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Abstract— For real-time embedded systems, energy consumption 
and reliability are two major design concerns. We consider the 
problem of minimizing the energy consumption of a set of periodic 
real-time applications when running on a multi-core system while 
satisfying given reliability targets. Multi-core platforms provide a 
good capability for task replication in order to achieve given relia-
bility targets. However, careless task replication may lead to signif-
icant energy overhead. Therefore, to provide a given reliability 
level with a reduced energy overhead, the level of replication and 
also the voltage and frequency assigned to each task should be de-
termined cautiously. The goal of this paper is to find the level of 
replication, voltage and frequency assignment, and core allocation 
for each task at design time, in order to achieve a given reliability 
level while minimizing the energy consumption. Also, at run-time, 
we find the tasks that have finished correctly and cancel the execu-
tion of their replicas to achieve even more energy saving. We eval-
uated the effectiveness of our scheme through extensive simula-
tions. The results show that our scheme provides up to 50% (in 
average by 47%) energy saving while satisfying a broad range of 
reliability targets. 

 
Index Terms–Real-Time Embedded Systems, Task Replication, 

Energy Management, Multicore Systems. 

I. INTRODUCTION  

One of the primary design constraints of real-time 
embedded systems is energy consumption. More energy 
consumption may lead to reduced battery life as well as higher 
temperature. Specifically, in embedded systems, the problem 
of managing energy is worse since most of these systems have 
limited power supplies. There are two well-studied techniques 
to face with the problem of high energy consumption: 
Dynamic Power Management (DPM) [1] [2] and Dynamic 
Voltage and Frequency Scaling (DVFS) [1] [3] [4]. DPM is a 
general technique that can be applied to any component of the 
system. It puts the system components into a low-energy state 
when they are idle [2] [5]. DVFS reduces voltage and 
frequency in order to save energy [4] [6]. It has been shown 
that DPM provides less energy saving compared to DVFS in 
similar conditions [7] [8]. However, since DVFS prolongs 
tasks execution time, exploiting DVFS in real-time embedded 
system may lead to violation of timing constraints associated 
with real-time tasks.  

One other issue affecting computer systems is their 
susceptibility to faults which may lead to different run-time 
errors. Generally, faults are classified into three different 
types: transient, intermittent and permanent faults [9] [10]. 
What may lead to a transient fault is electromagnetic 

interference or cosmic radiation [11] [12] which can be 
tolerated by time redundancy technique like re-execution of an 
affected task [9] [10]. Intermittent faults never go away 
entirely and oscillate between being dormant and active. When 
these faults are dormant, the component functions normally, 
while at some intervals when they are active, they result in 
malfunctioning of the affected component. Permanent faults 
are caused by manufacturing defects or circuit wear-out. In 
order to confront with permanent faults, the only way is 
through hardware redundancy techniques [9] [10]. It has been 
shown that transient faults occur more frequently than the 
other two types [11] [12]. Therefore, confronting transient 
faults is of great importance. 

Embedded systems are frequently used in hard real-time 
applications where the demand to reliability is very high. 
Managing energy and achieving fault tolerance in these 
systems are often at the odd due to the fact that fault tolerance 
mainly requires exploiting redundant resources [13] [14] [15] 
[16] [17]. When DVFS is chosen as a means of energy 
management technique, its negative impact on reliability 
should be considered, as the current researches suggest [18] 
[19]: the transient fault rate (and thus the corresponding soft 
errors) increases exponentially as we decrease the supply 
voltage and processing frequency for saving energy. 
Therefore, in hard real-time applications, the degradation of 
reliability because of applying energy management techniques 
should be considered. 

Using available slack time in the system for both reliability 
and energy management have been considered by a set of 
techniques called Reliability-Aware Power Management 
(RAPM) [20] [21]. The main idea of these works is to preserve 
system’s original reliability through scheduling redundant 
executions and then exploiting the remaining slack time for 
energy management. In addition to these techniques, there is 
another framework proposed for periodic real-time tasks 
running on a single core which is called reliability-oriented 
energy management [22]. In this work, the main goal is to 
achieve different reliability levels with minimum energy 
consumption. The difference of this work in comparison to 
RAPM is that the desired reliability levels can be different 
from the original reliabilities of the tasks. This offers a 
flexibility that can be exploited for energy management. 

