
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

1

Abstract— Two main objectives in designing real-time embedded
systems are high reliability and low power consumption. Hardware
replication (e.g. standby-sparing) can provide high reliability while
keeping the power consumption under control. In this paper, we
consider a standby-sparing system where the main tasks on pri-
mary cores are scheduled by our proposed PPA-EDF policy while
the backup tasks on spare cores are scheduled by our proposed
PPA-EDL policy to meet the chip TDP constraint. These policies
provide the best opportunity to shift the task executions as much
as possible to minimize execution overlaps between main and
backup tasks that consume high power consumption. Since TDP is
the maximum amount of power generated by a chip that the cool-
ing component is designed to dissipate under any workload, the
total power consumption should not be higher than the TDP con-
straint. When a task finishes successfully a larger portion of its
corresponding copy task can be canceled, resulting in a significant
amount of peak/average power reduction. To achieve further
peak/average power reduction, we use Dynamic Voltage and Fre-
quency Scaling (DVFS) and Dynamic Power Management (DPM).
The main reason of using DPM is that, once the first copy of each
task has finished successfully, its corresponding copy task is ter-
minated, and if there is no more task for execution, the core goes
to a low-power mode. We evaluated our scheme under various
system configurations. Experiments show that our scheme pro-
vides up to 47.6% (on average by 28.2%) peak power reduction
compared to four state-of-the-art techniques.

Index Terms – Peak Power Consumption, Real-time

Embedded Systems, Thermal Design Power, Scheduling.

 INTRODUCTION

echnology scaling continues to allow more transistors to

be integrated onto a multicore chip while power

consumption increasingly constraints the design of multicore

embedded systems [1][2][3][4][5][43]. As well, the scaling of

feature size raises the susceptibility of systems to transient

faults [3][8][9][10][11][12][13][41]. Task replication is a

well-established technique to achieve high reliability against

transient faults. Despite the huge potential for task replication,

due to the Thermal Design Power (TDP) constraint,

embedded systems designers face a challenge in using

multicore platforms [1][2][4][6][7]Error! Reference source

not found.. TDP is considered as the highest sustainable

power that a chip can dissipate before being forced to exploit

a performance throttling mechanisms, e.g. Dynamic Thermal

Management [1]. The heat-sink and cooling units for a chip

are designed based on the chip TDP characteristics. If the

peak power consumption of a chip violates its TDP, it

automatically restarts or significantly reduces its performance

to prevent a permanent damage. Therefore, in the embedded

systems, power consumption is an important design

concern [1][2]. Since the continuous power density

increments along with technology scaling, increasing power

densities have led to violating the chip TDP and making the

thermal problems [40]. Generally, low power consumption

and high reliability are the most important metrics in hard

real-time embedded systems [12][13][14][15][16][23]. To

achieve the high reliability, most of the studies had used fault-

tolerance techniques. Associated redundancy brings a number

of penalties: increase in weight, size, cost and power

consumption. Consequently, in multicore embedded systems,

increased power densities have introduced the so-called Dark-

Silicon problem [1][42]. As a result of this problem, a

significant percentage of the cores in a multicore system

cannot be concurrently active [4]. Increasing the integration

degree along with using fault-tolerance techniques can

increase the power consumption and raise the peak power

which can lead to violating the TDP constraint. In order to

contrast with the TDP constraint, some solutions like heat-

sink and chip’s cooling are proposed. However, due to their

negative effects on the system reliability, these solutions are

not used in real-time embedded systems. Therefore, peak

power management (or minimization) is an efficient way to

meet the TDP constraint which prevents the system from

producing high heat and temperature. Using TDP to define the

power constraint of a system can be very pessimistic.

However, one main reason to the widespread use of TDP,

despite the fact that it is pessimistic, is that it is easy to check

and easy to be handled in thermal management.

In multicore embedded systems, reliability is one of the

main design objectives that is subjected to different types of

faults [3][16][19][35][29]. The examples of these systems are

medical care devices, avionics systems, control of chemical

reactions, and surveillance systems [28]. Transient faults are

often induced by electromagnetic interference and cosmic ray

radiations and will disappear after a short time

interval [11][20][21]. Restoring the system state and repeating

the computation are a common approach to deal with the

transient faults [20]. Multicore systems have an inherent

redundancy which provides opportunities to implement

various redundancy-based fault-tolerant techniques. The other

reason that affects the system reliability is a violation of the

chip TDP. When TDP is violated (due to increase peak

power), some cores may become reset (inactive) and as a

result, the system reliability will be reduced. Thus, the

occurrence of peak power must be reduced in fault-tolerant

Peak-Power-Aware Energy Management for

Periodic Real-Time Applications
Mohsen Ansari, Amir Yeganeh-Khaksar, Sepideh Safari, and Alireza Ejlali

