
Offline Replication and Online Energy Management
for Hard Real-Time Multicore Systems

Farimah R. Poursafaei, Sepideh Safari, Mohsen Ansari, Mohammad Salehi, Alireza Ejlali

ESRLab, Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
{poursafaei,ssafari,mansari,mohammad_salehi}@ce.sharif.edu, ejlali@sharif.edu

Abstract— For real-time embedded systems, energy consumption
and reliability are two major design concerns. We consider the
problem of minimizing the energy consumption of a set of periodic
real-time applications when running on a multi-core system while
satisfying given reliability targets. Multi-core platforms provide a
good capability for task replication in order to achieve given relia-
bility targets. However, careless task replication may lead to signif-
icant energy overhead. Therefore, to provide a given reliability
level with a reduced energy overhead, the level of replication and
also the voltage and frequency assigned to each task should be de-
termined cautiously. The goal of this paper is to find the level of
replication, voltage and frequency assignment, and core allocation
for each task at design time, in order to achieve a given reliability
level while minimizing the energy consumption. Also, at run-time,
we find the tasks that have finished correctly and cancel the execu-
tion of their replicas to achieve even more energy saving. We eval-
uated the effectiveness of our scheme through extensive simula-
tions. The results show that our scheme provides up to 50% (in
average by 47%) energy saving while satisfying a broad range of
reliability targets.

Index Terms–Real-Time Embedded Systems, Task Replication,

Energy Management, Multicore Systems.

I. INTRODUCTION

One of the primary design constraints of real-time
embedded systems is energy consumption. More energy
consumption may lead to reduced battery life as well as higher
temperature. Specifically, in embedded systems, the problem
of managing energy is worse since most of these systems have
limited power supplies. There are two well-studied techniques
to face with the problem of high energy consumption:
Dynamic Power Management (DPM) [1] [2] and Dynamic
Voltage and Frequency Scaling (DVFS) [1] [3] [4]. DPM is a
general technique that can be applied to any component of the
system. It puts the system components into a low-energy state
when they are idle [2] [5]. DVFS reduces voltage and
frequency in order to save energy [4] [6]. It has been shown
that DPM provides less energy saving compared to DVFS in
similar conditions [7] [8]. However, since DVFS prolongs
tasks execution time, exploiting DVFS in real-time embedded
system may lead to violation of timing constraints associated
with real-time tasks.

One other issue affecting computer systems is their
susceptibility to faults which may lead to different run-time
errors. Generally, faults are classified into three different
types: transient, intermittent and permanent faults [9] [10].
What may lead to a transient fault is electromagnetic

interference or cosmic radiation [11] [12] which can be
tolerated by time redundancy technique like re-execution of an
affected task [9] [10]. Intermittent faults never go away
entirely and oscillate between being dormant and active. When
these faults are dormant, the component functions normally,
while at some intervals when they are active, they result in
malfunctioning of the affected component. Permanent faults
are caused by manufacturing defects or circuit wear-out. In
order to confront with permanent faults, the only way is
through hardware redundancy techniques [9] [10]. It has been
shown that transient faults occur more frequently than the
other two types [11] [12]. Therefore, confronting transient
faults is of great importance.

Embedded systems are frequently used in hard real-time
applications where the demand to reliability is very high.
Managing energy and achieving fault tolerance in these
systems are often at the odd due to the fact that fault tolerance
mainly requires exploiting redundant resources [13] [14] [15]
[16] [17]. When DVFS is chosen as a means of energy
management technique, its negative impact on reliability
should be considered, as the current researches suggest [18]
[19]: the transient fault rate (and thus the corresponding soft
errors) increases exponentially as we decrease the supply
voltage and processing frequency for saving energy.
Therefore, in hard real-time applications, the degradation of
reliability because of applying energy management techniques
should be considered.

Using available slack time in the system for both reliability
and energy management have been considered by a set of
techniques called Reliability-Aware Power Management
(RAPM) [20] [21]. The main idea of these works is to preserve
system’s original reliability through scheduling redundant
executions and then exploiting the remaining slack time for
energy management. In addition to these techniques, there is
another framework proposed for periodic real-time tasks
running on a single core which is called reliability-oriented
energy management [22]. In this work, the main goal is to
achieve different reliability levels with minimum energy
consumption. The difference of this work in comparison to
RAPM is that the desired reliability levels can be different
from the original reliabilities of the tasks. This offers a
flexibility that can be exploited for energy management.

