two types of cores: (i) ARM Cor-
tex-A7 as LP core, (ii) ARM Cortex-A15 as HP core. Mean-
while, we considered that the system supports per-core 
DVFS. The details of simulation configurations for the pro-
cessing cores of our system are summarized in Table 4. Fig.  
3 shows our tool flow for evaluating TASS. We simulate 
our experiments conducted on gem5 [15] and McPAT [16] 
for the technology node of 14nm. As shown in Fig. 3, we 
extract the power consumption, the worst-case execution 
time, reliability, and temperature values via gem5 and 
McPAT. The tool QUILT [33] generates the chip floorplan 
based on the results of McPAT. For extracting the RC-ther-
mal model of the chip, which is necessary to compute TSP 

[4], we use the HotSpot [17]. Fig. 4 shows the execution 
time and average and peak power consumption of appli-
cations of the MiBench benchmark suite. Then, we employ 
a system-level simulator for simulating different execution 
scenarios.  

We compare our proposed method with state-of-the-art 
techniques. The comparison partners in our evaluations 
are: (i) TP3M [2]: This method has proposed a peak-power-
aware reliability management approach for N-Modular re-
dundancy, which removes the overlaps of the peak power 
of concurrently executing tasks to keep the maximum 
power consumption below the chip TDP; (ii) ConvSS [19]: 
The conventional standby-sparing scheme where each 
backup task is executed in parallel with its main tasks.  
In order to compare TASS with state-of-the-art techniques, 
we have exploited the Standard Task Graph Set (STG), 
which is a kind of benchmark for the evaluation of multi-
core scheduling algorithms [22]. We considered that the 
tasks of task graphs were randomly selected from MiBench 
[18]. In the experiments, each task graph has a different 
parallelism degree [20]. In our experiments, we consider 
three classes of task graphs with different parallelism de-
grees like [2]. For each graph, if n is the number of tasks 
and h is the height of the task graph, h can vary between 1, 
which is the highest parallelism degree, and n, which is the 
chained task graph with the lowest parallelism degree. Ac-
cording to the above explanation, we consider the follow-
ing classes of graphs: 1) task graphs with high parallelism 
degree 1≤h<n/3, 2) task graphs with medium parallelism 

   
(a) (b) (c) 

Fig. 4. MiBench benchmark characterization running on ARM Cortex-A7 and ARM Cortex-A15 cores. a) Execution time, b) Average power 
consumption, and c) Peak power consumption. 
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Fig.  3. The tool flow of our proposed method. 
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Parameter Configuration 
LITTLE island big island 

Core Type ARM Cortex-A7 ARM Cortex-A15 
Machine 
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Core Volt. 
And Freq. 

[0.78V, 0.4GHz] to 
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[0.9995V, 2GHz] 

Feature Size 14 nm 
Core Microar-
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L1 Cache 32KB, 8KB block-width, 4-way 
L2 Cache 2MB, 16-way 
Memory 2GB, 32-bit LPDDR3e 
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degree n/3≤h<2n/3, and 3) task graphs with low parallel-
ism degree is 2n/3≤h<n.  

We also considered a different number of tasks in our 
experiments and conducted experiments on a platform 
with 16 cores, including 8 high-performance and 8 low-
power cores. We compared TASS with two selected 
schemes (TP3M and ConvSS) for: i) the worst-case scenario 
when the system consumes the maximum possible power 
(Section 5.1) and ii) the realistic scenario, including both 
faulty and fault-free scenarios when the system consumes 
real power (Section 5.2).  

5.1 The Worst-Case Scenario 
In the worst-case scenario, the maximum power consump-
tion by the system consumes because the main and backup 
copies of each task are executed in this scenario.  Therefore, 
it can be considered a condition in which we compare fea-
sibility, maximum temperature, QoS, and peak and aver-
age power consumption of TASS with the state-of-the-art 
methods. In order to analyze the feasibility, QoS, and peak 
power consumption for each system configuration, we 
used more task sets, and then the average results are re-
ported. Each case was simulated 100 times with different 

 
a) Low parallelism degree 

 
b) Medium parallelism degree 

 
c) High parallelism degree 

Fig. 6. Quality of service of schemes in the worst-case scenario 
for different parallelism degrees. a) Low parallelism degree, 
b) Medium parallelism degree, c) High parallelism degree. 
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a) Low parallelism degree 

 
b) Medium parallelism degree 

 
c) High parallelism degree 

Fig. 7. Normalized peak power consumption to TASS in the 
worst-case scenario for different parallelism degrees. a) Low 
parallelism degree, b) Medium parallelism degree, c) High par-
allelism degree. 
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Fig. 5. Feasibility of schemes in the worst-case scenario for different parallelism degrees. a) Low parallelism degree, b) Medium parallelism 
degree, c) High parallelism degree.  
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parameters of the applications (i.e., tasks’ worst-case and 
application deadline), and the average results are reported.    