T

————————————————

Manuscript received July 12, 2018; revised Sep. 28, 2018 and Feb.
12, 2019; accepted February 13, 2019. Date of publication M D, Y;
date of current version M D, Y. This paper was recommended by
Associate Editor C.-L. Yang. (Corresponding author: Alireza Ejlali)
The authors are with the Department of Computer Engineering, Sha-

rif University of Technology, Tehran 14588, Iran (e-mails: {mansari;

ayeganeh; ssafari}@ce.sharif.edu; ejlali@sharif.edu).

mailto:ayeganeh@ce.sharif.edu
mailto:ssafari@ce.sharif.edu

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

2

embedded systems. The purpose of this paper is to reduce

energy consumption while keeping the peak power

consumption below the chip TDP at design time in fault-

tolerant real-time embedded systems without violating any

timing constraints. To achieve the mentioned purpose, we rely

on scheduling tasks based on power profiles.

Motivational Example: Let us consider a 4-core chip with

2W of TDP that executes four tasks T1, T2, T3 and T4. We

assume that the tasks arrive at time t=0 and have a period

P1=50ms, P2=100ms, P3=100ms and P4=50ms. Therefore, the

hyperperiod of the tasks is equal to h=100ms. Also, let us

assume that the execution time of T1, T2, T3 and T4 are 10ms,

50ms, 40ms and 20ms, respectively. We also assume that

each task consumes 0.6W of power throughout its execution

and after finishing the task, the underlying core goes into

sleep mode and consumes no power. Here, for ease of

presentation, we temporarily assume that the tasks’ peak

power is equal to the task’s average power. In the rest of this

paper, when we present our technique we consider that the

power consumption varies during a task execution and

different tasks have different power traces. In this paper, we

exploit task replication to achieve fault-tolerance and assume

that any core can be dynamically coupled to another core to

form a standby-sparing subsystem. Each standby-sparing

subsystem executes two primary tasks and their backup tasks.

Fig. 1a shows an execution scenario for these tasks where the

primary tasks start as soon as possible and the backup tasks

start as late as possible, hoping that the primary tasks will

finish successfully and the backup tasks will be dropped to

avoid excessive power consumption [35]. Since they do not

consider the peak power consumption, they may result in

violating the TDP constraint. This case is shown in Fig. 1a,

wherein the time interval 30ms to 70ms all the four cores are

active at the same time and hence the chip total power

consumption is 2.4W that is higher than the chip TDP

(i.e. 2W). Fig. 1b shows a possible execution scenario for the

tasks that does not violate the TDP constraint. In this scenario,

the first job of the backup task B2 (JB21) and the first job of

the backup task B3 (JB31) are divided into three parts and two

parts, respectively. Then, the other tasks and the parts of JB21

and JB31 are scheduled such that at any time instant at most

three cores are active. Therefore, since each core consumes

0.6W, the total chip power consumption is less than or equal

to 1.8W, and hence, the chip TDP is met.

Contribution: The main contributions of this paper are:
 A peak-power-aware energy management scheme that is

conducted at offline phase through our proposed schedul-
ing algorithm for the standby-sparing technique.

 Proposing two specific scheduling policies to manage en-
ergy and peak power consumption in the worst-case and
actual-case fault scenarios.

 Proposing an online technique to achieve further reduction
in energy/peak-power consumption through exploiting dy-
namic slacks.

Organization: In order to evaluate the effectiveness of the

proposed method, we compared our scheme with four state-

of-the-art techniques. The rest of this paper is formed as

follows. In section II we review the related work. Section III

presents our system model. In section IV, we present the

details of our solution. The experimental results are shown in

section V and we conclude the paper in section VI.

 RELATED WORK

A. Peak Power Reduction

Some related works [2], [18], and [1] focused on

minimizing the peak power consumption under real-time

constraints. [2] proposed a new scheduling algorithm for real-

time tasks to minimize chip-level power consumption,

without relying on any extra hardware for average power

reduction. This work restricts the concurrent execution of

tasks which are assigned to different cores. Lee et al. [18]

have proposed a task scheduling mechanism for preventing

the occurrence of peak power consumption for task-graph

models. The proposed algorithm in this work schedules the

tasks with the data dependency information while reduces the

peak power. One other work in high correlation to our work

is [1]. This work presented a scheme to minimize the peak

power for frame-based and periodic tasks with real-time

constraints on multicore systems. In order to minimize the

peak power, [1] schedules the sleep cycles for each active

core. It should be noted that researchers that try to minimize

the peak power, do not consider any fault-tolerant techniques

to deal with permanent, transient and intermittent faults. In

this paper, we use a fault-tolerant technique (i.e. standby-

sparing technique) on multicore embedded systems while

minimizing the peak power consumption. In this paper, we

aim at considering effects of fault-tolerant techniques on the

peak power consumption in real-time embedded systems.