In this paper, we focus on a reliability-oriented energy 
management solution for multi-core systems. The increase in 
the number of cores in the emerging many-core systems 
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makes abundant opportunities to exploit task replication as a 
proper option for reliability management. In [23], the authors 
suggested that by scheduling multiple copies of a task on 
different cores in a multicore system, the probability of 
finishing at least one copy successfully increases significantly. 
Also, it has been proved that replication has some intrinsic 
features that make it an efficient means of managing reliability 
[23]. For one thing, task replication makes high reliability 
targets achievable. Moreover, replication helps in reducing 
energy consumption by reducing the supply voltage and 
processing frequency of the copies of the tasks in addition to 
achieving reliability targets.  

Considering the benefits of task replication, we proposed an 
offline replication and online energy management scheme for 
hard real-time applications running on multicore systems. Our 
scheme consists of two phases: an offline phase, and an online 
phase. In the offline phase, the degree of replication and the 
voltage and frequency assignment for each task with respect to 
a given reliability level is determined. Moreover, by 
specifying the task to core allocation, the system configuration 
and the tasks execution sequence are determined. At run-time, 
an online manager controls the system and prevents the 
unnecessary execution of any task that at least one of its 
copies has finished successfully. The required number of 
copies for each task to meet its reliability target is specified 
statically in the offline phase, while the online manager 
controls the number of copies of each task. 

The main contribution of this paper is to find the efficient 
configuration of the system in terms of the number of copies 
for each task along with the voltage and frequency assignment 
of tasks offline (at design time), and to manage the execution 
of the tasks’ copies to prevent unnecessary executions online 
(at run time). 

The rest of this paper is organized as follows. In Section II, 
some models and assumptions are presented. Section III 
covers the analysis of the impact of adjusting the degree of 
replication. Problem definition and the proposed solution will 
be presented in Section IV. Evaluations and results are 
presented in Section V. Finally, Section VI concludes the 
paper. 

II.  MODELS AND ASSUMPTIONS 

A.  Workload Model 

Our workload consists of a set of N periodic real-time tasks 
T={τ1, τ2, …, τN}. Each task τi, under the maximum available 
processing frequency fmax, has the worst-case execution time 
WCi and period Pi which is equal to its relative deadline. The 
workload is assumed to be executed on M similar cores. Each 
core has F different frequency levels. We use normalized 
frequency f with respect to the maximum available processing 
frequency fmax (0<f≤fmax=1.0). The cost of switching between 
the frequencies (and their corresponding voltages) has been 
assumed to be negligible. Each task τi has ki copies which will 
be executed on ki≤M distinct cores. The allocated tasks to each 

core will be scheduled by Earliest-Deadline-First (EDF) 
scheduling which is proved to be optimal on a single core [24].  

B.  Energy Consumption Model 

We consider that the total energy consumption of the 
system, Etotal, consists of the static and dynamic energy 
components. Each core in the system can operate in active or 
idle states. In active state the core executes tasks and it 
consumes dynamic and static energy. When there is no task to 
be executed the cores goes to the idle state and consumes only 
static energy. The energy consumption of a core is computed 
as [25]: 

dstotal EEE ��  (1) 

where the static energy which is dominated by the leakage 
current of the system is denoted by Es, and the dynamic energy 
is denoted by Ed. 

We assume that all cores in the system are equipped with 
DVFS. During the execution of each task, its supply voltage 
Vi, may be less than the maximum supply voltage Vmax. We 
consider the normalized supply voltage ρi as: 

maxV
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The dynamic energy consumption of each core (Ed(τi)) when 
executing the task τi,  at the scaled supply voltage Vi can be 
written as: 
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where Ceff is a constant that expresses effective switching 
capacitance, and Vi and fi are the supply voltage and 
operational frequency respectively. WCi/ρi is the scaled task 
execution time due to DVFS. Since in DVFS, voltage has a 
linear relationship with frequency, we have ρi=Vi/Vmax=fi/fmax 
where Vmax is the maximum supply voltage corresponding to 
the maximum processing frequency fmax. Therefore, Eq. 3 can 
be rewritten as [25]:  

iieffid WCfVCE 2
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2
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Since we have no direct control over CeffVmax
2fmax, we can 

use the normalized energy consumption by removing 
CeffVmax

2fmax. Therefore, the normalized dynamic energy 
consumption of each core NEd(τi), while executing the task τi 
can be written as: 

iiid WCNE 2)( �� �  (5) 

In our evaluations, we set the static energy consumption Es, 
equal to 5% of the maximum dynamic energy like the 
assumption that has been adopted in similar works [23] [25]. 