5.1.1 Evaluating Feasibility 
We define feasibility as the percentage of satisfying both 
timing and power constraints in the resulting schedule. In 
Fig. 5, we show our comparison with two state-of-the-art 
techniques in terms of feasibility with different parallelism 
of the graph and the different number of tasks. The results 
consider the worst-case scenario where the main and 
backup copies of tasks will be executed completely. The 
parallelism degree is increased from Fig. 5a to Fig. 5c. Alt-
hough a high parallelism degree implies higher feasibility, 
the power consumption will increase, and more thermal 
violations occurred, and therefore it can be observed how 
the state-of-the-art methods suffer from low feasibility.  

5.1.2 Evaluating QoS 
Fig. 6 represents the QoS of TASS in the worst-case sce-
nario. In this evaluation, task-graphs with different paral-
lelism degrees are considered, and evaluations are re-
peated for a different number of tasks. The amount of QoS 
of the worst-case scenario is computed based on the linear 
utility function (see Eq. 9). By changing the degree of the 
graphs, the QoS improvement is evaluated. In Fig. 6a to 
Fig. 6c, by increasing the degree of the graphs, the QoS im-
provement is increased because the tasks can execute in 
parallel. Note that the results of Fig. 6 are calculated based 
on Eq. 8 and have not the unit because in Eq. 8 we have 
divided the utility function which is a constant value and 
has not the unit (see Eq. 9) to the maximum number of 
tasks. Also, Eq. 9 is shown the linear utility function that 
has not the unit.  

5.1.3 Evaluating Peak Power Consumption 
In order to provide a more detailed analysis of peak power 
consumption, for each system configuration, we used 

more task sets, and then the average results of peak power 
consumption are reported in Fig. 7. This figure shows the 
normalized peak power consumption of different schemes 
to TASS in the worst-case scenario for different parallelism 
degrees. When the number of tasks increases, the peak 
power reduction of TASS is higher than other schemes. 
Also, when the parallelism degree of task graphs increases, 
the peak power consumption of TASS does not increase, 
while other schemes increase it. The peak power consump-
tion of TASS is always less than the other two schemes.  
The results of peak power consumption show that TASS 
provides up to 51.94% (on average by 34.06%) peak power 

 
a) Low parallelism degree 

 
b) Medium parallelism degree 

 
c) High parallelism degree 

Fig. 10. Quality of service of schemes in the realistic scenario 
for different parallelism degrees. a) Low parallelism degree,  
b) Medium parallelism degree, c) High parallelism degree 
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Fig. 8. The average transient temperature of a 16-core system for all methods by considering Tthreshold= 60 ͦC. a) TASS, b) TP3M, c) ConvSS. 
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reduction compared to state-of-the-art schemes.  

5.1.4 Evaluating Temperature 
In this subsection, we evaluate the resulting maximum 
temperature after applying the mapping and scheduling of 
the methods for different numbers of cores. Fig. 8 shows 
the average transient temperature of a 16-core system for 
all methods. In Fig. 8, the maximum temperature of TASS 
among all cores reaches about 59.96˚C, but other methods 
violate the temperature threshold, i.e., Tthreshold= 60°C. For 
better observation, we have reported the average result of 
different methods when we have again simulated 1000 
times with different parameters of the applications (see 
Fig. 9).  As shown in Fig. 9, the TASS method meets the 
temperature threshold in all configurations. Note that 
TASS meets the temperature constraint, but other methods 
do not consider temperature constraint and miss the tem-
perature constraint. As it is shown in Fig. 9, in a higher 
number of cores, the maximum temperature increases be-
cause the number of active cores is increased. Our TASS 
method achieves up to 9.45˚C reduction in the system tem-
perature compared to state-of-the-art methods while keep-
ing the system reliability at a required level.  

5.2 The Realistic Scenario 
In this scenario, we investigate the realistic conditions 
where the actual fault injection is considered. In order to 
generate fault rate and pattern, transient faults are injected 
using a Poisson process where the fault rate corresponding 
to different voltage levels was generated using Eq. 4 under 
the parameters λ0=10-6 faults/μs and d = 2. Therefore, the 
fault rate varies between 10-6 faults/μs corresponding to 
Vmax and 10-2 faults/μs corresponding to Vmin. We generate 
a fault vector that determines at which times faults occur. 
Based on the generated fault vector, we decide that the task 
becomes faulty during the execution of a task set. Since 
transient faults are rare in nature, TASS achieves further 
temperature reduction in this scenario beyond what is 
achieved through the worst-case scenario. In this scenario, 
when the main task Ti is executed successfully, its corre-
sponding backup task is dropped from the schedule, and 
the slack time is released that can be exploited to further 
reduce the temperature. Fig. 10 represents the QoS of TASS 
in a realistic scenario. In this evaluation, similar to the 
worst-case scenario, task-graphs with different parallelism 
degrees are considered, and simulations are repeated for 
the different number of tasks. When the degree of the 
graphs increases, the QoS improvement is evaluated. In 
Fig. 10a to Fig. 10c, by increasing the degree of the graphs, 
the QoS improvement is increased because the tasks can be 
executed in parallel. Experimental results show that TASS 
meets the power constraints while, at the same time, im-
proving the QoS of tasks, with an average of 18.40% (up to 
39.78%). Fig. 11 shows the normalized peak power con-
sumption of different schemes to TASS in the realistic sce-
nario for different parallelism degrees. The results show 