B. Reliability-Aware Energy Management

Some techniques, like [15], [24], [25], and [26], which

consider both reliability and energy consumption, reserve a

part of the available slack time to schedule a recovery task (to

preserve the system reliability), and then utilize the remaining

slack for energy savings. In these techniques, since both the

main and recovery tasks are executed on the same core, tasks

with utilization greater than 50% cannot be scheduled.

Furthermore, these techniques cannot tolerate permanent

faults, since both the main and recovery executions perform

on the same core. The standby-sparing technique is a well-

studied hardware replication technique to provide high

reliability while keeping the energy consumption under

control [21][27][35][29]. In standby-sparing, the system

consists of two identical cores: primary and spare. Main tasks

Fig. 1. A motivational example of peak power problem. a) Delayed

execution of backup tasks[35], b) Peak-power-aware task scheduling.

JB21

P
ri

m
a
r
y

C
o
r
e
 1

S
p

a
r
e

C
o
r
e
 1

P
ri

m
a
r
y

C
o
r
e
 2

S
p

a
r
e

C
o
r
e
 2

P
o
w

er

P
ri

m
a
r
y

C
o
r
e
 1

S
p

a
r
e

C
o
r
e
 1

P
ri

m
a
r
y

C
o
r
e
 2

S
p

a
r
e

C
o
r
e
 2

0

Time (ms)

 1.2W

TDP:2W

0

0

0

J11

50 100

JB11

50

J12

JB12

J21

JB21

JB31

J31J41

JB41

100

J42

JB42

50

JB31

500 100

 2.4W

7020 30

 1.2W

(a)

20 30

60 7010

40 60

20 60 80

70

100

100

0

Time (ms)

TDP:2W

0

0

0

J11

50 100

JB11

50

J12

JB12

J21

JB21

JB31

J31J41

JB41

100

J42

JB42

50

500 1007020 40

(b)

20 30

60 7010

40 60

20 60 80

70

100

100

D D

 1.8W

JB31

Power consumption TDP
P

o
w

er

40

40

J31

JB21JB21

ANSARI et al.: PEAK-POWER-AWARE ENERGY MANAGEMENT FOR PERIODIC REAL-TIME APPLICATIONS

3

are executed on primary and their backup tasks are executed

on spare. When the primary core fails (due to either transient

or permanent fault), it is replaced with the spare core to

continue the execution of the backup task.

In order to reduce the energy consumption overhead of

standby-sparing, [28] has proposed a technique where DVFS

is used for the primary core while the spare core does not use

DVFS to preserve the reliability of the system when a fault

occurs. The work in [35] has proposed an energy-aware

scheduling scheme for a standby-sparing system that executes

preemptive periodic real-time applications. They apply

Earliest-Deadline-First (EDF) scheduling with DVFS on the

primary core, while the backup tasks are executed on the

spare core according to Earliest-Deadline-Late (EDL)

scheduling. Both EDF and EDL assign priorities based on the

jobs’ deadline, however, EDL delays the jobs as much as

possible to obtain idle intervals as early as possible in the

schedule. They aim at minimizing the execution overlap

between main and backup tasks at run-time to reduce energy

consumption. Haque et al. [29] have proposed an energy-

management technique for a standby-sparing system that

executes preemptive fixed-priority real-time tasks. Tasks on

the primary core are scheduled by the Cycle-Conserving

DVFS algorithm that has been proposed for Rate Monotonic

Scheduling (RMS) in [11]. While the spare core uses DPM

and dual-queue mechanism that tries to maximally delay the

backup tasks to save more energy. It should be noted that,

although RMS is optimal for fixed priority tasks, it lowers

core utilization.

C. A Conclusion of Related Work Overview

Generally, the previous works in the context of real-time

systems either present peak power minimization techniques

without considering reliability like [1] and [2] or consider

simultaneous management of energy and reliability without

considering peak power reduction like [16], [28], and [35]. In

this paper, we exploit a fault-tolerant technique (standby-

sparing technique) to achieve high reliability for real-time

embedded systems so that peak power consumption is kept

below the chip TDP constraint.

 MODELS AND ASSUMPTIONS

A. System and Task Model

We consider a multicore system with m cores and m/2 core

pairs C={{C1, SC1}, …, {Cm/2, SCm/2}} similar to Intel

SCC [34]. Also, we consider a set of periodic real-time tasks

ψ={T1,…, Tn}. Each task Ti has a period Pi and a worst-case

execution time eti under the maximum frequency. The jth job

of a task Ti (Jij) arrives at time rij=(j−1)×Pi and must complete

by its deadline j×Pi. Hence, the relative deadline Di of the job

Jij is equal to the period Pi. The utilization of the task Ti is

defined as eti/Pi. So, the sum of all tasks utilization is Utot. We

consider for each task Ti a backup task Bi. We denote the jth

job of Bi by BJij.