C. Fault Model 

The arrival rate of faults can be modeled by an exponential 
distribution [18]. It has been shown that the average arrival 
rate of faults increases as the frequency decreases through 
DVFS [18] [19]. If the average arrival rate of faults is λ, and 
the average fault rate at the maximum frequency is λ0, at 
frequency f, the fault rate is [19]:  
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where d is a parameter called sensitivity factor and the typical 
values for d ranges from 2 to 6 [19] [21] [26]. Following [22], 
we assume that at the maximum available frequency, the value 
of λ0 is equal to 10-6. 

The probability of executing a task successfully is called the 
task’s reliability. At frequency fi, the reliability of a task 
(Ri(fi)) is: 
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Consequently, the Probability of Failure (PoF) of a task is: 

1( ) ( )i i i iPoF f R f� �  (8) 

When we have several copies of each task, it is enough to 
have at least one instance which has been finished 
successfully. So, at the end of execution of each task a test is 
conducted to reveal whether any fault has occurred or not [9] 
[10]. 

III. DEGREE OF REPLICATION ANALYSIS 

Having in mind the previous discussion, when we have 
several copies of a task, the execution will be unsuccessful 
only if all copies encounter faults. So, in general, the 
probability of failure of a task with k copies decreases 
exponentially: 

� �( ) ( ) kk
i iPoF PoF f�  (9) 

Based on [23], it can be seen that to face with negative 
impact of voltage and frequency scaling on the probability of 
failure, we can use replication and we may even get some 
energy savings through parallel execution. Through Eq. 9, 
given a certain PoF target (PoFtarg), we can find the minimum 
number of copies for a task to satisfy the reliability targets as 
follows [23]: 
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We can conclude that for a given reliability target, different 
number of copies and voltage and frequency levels can satisfy 
the need; On the other hand, the energy consumption of these 
different combination of the number of copies, and supply 
voltages and processing frequencies that are able to achieve 
the same reliability targets differ significantly [23]. It should 
be noted that the number of copies of a task should not exceed 
the total number of available cores in the system. So, in the 
selection of the execution frequency of a task, the upper bound 
on the number of copies should be considered. This constraint 
may lead to have fewer numbers of copies with probably 
higher frequency to achieve the reliability target. 

IV. PROBLEM DEFINITION AND SOLUTION 

Given a multicore system consisting of M similar cores, and 
a set of N periodic tasks with their task-level reliability targets, 
the first part of the problem is to determine the number of 
copies and the voltage and frequency assignment for each task 
in order to reduce the energy consumption, while the 
allocation of tasks to core needs to guarantee that all timing 
constraints are met. Moreover, no more than one copy of a 
task can be allocated to the same core. The second part of the 
problem is to save further energy during the actual execution 
of the tasks through the addition of an online manager to the 
system; the responsibility of the online manager is to apply 
DPM. The online manager needs to find the first copy of each 
task that has finished successfully and cancel the execution of 
the remaining part of the other copies on the other cores. 
Based on the rare nature of the fault occurrence, most of the 
time, there is no need to execute all copies of a task 
completely. So, as soon as a task finishes successfully, the 
online manager stops the execution of the remaining part of 
the copies and avoids dynamic energy consumption and 
further energy can be saved. 

Our solution for dealing with this problem is through 
exploiting a combination of offline replication and online 

 
Fig. 1. Overview of our proposed scheme. 



energy management; our proposed scheme consists of two 
phases: the offline phase is solved by Energy-Efficient 
Replication (EER) which is a proficient heuristic-based 
algorithm presented in [23]. In the online phase, the main 
objective is to add an online control over the underlying 
system to gain further energy savings. An overview of 
procedures taken place in our proposed scheme is shown in 
Fig. 1. The details of each of these two phases are presented in 
the following subsections.  