In this paper, we focus on a reliability-oriented energy
management solution for multi-core systems. The increase in
the number of cores in the emerging many-core systems

978-1-4673-8047-8/15/$31.00 ©2015 IEEE

2015 CSI Symposium on Real-Time and Embedded Systems and Technologies (RTEST)

makes abundant opportunities to exploit task replication as a
proper option for reliability management. In [23], the authors
suggested that by scheduling multiple copies of a task on
different cores in a multicore system, the probability of
finishing at least one copy successfully increases significantly.
Also, it has been proved that replication has some intrinsic
features that make it an efficient means of managing reliability
[23]. For one thing, task replication makes high reliability
targets achievable. Moreover, replication helps in reducing
energy consumption by reducing the supply voltage and
processing frequency of the copies of the tasks in addition to
achieving reliability targets.

Considering the benefits of task replication, we proposed an
offline replication and online energy management scheme for
hard real-time applications running on multicore systems. Our
scheme consists of two phases: an offline phase, and an online
phase. In the offline phase, the degree of replication and the
voltage and frequency assignment for each task with respect to
a given reliability level is determined. Moreover, by
specifying the task to core allocation, the system configuration
and the tasks execution sequence are determined. At run-time,
an online manager controls the system and prevents the
unnecessary execution of any task that at least one of its
copies has finished successfully. The required number of
copies for each task to meet its reliability target is specified
statically in the offline phase, while the online manager
controls the number of copies of each task.

The main contribution of this paper is to find the efficient
configuration of the system in terms of the number of copies
for each task along with the voltage and frequency assignment
of tasks offline (at design time), and to manage the execution
of the tasks’ copies to prevent unnecessary executions online
(at run time).

The rest of this paper is organized as follows. In Section II,
some models and assumptions are presented. Section III
covers the analysis of the impact of adjusting the degree of
replication. Problem definition and the proposed solution will
be presented in Section IV. Evaluations and results are
presented in Section V. Finally, Section VI concludes the
paper.

II. MODELS AND ASSUMPTIONS

A. Workload Model

Our workload consists of a set of N periodic real-time tasks
T={τ1, τ2, …, τN}. Each task τi, under the maximum available
processing frequency fmax, has the worst-case execution time
WCi and period Pi which is equal to its relative deadline. The
workload is assumed to be executed on M similar cores. Each
core has F different frequency levels. We use normalized
frequency f with respect to the maximum available processing
frequency fmax (0<f≤fmax=1.0). The cost of switching between
the frequencies (and their corresponding voltages) has been
assumed to be negligible. Each task τi has ki copies which will
be executed on ki≤M distinct cores. The allocated tasks to each

core will be scheduled by Earliest-Deadline-First (EDF)
scheduling which is proved to be optimal on a single core [24].

B. Energy Consumption Model

We consider that the total energy consumption of the
system, Etotal, consists of the static and dynamic energy
components. Each core in the system can operate in active or
idle states. In active state the core executes tasks and it
consumes dynamic and static energy. When there is no task to
be executed the cores goes to the idle state and consumes only
static energy. The energy consumption of a core is computed
as [25]:

dstotal EEE �� (1)

where the static energy which is dominated by the leakage
current of the system is denoted by Es, and the dynamic energy
is denoted by Ed.