 
a) Low parallelism degree 

 
b) Medium parallelism degree 

 
c) High parallelism degree 

Fig. 11. Normalized peak power consumption to TASS in the real-
istic scenario for different parallelism degrees. a) Low parallelism 
degree, b) Medium parallelism degree, c) High parallelism degree. 
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Fig. 12. The results of QoS and normalized energy consumption at 
runtime for different fault rates. 
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Fig. 13. The results of reliability at runtime for different number of 
permanent faults and the transient fault-rate modeled using Eq 4. 
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that TASS provides up to 40.21% (on average by 28.31%) 
peak power reduction compared to state-of-the-art 
schemes.  

It should be noted that our assumed fault rate is much 
higher than real fault rates (i.e., 10-12 faults/us based on 
[23]). Note that our assumption leads to lower QoS values. 
If we consider the real fault rate, we can achieve a higher 
QoS than our represented one. This is because using real 
fault rate will require much more number of fault injec-
tions to cover different parts of applications like other 
works in the literature [2][6][7][8][9][24][32], which will re-
quire months of simulations to ensure high coverage, and 
hence, we used the high fault rates to evaluate our scheme. 
Moreover, if we consider a higher fault rate than our as-
sumed (e.g, 10-3 faults/us), we can see that the QoS de-
creases and the energy consumption increases because 
most of the backup tasks should be executed and we can-
not drop them for further power and energy reduction. In 
order to verify this discussion, we have repeated our sim-
ulations for three different faults rates, i.e., 1) 10-3 faults/us, 
2) 10-6 faults/us, and 3) 10-8 faults/us. As it can be seen 
from Fig. 12, the above discussion is approved.   

In order to analyze the reliability of TASS, the transient 
fault-rate was modeled using Eq. 4 under parameters 
𝜆𝜆0=10−6 faults/us and d=2 [2]. Also, we consider that the 
permanent faults happen on the primary cores. Fig. 13 re-
ports the reliability of applications for ConvSS, TP3M with 
N=3, and TASS. As seen in this figure, by increasing the 
number of permanent faults on the primary cores, the reli-
ability of TASS is much higher than other schemes. Obvi-
ously, TP3M fails in tolerating permanent faults at differ-
ent fault-rates, since it does not support tolerating the per-
manent faults.  

In the realistic scenario, due to task dropping, the max-
imum temperature decreases. As it is shown in Fig. 14, our 
TASS method achieves up to 15.47˚C reduction in the sys-
tem temperature, more than what has been achieved in the 
worst-case scenario compared to state-of-the-art methods 
while keeping the system reliability at a required level. 

For the final discussion, if we exploit homogeneous 
multicore systems, we will face two situations: 1) if we con-
sider that all of the cores are from the type of Low-Power 
cores, it may result in a lower QoS because the execution 
time of the main tasks increases; 2) if all of the cores are 
from the type of High-Performance cores, the peak power 
consumption and temperature increase. In two cases, 
when the main task finishes successfully, the whole of its 
corresponding backup task can be dropped, resulting in a 
significant amount of power and temperature reduction. 

Since both of them have some negative effects, we ex-
ploited a heterogeneous multicore system as a tradeoff to 
improve our goals.    

6 CONCLUSIONS  
In this paper, we have proposed a thermal-aware standby-
sparing system where the main tasks and the backup tasks 
are scheduled on the primary and spare cores, respec-
tively, such that the Thermal Safe Power (TSP) and real-
time constraints are met. Our proposed method provides 
an opportunity to remove the overlaps of the execution of 
main and backup tasks to reduce temperature due to ap-
plying the fault-tolerant technique in fault-free scenarios. 
We have evaluated our proposed method under various 
system configurations and workloads. Our experiments 
show that TASS improves QoS up to 39.78% (on average 
by 18.40%) and reduces the peak power consumption and 
temperature by up to 40.21% and 15.47˚C (on average 
28.31% and 13.60˚C), respectively, at runtime, while keep-
ing the system reliability at the required level in realistic 
scenarios. Also, in the worst-case fault scenario, by consid-
ering the available slack times, our proposed method 
achieves, on average, 34.07% and up to 51.94% peak power 
improvement in comparison to the state-of-the-art meth-
ods.   
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