Offline Phase: It has been proven that problem with which we 
are confronted in offline phase, belongs to the class of NP-
hard problems. Therefore in order to solve it, the heuristic-
based algorithm EER has been proposed [23]. In our offline 
phase of tackling with the presented problem, our scheme 
follows the EER algorithm. In this phase, at first, the Energy-
Frequency-Reliability (EFR) table for each task τi, will be 
constructed. Entries in each row of this table consist of a 
frequency level (from the set of all available frequency F in 
the system), the minimum number of copies required to satisfy 
the reliability target of the task according to that specific 
frequency level, the corresponding overall energy 
consumption considering all copies, and the total processor 
time needed by all the copies. The rows in this table are placed 
in a way that the frequency levels are sorted in descending 
order, with the maximum available frequency at index 1 of the 
EFR table. After constructing the EFR table, the algorithm 
tries to partition the workload among the set of available M 
cores in the system. For allocating tasks to cores, a modified 
version of First-Fit-Decreasing (FFD) algorithm has been 
adopted. Some of the notable modifications are as follows: 
along with the original scheme in FFD heuristic, the total 
utilization of the assigned workload to each core should not be 
more than one, due to schedulability condition of EDF 
scheduling. Moreover, the allocation should not assign copies 
of the same task on the same core. Otherwise, if a permanent 
fault occurs at a core, more than one copies of a task will be 
corrupted. In the partitioning of the tasks among the cores, in 
the first attempt, the EER algorithm starts with the most 
energy-efficient configuration in which each task executes at 
its least frequency level. If this trial is successful, the optimal 
solution for the problem will be found and the EER algorithm 
will be terminated; if not, the algorithm moves into its next 
step. In this step, first we need to know whether the problem 
has a feasible solution at all or not. So, the procedure 
continues by checking the other extreme where all tasks are 
running at their maximum available frequency in the system. 
If the algorithm cannot find any solution in this configuration 
either, the task set is not schedulable at all, and the algorithm 
is terminated by a message. Otherwise, the EER algorithm 
continues with the relaxation phase. In its relaxation phase, 
EER starts with a feasible configuration (where at the first run, 
each copy of each task is running at the maximum frequency). 
In each of its iterations, the algorithm tries to select a task and 
reduce its frequency. Selection of the tasks for reducing 
frequency is according to two of the proposed heuristics in 
[23] which will be introduced later. If the new configuration of 
the system is feasible, the algorithm moves to another round of 

relaxation and the new configuration is committed to, 
otherwise, the task will be omitted from the set of eligible 
tasks, will not be considered for the further iterations, and the 
system backtracks to its previous feasible configuration. Also, 
in a case when a task reaches its minimum frequency level in 
its EFR table, it will be omitted from the set of eligible tasks 
for the next iterations. This procedure continues until there are 
no more tasks in the set of eligible tasks. Finally, the last 

Algorithm 1: Offline Replication and Online Energy Management 

1. Start the offline phase 
2. /* In the offline phase, the EER algorithm is applied */ 
3. Construct the EFR tables for all tasks 
4. for each task τi in the task set do   
5. /*assume that for each task τi, the most energy-efficient 

frequency-level in its corresponding EFR table is denoted by 
level-eei */ 

6. CurrentLevel[τi] ← level-eei 
7. end for 
8. SysConfig ← Partition the currentLevel with modified FFD 
9. if (feasible(SysConfig)) then 
10. return the CurrentLevel and the SysConfig 
11. exit offline phase 
12. end if 
13. for each task τi in the task set do 
14. CurrentLevel[τi] ← 1; 
15. eligible[τi] ← true; 
16. end for 
17. SysConfig ← Partition the currentLevel with modified FFD 
18. if (!feasible(SysConfig)) then 
19. return error;  /* No feasible solution exists */ 
20. exit  
21. end if 
22. while (∃j (eligible[τj]  is true)) do 
23. Choose the most eligible task according to LEF or LPF  
24. /*τi is chosen for relaxation*/ 
25. CurrentLevel[τi]++;  /*goes to the less frequency-level*/ 
26. SysConfig ← Partition the currentLevel with modified FFD 
27. if(!feasible(SysConfig)) then 
28. CurrentLevel[τi]--; /*goes back to the last feasible-level*/ 
29. eligible[τi] ← false; 
30. end if 
31. end while  
32. return the CurrentLevel and the SysConfig 
33. End the offline phase 
34. /*The CurrentLevel and the SysConfig  are given to the online 

phase*/ 
35. Start the online phase 
36. /*In the online phase, the Online Manager tries to apply 

DPM*/ 
37. for each task τi in the currentLevel  do 
38. coreSet[τi]← find the set of all cores executing a copies of τi 
39. online_Manager controls the system; 
40. find the first instance at which τi is completed successful-

ly on one of the core in coreSeti 
41. cancel all the remaining part of all other copies of τi on all 

other cores in coreSeti 
42. end for 
43. End the online phase 

 



feasible configuration of the system is chosen. In the offline 
phase of our scheme, two of the three heuristics introduced in 
[23] has been applied in order to choose the most eligible task. 
These heuristics are as follows: 

� Largest-Energy-First (LEF): The most eligible task is 
the task that will results in the most energy saving by 
relaxing its frequency to a less frequency level [23]. 