We assume that all cores in the system are equipped with
DVFS. During the execution of each task, its supply voltage
Vi, may be less than the maximum supply voltage Vmax. We
consider the normalized supply voltage ρi as:

maxV
Vi

i �� (2)

The dynamic energy consumption of each core (Ed(τi)) when
executing the task τi, at the scaled supply voltage Vi can be
written as:

2() i
d i eff i i

i

WCE C V f�
�

� �
� � 	

 �

(3)

where Ceff is a constant that expresses effective switching
capacitance, and Vi and fi are the supply voltage and
operational frequency respectively. WCi/ρi is the scaled task
execution time due to DVFS. Since in DVFS, voltage has a
linear relationship with frequency, we have ρi=Vi/Vmax=fi/fmax
where Vmax is the maximum supply voltage corresponding to
the maximum processing frequency fmax. Therefore, Eq. 3 can
be rewritten as [25]:

iieffid WCfVCE 2
max

2
max)(�� � (4)

Since we have no direct control over CeffVmax
2fmax, we can

use the normalized energy consumption by removing
CeffVmax

2fmax. Therefore, the normalized dynamic energy
consumption of each core NEd(τi), while executing the task τi
can be written as:

iiid WCNE 2)(�� � (5)

In our evaluations, we set the static energy consumption Es,
equal to 5% of the maximum dynamic energy like the
assumption that has been adopted in similar works [23] [25].

C. Fault Model

The arrival rate of faults can be modeled by an exponential
distribution [18]. It has been shown that the average arrival
rate of faults increases as the frequency decreases through
DVFS [18] [19]. If the average arrival rate of faults is λ, and
the average fault rate at the maximum frequency is λ0, at
frequency f, the fault rate is [19]:

)1(
)1(

0
min10)(f

fd

f �
�

�

 (6)

where d is a parameter called sensitivity factor and the typical
values for d ranges from 2 to 6 [19] [21] [26]. Following [22],
we assume that at the maximum available frequency, the value
of λ0 is equal to 10-6.

The probability of executing a task successfully is called the
task’s reliability. At frequency fi, the reliability of a task
(Ri(fi)) is:

i

i
i f

WCf

ii efR
)(

)(

�

� (7)

Consequently, the Probability of Failure (PoF) of a task is:

1() ()i i i iPoF f R f� � (8)

When we have several copies of each task, it is enough to
have at least one instance which has been finished
successfully. So, at the end of execution of each task a test is
conducted to reveal whether any fault has occurred or not [9]
[10].

III. DEGREE OF REPLICATION ANALYSIS

Having in mind the previous discussion, when we have
several copies of a task, the execution will be unsuccessful
only if all copies encounter faults. So, in general, the
probability of failure of a task with k copies decreases
exponentially:

� �() () kk
i iPoF PoF f� (9)

Based on [23], it can be seen that to face with negative
impact of voltage and frequency scaling on the probability of
failure, we can use replication and we may even get some
energy savings through parallel execution. Through Eq. 9,
given a certain PoF target (PoFtarg), we can find the minimum
number of copies for a task to satisfy the reliability targets as
follows [23]:

� �arg ()t fPoFi
kPoF � (10)

� �
� �

arg
()

log
log

PoFt
PoF fi

k � � �
� �� �

 (11)

We can conclude that for a given reliability target, different
number of copies and voltage and frequency levels can satisfy
the need; On the other hand, the energy consumption of these
different combination of the number of copies, and supply
voltages and processing frequencies that are able to achieve
the same reliability targets differ significantly [23]. It should
be noted that the number of copies of a task should not exceed
the total number of available cores in the system. So, in the
selection of the execution frequency of a task, the upper bound
on the number of copies should be considered. This constraint
may lead to have fewer numbers of copies with probably
higher frequency to achieve the reliability target.

IV. PROBLEM DEFINITION AND SOLUTION

Given a multicore system consisting of M similar cores, and
a set of N periodic tasks with their task-level reliability targets,
the first part of the problem is to determine the number of
copies and the voltage and frequency assignment for each task
in order to reduce the energy consumption, while the
allocation of tasks to core needs to guarantee that all timing
constraints are met. Moreover, no more than one copy of a
task can be allocated to the same core. The second part of the
problem is to save further energy during the actual execution
of the tasks through the addition of an online manager to the
system; the responsibility of the online manager is to apply
DPM. The online manager needs to find the first copy of each
task that has finished successfully and cancel the execution of
the remaining part of the other copies on the other cores.
Based on the rare nature of the fault occurrence, most of the
time, there is no need to execute all copies of a task
completely. So, as soon as a task finishes successfully, the
online manager stops the execution of the remaining part of
the copies and avoids dynamic energy consumption and
further energy can be saved.