� Largest-Power-First (LPF): The task that gives the 
largest energy savings per the additional processing 
time by one-level reduction of its frequency is chosen 
as the most eligible task [23]. 

Online Phase: In the online phase, having the system 
configuration from the previous phase, the objective of our 
scheme is to reduce the dynamic energy consumption. 
Keeping in mind that transient faults are rare in nature, if an 
online control can be added to the system to cancel the 
unnecessary copies of the tasks, further energy savings can be 
obtained. In EER algorithm, the goal is to find a configuration 
in which the energy is minimized while the reliability target is 
satisfied [23]. However, there is no need to execute all copies 
of a task under any circumstances completely. Considering 
that when a task whose processing frequency is reduced 
finishes its execution successfully, the online manager cancels 
the remaining part of its copies, resulting in significant energy 
saving. Therefore, after finding the proper system 
configuration in the offline phase, the online manager controls 
the system as it is running the tasks on different cores. If a task 
finishes successfully, the online manager stops execution of its 
copies and then put the system into a low-power state which 
only consumes static energy (i.e. applying DPM). We have 
seen that by adding this online manager we can obtain 
significant energy saving compare to the pure EER algorithm 
proposed in [23]. 

Algorithm 1 shows the pseudo code of our offline 
replication and online energy management scheme. In this 
Algorithm, the offline phase starts from line 1. In line 3, for 
each task, the EFR table is constructed. Lines 4-8 show the 
first trial of the algorithm to find the system configuration. In 
this trial, each task has the most energy-efficient configuration 
(i.e. executing at its least frequency level). In lines 9-12, EER 
algorithm checks whether the most energy-efficient 

configuration is feasible; if this configuration is feasible, the 
optimal solution is found, and the corresponding level of 
frequency for each task as well as the system configuration are 
given to the online phase; otherwise, in lines 13-21, the offline 
phase checks whether there exists a feasible configuration of 
the system at all (with all the tasks running at the maximum 
frequency). If no configuration is found, the algorithm is 
terminated by an error message; otherwise, the EER algorithm 
continues to its relaxation phase. Through lines 22-32, the 
algorithm tries to find a more suitable configuration of the 
system by the means of the relaxation phase of EER 
algorithm. In the relaxation phase, for choosing the most 
eligible task for frequency reduction, one of the two heuristics 
(LEF or LPF) based on [23], is selected. The offline phase 
finishes at line 33. After finding the most energy-efficient 
configuration of the system in the offline phase, the online 
phase starts at line 35. Lines 37-42 specify the addition of the 
online manager to the system. The goal of this manager is to 
apply DPM and avoid unnecessary execution of different 
copies of a task. Specifically, line 38 shows the process of 
finding the set of all cores on which a specific task τi is 
executing. The online manager monitors the cores in this set to 
find the first copies of τi that has been finished successfully, 
and cancels the unnecessary execution of the other copies, in 
lines 39-41. Finally, the online phase finishes at line 42. 

V. PERFORMANCE EVALUATION 

In this section our simulation results are presented. As a 
baseline, we consider the configuration of the system where all 
copies of all tasks are running at the maximum available 
frequency (i.e. fmax). We report the energy saving results of our 
scheme and the pure EER algorithm in [23] in compare to the 
baseline. 

The energy savings of the different schemes is evaluated by 
the use of an in-house discrete event simulator.  For each point 
in the figures, the average energy savings of 1000 data sets 
each contains 20 tasks is reported. For producing tasks, we 
followed the scheme in [27] which produces task according to 
UUnifast scheme. We have 10 different frequency levels in the 
system and the static energy is set to 5% of the maximum 
dynamic energy consumption. 

 
Fig. 2. Impact of number of cores; Utot = 1.5, w = 0.01.  
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Fig. 3. Impact of the number of cores; Utot = 1.5, w = 0.001. 
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In our simulations, the results of applying the pure EER 
algorithm [23] in the offline phase are specified by LEF and 
LPF (according to the heuristics used for selecting the most 
eligible task for the frequency reduction). On the other hand, 
when the online manager is added to the system, the results are 
specified by “LEF + Online Manager” and “LPF + Online 
Manager” respectively. 

It should be noted that if the given reliability target is the 
system target reliability (Rsys(t)), the first thing to do is finding 
the task-level reliability targets (Ri(t)). In such a case, based on 
the approach proposed in [22] a uniform reliability scaling is 
performed in such a way that, for each task, the ratio (1-
Ri(t))/(1-Ri(t0)) is set to a unique value w which is a constant 
value and is called the (uniform) PoF scaling factor. By 
multiplying the normalized PoF of each task to w, we scale all 
the original task reliabilities in the same way [22]. In our 
evaluation, we assume that the PoF of each task is in 
normalized form, with respect to the PoF of a single task 
running at the maximum available frequency. 

In the first set of the simulations, we investigate the impact 
of the number of cores on energy savings. The results are 
shown in Fig. 2 and Fig. 3. In these experiments, the total 
system load is set to 1.5, and the value of w is set to 0.01 and 
0.001, respectively. In these figures, by increasing the number 
of cores, there is more space for the LEF and LPF to reduce 
the frequency levels of tasks in addition to the probable 
increase of the number of copies. In these situations, by 
increasing the number of cores, the offline phase results in 
more energy savings as there is more capacity to slowdown 
the tasks, however because the overlapping parts of the copies 
become larger (that is the result of extending tasks execution 
times), in the online phase, the trend of energy savings is 
decreasing; even though the energy savings is more than the 
pure offline phase in all cases. Moreover, in Fig. 3, when the w 
is smaller (w=0.001), the required reliability of the tasks are 
higher and it leads to executing tasks in higher frequency or 
probably with more number of copies, therefore leads to less 
energy savings in total. Notice that when the number of cores 
grows, at some point, achieving the most energy-efficient 
configuration of each task becomes feasible. Therefore, for 
larger number of cores, the energy savings become almost 
unchanged. 

In the second set of the simulations, we evaluate the impact 
of the total system loads (Utot), on the energy savings. The 
results have been shown in Fig. 4 and Fig. 5.  In these 
experiments, the system has 16 cores, and the value of w is set 
to 0.01 and 0.001, respectively. According to these figures, 
generally when the total utilization of the system is low, the 
available slack is larger and the chance of running each task at 
the most energy-efficient configuration is high. On the other 
hand, when the system load increases, the amount of the 
available slack becomes lower. Therefore, the ability of the 
offline phase of our scheme to save energy decreases and that 
is due to the fact that with high load, the system will have little 
opportunity to scale tasks. So, these tasks require executing in 
higher frequency or with more number of copies for sake of 
satisfaction of the reliability targets, and this leads to more 
energy consumption. Although when the system utilization 
moves toward higher values, the trend of energy savings for 
pure offline phase of the algorithm (i.e. LEF and LPF) is 
decreasing, by adding the online manager to the existing 
system, we will get more energy savings. This increasing trend 
stems from the fact that when system load is high, since there 
is smaller slack available, the tasks cannot be scaled. 
Therefore, the overlapping parts of replicated tasks may 
become shorter, and when the online manager decides to 
cancel the remaining part of the copies, shorter overlapping 
parts have been passed and this will result to more energy 
savings. Moreover, when tasks cannot be scaled, they run at a 
higher level of frequency, which results in more reliable 
execution of each copies of each task. Therefore, the chance of 
finishing tasks successfully increases and there is less need of 
executing other copies of the tasks completely. 

It is noteworthy that both heuristics, LEF and LPF, works 
much the same way, and result in similar energy savings. This 
similar behavior is followed when the online phase is added to 
the pure offline phase. However, in some cases, one of the two 
heuristics may outperform the other one.  

VI. CONCLUSIONS 

In this paper we considered the problem of managing energy 
consumption for a set of periodic real-time tasks with 
specified reliability targets, when running on a multicore 
system. For tackling with this problem, we introduced an 
offline replication and an online energy management scheme 

 
Fig. 4.  Impact of system load (tasks utilization); 16 cores, w = 0.01. 
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Fig. 5. Impact of system load (tasks utilization); 16 cores, w = 0.001. 
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consisting of two phases: in the offline phase, we try to find 
the number of copies as well as processing frequency for each 
task; while in the online phase, we add an online manager to 
the existing system of the first phase. The online manager 
applies DPM to the system, i.e. when a task finishes 
successfully, the execution of the other copies of the same task 
is canceled and system will go to a low-energy state. We have 
seen that by selecting the proper degree of replication and 
frequency assignment for each task, and adding the online 
manager, we are able to gain significant energy savings. 
Therefore, the addition of this online manager is very 
important in energy saving because of the infrequent nature of 
the faults affecting the system in general. 
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