Our solution for dealing with this problem is through
exploiting a combination of offline replication and online

Fig. 1. Overview of our proposed scheme.

energy management; our proposed scheme consists of two
phases: the offline phase is solved by Energy-Efficient
Replication (EER) which is a proficient heuristic-based
algorithm presented in [23]. In the online phase, the main
objective is to add an online control over the underlying
system to gain further energy savings. An overview of
procedures taken place in our proposed scheme is shown in
Fig. 1. The details of each of these two phases are presented in
the following subsections.

Offline Phase: It has been proven that problem with which we
are confronted in offline phase, belongs to the class of NP-
hard problems. Therefore in order to solve it, the heuristic-
based algorithm EER has been proposed [23]. In our offline
phase of tackling with the presented problem, our scheme
follows the EER algorithm. In this phase, at first, the Energy-
Frequency-Reliability (EFR) table for each task τi, will be
constructed. Entries in each row of this table consist of a
frequency level (from the set of all available frequency F in
the system), the minimum number of copies required to satisfy
the reliability target of the task according to that specific
frequency level, the corresponding overall energy
consumption considering all copies, and the total processor
time needed by all the copies. The rows in this table are placed
in a way that the frequency levels are sorted in descending
order, with the maximum available frequency at index 1 of the
EFR table. After constructing the EFR table, the algorithm
tries to partition the workload among the set of available M
cores in the system. For allocating tasks to cores, a modified
version of First-Fit-Decreasing (FFD) algorithm has been
adopted. Some of the notable modifications are as follows:
along with the original scheme in FFD heuristic, the total
utilization of the assigned workload to each core should not be
more than one, due to schedulability condition of EDF
scheduling. Moreover, the allocation should not assign copies
of the same task on the same core. Otherwise, if a permanent
fault occurs at a core, more than one copies of a task will be
corrupted. In the partitioning of the tasks among the cores, in
the first attempt, the EER algorithm starts with the most
energy-efficient configuration in which each task executes at
its least frequency level. If this trial is successful, the optimal
solution for the problem will be found and the EER algorithm
will be terminated; if not, the algorithm moves into its next
step. In this step, first we need to know whether the problem
has a feasible solution at all or not. So, the procedure
continues by checking the other extreme where all tasks are
running at their maximum available frequency in the system.
If the algorithm cannot find any solution in this configuration
either, the task set is not schedulable at all, and the algorithm
is terminated by a message. Otherwise, the EER algorithm
continues with the relaxation phase. In its relaxation phase,
EER starts with a feasible configuration (where at the first run,
each copy of each task is running at the maximum frequency).
In each of its iterations, the algorithm tries to select a task and
reduce its frequency. Selection of the tasks for reducing
frequency is according to two of the proposed heuristics in
[23] which will be introduced later. If the new configuration of
the system is feasible, the algorithm moves to another round of

relaxation and the new configuration is committed to,
otherwise, the task will be omitted from the set of eligible
tasks, will not be considered for the further iterations, and the
system backtracks to its previous feasible configuration. Also,
in a case when a task reaches its minimum frequency level in
its EFR table, it will be omitted from the set of eligible tasks
for the next iterations. This procedure continues until there are
no more tasks in the set of eligible tasks. Finally, the last

Algorithm 1: Offline Replication and Online Energy Management

1. Start the offline phase
2. /* In the offline phase, the EER algorithm is applied */
3. Construct the EFR tables for all tasks
4. for each task τi in the task set do
5. /*assume that for each task τi, the most energy-efficient

frequency-level in its corresponding EFR table is denoted by
level-eei */

6. CurrentLevel[τi] ← level-eei
7. end for
8. SysConfig ← Partition the currentLevel with modified FFD
9. if (feasible(SysConfig)) then
10. return the CurrentLevel and the SysConfig
11. exit offline phase
12. end if
13. for each task τi in the task set do
14. CurrentLevel[τi] ← 1;
15. eligible[τi] ← true;
16. end for
17. SysConfig ← Partition the currentLevel with modified FFD
18. if (!feasible(SysConfig)) then
19. return error; /* No feasible solution exists */
20. exit
21. end if
22. while (∃j (eligible[τj] is true)) do
23. Choose the most eligible task according to LEF or LPF
24. /*τi is chosen for relaxation*/
25. CurrentLevel[τi]++; /*goes to the less frequency-level*/
26. SysConfig ← Partition the currentLevel with modified FFD
27. if(!feasible(SysConfig)) then
28. CurrentLevel[τi]--; /*goes back to the last feasible-level*/
29. eligible[τi] ← false;
30. end if
31. end while
32. return the CurrentLevel and the SysConfig
33. End the offline phase
34. /*The CurrentLevel and the SysConfig are given to the online

phase*/
35. Start the online phase
36. /*In the online phase, the Online Manager tries to apply

DPM*/
37. for each task τi in the currentLevel do
38. coreSet[τi]← find the set of all cores executing a copies of τi
39. online_Manager controls the system;
40. find the first instance at which τi is completed successful-

ly on one of the core in coreSeti
41. cancel all the remaining part of all other copies of τi on all

other cores in coreSeti
42. end for
43. End the online phase

feasible configuration of the system is chosen. In the offline
phase of our scheme, two of the three heuristics introduced in
[23] has been applied in order to choose the most eligible task.
These heuristics are as follows:

� Largest-Energy-First (LEF): The most eligible task is
the task that will results in the most energy saving by
relaxing its frequency to a less frequency level [23].

� Largest-Power-First (LPF): The task that gives the
largest energy savings per the additional processing
time by one-level reduction of its frequency is chosen
as the most eligible task [23].

Online Phase: In the online phase, having the system
configuration from the previous phase, the objective of our
scheme is to reduce the dynamic energy consumption.
Keeping in mind that transient faults are rare in nature, if an
online control can be added to the system to cancel the
unnecessary copies of the tasks, further energy savings can be
obtained. In EER algorithm, the goal is to find a configuration
in which the energy is minimized while the reliability target is
satisfied [23]. However, there is no need to execute all copies
of a task under any circumstances completely. Considering
that when a task whose processing frequency is reduced
finishes its execution successfully, the online manager cancels
the remaining part of its copies, resulting in significant energy
saving. Therefore, after finding the proper system
configuration in the offline phase, the online manager controls
the system as it is running the tasks on different cores. If a task
finishes successfully, the online manager stops execution of its
copies and then put the system into a low-power state which
only consumes static energy (i.e. applying DPM). We have
seen that by adding this online manager we can obtain
significant energy saving compare to the pure EER algorithm
proposed in [23].

Algorithm 1 shows the pseudo code of our offline
replication and online energy management scheme. In this
Algorithm, the offline phase starts from line 1. In line 3, for
each task, the EFR table is constructed. Lines 4-8 show the
first trial of the algorithm to find the system configuration. In
this trial, each task has the most energy-efficient configuration
(i.e. executing at its least frequency level). In lines 9-12, EER
algorithm checks whether the most energy-efficient

configuration is feasible; if this configuration is feasible, the
optimal solution is found, and the corresponding level of
frequency for each task as well as the system configuration are
given to the online phase; otherwise, in lines 13-21, the offline
phase checks whether there exists a feasible configuration of
the system at all (with all the tasks running at the maximum
frequency). If no configuration is found, the algorithm is
terminated by an error message; otherwise, the EER algorithm
continues to its relaxation phase. Through lines 22-32, the
algorithm tries to find a more suitable configuration of the
system by the means of the relaxation phase of EER
algorithm. In the relaxation phase, for choosing the most
eligible task for frequency reduction, one of the two heuristics
(LEF or LPF) based on [23], is selected. The offline phase
finishes at line 33. After finding the most energy-efficient
configuration of the system in the offline phase, the online
phase starts at line 35. Lines 37-42 specify the addition of the
online manager to the system. The goal of this manager is to
apply DPM and avoid unnecessary execution of different
copies of a task. Specifically, line 38 shows the process of
finding the set of all cores on which a specific task τi is
executing. The online manager monitors the cores in this set to
find the first copies of τi that has been finished successfully,
and cancels the unnecessary execution of the other copies, in
lines 39-41. Finally, the online phase finishes at line 42.

V. PERFORMANCE EVALUATION

In this section our simulation results are presented. As a
baseline, we consider the configuration of the system where all
copies of all tasks are running at the maximum available
frequency (i.e. fmax). We report the energy saving results of our
scheme and the pure EER algorithm in [23] in compare to the
baseline.

The energy savings of the different schemes is evaluated by
the use of an in-house discrete event simulator. For each point
in the figures, the average energy savings of 1000 data sets
each contains 20 tasks is reported. For producing tasks, we
followed the scheme in [27] which produces task according to
UUnifast scheme. We have 10 different frequency levels in the
system and the static energy is set to 5% of the maximum
dynamic energy consumption.

Fig. 2. Impact of number of cores; Utot = 1.5, w = 0.01.

0

10

20

30

40

50

60

70

4 5 6 7 8 9 10 11 12

En
er

gy
 S

av
in

gs
 (%

)

Number of Cores

LEF LPF LEF + Online Manager LPF + Online Manager

Fig. 3. Impact of the number of cores; Utot = 1.5, w = 0.001.

0

10

20

30

40

50

60

70

4 5 6 7 8 9 10 11 12

En
er

gy
 S

av
in

gs
 (%

)

Number of Cores

LEF LPF LEF + Online Manager LPF + Online Manager

In our simulations, the results of applying the pure EER
algorithm [23] in the offline phase are specified by LEF and
LPF (according to the heuristics used for selecting the most
eligible task for the frequency reduction). On the other hand,
when the online manager is added to the system, the results are
specified by “LEF + Online Manager” and “LPF + Online
Manager” respectively.

It should be noted that if the given reliability target is the
system target reliability (Rsys(t)), the first thing to do is finding
the task-level reliability targets (Ri(t)). In such a case, based on
the approach proposed in [22] a uniform reliability scaling is
performed in such a way that, for each task, the ratio (1-
Ri(t))/(1-Ri(t0)) is set to a unique value w which is a constant
value and is called the (uniform) PoF scaling factor. By
multiplying the normalized PoF of each task to w, we scale all
the original task reliabilities in the same way [22]. In our
evaluation, we assume that the PoF of each task is in
normalized form, with respect to the PoF of a single task
running at the maximum available frequency.

In the first set of the simulations, we investigate the impact
of the number of cores on energy savings. The results are
shown in Fig. 2 and Fig. 3. In these experiments, the total
system load is set to 1.5, and the value of w is set to 0.01 and
0.001, respectively. In these figures, by increasing the number
of cores, there is more space for the LEF and LPF to reduce
the frequency levels of tasks in addition to the probable
increase of the number of copies. In these situations, by
increasing the number of cores, the offline phase results in
more energy savings as there is more capacity to slowdown
the tasks, however because the overlapping parts of the copies
become larger (that is the result of extending tasks execution
times), in the online phase, the trend of energy savings is
decreasing; even though the energy savings is more than the
pure offline phase in all cases. Moreover, in Fig. 3, when the w
is smaller (w=0.001), the required reliability of the tasks are
higher and it leads to executing tasks in higher frequency or
probably with more number of copies, therefore leads to less
energy savings in total. Notice that when the number of cores
grows, at some point, achieving the most energy-efficient
configuration of each task becomes feasible. Therefore, for
larger number of cores, the energy savings become almost
unchanged.

In the second set of the simulations, we evaluate the impact
of the total system loads (Utot), on the energy savings. The
results have been shown in Fig. 4 and Fig. 5. In these
experiments, the system has 16 cores, and the value of w is set
to 0.01 and 0.001, respectively. According to these figures,
generally when the total utilization of the system is low, the
available slack is larger and the chance of running each task at
the most energy-efficient configuration is high. On the other
hand, when the system load increases, the amount of the
available slack becomes lower. Therefore, the ability of the
offline phase of our scheme to save energy decreases and that
is due to the fact that with high load, the system will have little
opportunity to scale tasks. So, these tasks require executing in
higher frequency or with more number of copies for sake of
satisfaction of the reliability targets, and this leads to more
energy consumption. Although when the system utilization
moves toward higher values, the trend of energy savings for
pure offline phase of the algorithm (i.e. LEF and LPF) is
decreasing, by adding the online manager to the existing
system, we will get more energy savings. This increasing trend
stems from the fact that when system load is high, since there
is smaller slack available, the tasks cannot be scaled.
Therefore, the overlapping parts of replicated tasks may
become shorter, and when the online manager decides to
cancel the remaining part of the copies, shorter overlapping
parts have been passed and this will result to more energy
savings. Moreover, when tasks cannot be scaled, they run at a
higher level of frequency, which results in more reliable
execution of each copies of each task. Therefore, the chance of
finishing tasks successfully increases and there is less need of
executing other copies of the tasks completely.

It is noteworthy that both heuristics, LEF and LPF, works
much the same way, and result in similar energy savings. This
similar behavior is followed when the online phase is added to
the pure offline phase. However, in some cases, one of the two
heuristics may outperform the other one.

VI. CONCLUSIONS

In this paper we considered the problem of managing energy
consumption for a set of periodic real-time tasks with
specified reliability targets, when running on a multicore
system. For tackling with this problem, we introduced an
offline replication and an online energy management scheme

Fig. 4. Impact of system load (tasks utilization); 16 cores, w = 0.01.

0

10

20

30

40

50

60

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

En
er

gy
 S

av
in

gs
 (%

)

Total Utilization, Utot

LEF LPF LEF + Online Manager LPF + Online Manager

Fig. 5. Impact of system load (tasks utilization); 16 cores, w = 0.001.

0

10

20

30

40

50

60

70

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

En
er

gy
 S

av
in

gs
 (%

)

Total Utilization, Utot

LEF LPF LEF + Online Manager LPF + Online Manager

consisting of two phases: in the offline phase, we try to find
the number of copies as well as processing frequency for each
task; while in the online phase, we add an online manager to
the existing system of the first phase. The online manager
applies DPM to the system, i.e. when a task finishes
successfully, the execution of the other copies of the same task
is canceled and system will go to a low-energy state. We have
seen that by selecting the proper degree of replication and
frequency assignment for each task, and adding the online
manager, we are able to gain significant energy savings.
Therefore, the addition of this online manager is very
important in energy saving because of the infrequent nature of
the faults affecting the system in general.

ACKNOWLEDGEMENT

The authors of this paper acknowledge Research Vice Pres-
idency of Sharif University of Technology for funding this
work under grant no. G930827.

REFERENCES

[1] M. Salehi, and A. Ejlali, “A Hardware Platform for Evaluating
Low-Energy Multiprocessor Embedded Systems Based on
COTS Devices,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp.
1262-1269, 2015.

[2] L. Benini, A. Bogliolo, and G. De Micheli, “A Survey of Design
Techniques for System-Level Dynamic Power Management,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8, pp.
299-316, 2000.

[3] T. D. Burd, T. A. Pering, and A. J. Stratakos, “A Dynamic
Voltage Scaled Microprocessor System,” IEEE J. Solid-State
Circuits (JSSC), vol. 35, no. 11, pp. 1571-1580, 2000.

[4] P. Pillai, and K. G. Shin, “Real-Time Dynamic Voltage Scaling
for Low-Power Embedded Operating Systems,” In SOSP ACM
Symp. Operating Syst. Principles, Dec. 2001.

[5] V. Devadas, and H. Aydin, “Real-Time Dynamic Power
Management through Device Forbidden Regions,” In Proc. of
the 14th IEEE Real Time and Embedded Technology and
Applications Symp. (RTAS’08), 2008.

[6] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling
for Reduced CPU Energy,” Mobile Computing of the
International Series in Engineering and Computer Science, vol.
353, pp. 449-471, 1996.

[7] S. Aminzadeh, and A. Ejlali, “A Comparative Study of System-
Level Energy-Management Methods for Fault-Tolerant Hard
Real-Time Systems,” IEEE Trans. Comput., vol. 60, no. 9, pp.
1288-1299, 2011.

[8] V. Devadas, and H. Aydin, “On the Interplay of Dynamic
Voltage Scaling and Dynamic Power Management in Real-Time
Embedded Applications,” In Proc. of the 8th ACM Int'l conf. on
Embedded software, 2008.

[9] I. Koren, and C. M. Krishna, Fault-Tolerant Systems, 2007,
Morgan Kaufman.

[10] D. Pradhan, Fault Tolerant Computer System Design, Prentice
Hall, 1996.

[11] X. Castillo, S. R. McConnel, and D. P. Siewiorek, “Derivation
and Calibration of a Transient Error Reliability Model,” IEEE
Trans. Comput., vol. 31, pp. 658-671, 1982.

[12] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh, “Measurement and
Modeling of Computer Reliability as Affected by System
Activity,” ACM Trans. Compu. Syst., vol. 4, pp. 214-237, 1986.

[13] A. Ejlali, B. M. Al-Hashimi, and P. Eles, “Low-Energy
Standby-Sparing for Hard Real-Time Systems,” IEEE Trans.
Comput.-Aided Design of Integr. Circuits and Syst., vol. 31, pp.
329-342, 2012.

[14] M. A. Haque, H. Aydin, and D. Zhu, “Energy-Aware Standby-
Sparing Technique for Periodic Real-Time Applications,” In
Proc. of IEEE Int'l Conf. Comput. Design (ICCD’11),, 2011.

[15] R. Melhem, D. Mosse, and E. Elnozahy, “The Interplay of
Power Management and Fault Recovery in Real-Time Systems,”
IEEE Trans.Comput., vol. 53, pp. 217-231, 2004.

[16] O. S. Unsal, I. Koren, and C. M. Krishna, “Towards Energy-
Aware Software-Based Fault Tolerance in Real-time Systems,”
In Proc. of the IEEE Int'l Symp. Low Power Electron. and
Design (ISLPED), Aug. 2002.

[17] Y. Zhang, and K. Chakrabarty, “Energy-Aware Adaptive Check
Pointing in Embedded Real-Time Systems,” In Proc. of
IEEE/ACM Design, Automation and Test in Europe (DATE),
2003.

[18] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S.
Kim, and K. Flautner, “Razor: Circuit-Level Correction of
Timing Errors for Low Power Operation,” IEEE Micro, vol. 6,
pp. 10-20, 2004.

[19] D. Zhu, R. Melhem, and D. Mosse, “The Effects of Energy
Management on Reliability in Real-Time Embedded Systems,”
In Proc. of IEEE Int'l Conf. Comput. Aided Design (ICCAD),
2004.

[20] B. Zhao, H. Aydin, and D. Zhu, “Enhanced Reliability-Aware
Power Management Through Shared Recovery Technique,” In
Proc. of IEEE Int'l Conf. on Comput. Aided Design (ICCAD),
2009.

[21] D. Zhu, and H. Aydin, “Reliability-Aware Energy Management
for Periodic Real-Time Tasks,” IEEE Trans. Comput., vol. 58,
pp. 1382-1397, 2009.

[22] B. Zhao, H. Aydin, and D. Zhu, “Energy Management under
General Task-Level Reliability Constraints,” In Proc. of 18th
IEEE Real-Time and Embedded Technology and Applications
Symp. (RTAS), 2012.

[23] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware Task
Replication to Manage Reliability for Periodic Real-Time
Applications on Multicore Platforms,” In Proc. Of the Second
Int'l Green Computing Conf. (IGCC), 2013.

[24] C.L. Liu, and J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,” J. of
ACM, vol. 20, pp. 46-61, 1973.

[25] M. Khavari Tavana, M. Salehi, and A. Ejlali, “Feedback-Based
Energy Management in a Standby-Sparing Scheme for Hard
Real-Time Systems,” In Proc. of the 32nd IEEE Real-Time Syst.
Symp. (RTSS), Vienna, 2011.

[26] R. Sridharan, and R. Mahapatra, “Reliability Aware Power
Management for Dual-Processor Real-Time Embedded Sys-
tems,” In Proc. of the 47th IEEE/ACM Design Automation Conf.
(DAC’10), 2010.

[27] E. Bini, and G. C. Buttazzo, “Measuring the Performance of
Schedulability Tests,” J. of Real-Time Syst., vol. 30, pp. 129-
154, 2005.