B. Power Consumption Model

Each core can operate in active and sleep modes. The core

executes tasks in the active mode and in this mode we

compute its power consumption based on Eq. 1. The total

power consumption of the system consists of static and

dynamic power components [3]. The static power (Ps) is

dominated by the leakage current. Dynamic power (Pd) is

mainly consumed due to system

activity [4][5][16][21][28][29]Error! Reference source not

found..

total s d
P P P  (1)

Under DVFS, the voltage Vi that is used for the execution

of the task Ti should be less than the maximum voltage Vmax.

Let Vmax be the maximum voltage corresponding to the maxi-

mum frequency fmax. We denote the normalized voltage ρi

as [16][19][21][28][29][35]Error! Reference source not

found.:

maxV

Vi
i 

(2)

Hence, the dynamic power consumption under the scaled

voltage Vi can be written as:
2()d i eff i iP V C V f (3)

where Ceff is the average switched capacitance, Vi and fi are

supply voltage and operational frequency that is used to

execute each task Ti. By considering the almost linear

relationship between voltage and frequency [35], we can

write: ρi=Vi/Vmax=fi/fmax. Therefore, Eq. 3 can be written as:
2 3

max max()d i eff iP T C V f  (4)

Since CeffVmax
2fmax is constant, the dynamic power

consumption can be normalized by removing CeffVmax
2fmax.

Therefore, the normalized power consumption of the core

while executing the task Ti can be written as [3][21]:
3()d i iNP T  (5)

C. Fault Model

We consider a transient fault model similar to [29][35]. The

average fault rate λ is dependent on the core frequency

whereby decreasing core frequency, λ increases exponentially.

The average fault rate on the frequency f can be expressed as:

min1
)1(

100)(
f

fd

f



 (6)

where λ0=10−7 is the transient fault rate at fmax and d

determines the sensitivity of the system to voltage scaling.

Like the works [29][35]Error! Reference source not found.,

we consider d=2 in this paper.

 OUR PROPOSED METHOD

A. Concept Overview and Our Novel Contributions

In this paper, we consider a standby-sparing system that

executes preemptive periodic real-time tasks. We propose the

Peak-Power-Aware Earliest-Deadline-First (PPA-EDF) policy

to schedule the main tasks on the primary cores with DVS and

DPM. For the spare cores, we propose Peak-Power-Aware

Earliest-Deadline-Late (PPA-EDL) policy. These policies

postpone the execution of the tasks as much as possible.

Peak-Power-Aware Scheduling: The idea of peak power-

aware scheduling is based on the power profile of the tasks. It

is a strategy for scheduling periodic tasks with both soft and

hard deadlines in real-time systems such that the chip TDP is

met. It is assumed that each task has the special power trace.

Then, we propose a peak-power-aware energy management

scheme that enables task replication to achieve high reliability

in multicore embedded systems under timing and TDP

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

4

constraints. To the best of our knowledge, the power

management techniques for fault-tolerant systems that have

been presented in the literature only try to reduce the average

power and do not consider peak power constraints. In this

paper, we propose a scheduling algorithm for periodic real-

time applications on multicore embedded systems when the

standby-sparing technique is used for fault tolerance. At first,

our proposed scheme generates tasks’ execution time and

extract tasks’ power trace through offline profiling. Then, our

proposed scheme uses the Peak-Power-Aware Earliest-

Deadline-First (PPA-EDF) policy for the main tasks and the

Peak-Power-Aware Earliest-Deadline-Late (PPA-EDL) policy

for their backup tasks. Finally, the tasks are spread over the

schedule such that the peak power consumption is kept below

the chip’s TDP. To achieve further power reduction, if during

the execution of the first copy of a task no fault has occurred,

the second copy of the task is not required, and then its

execution is canceled. We do not propose to execute the

backup, as we might not require this. Indeed, we only propose

to reserve a backup to execute it in case a fault occurs but

usually as no fault occurs we do not require executing the

backup. Also, it should be noted that in the offline phase we

guarantee both primary and backup tasks are scheduled and

will be executed at run-time. Therefore, the reliability of the

proposed method is preserved at an acceptable level known as

the reliability of the standby-sparing system.

B. Problem Definition and Schedulibility analysis

Dertouzos in [36] has demonstrated that EDF is optimal in

feasibility, i.e. if there exists a feasible schedule for a task

set ψ, then EDF may find it. However, EDF does not

guarantee meeting TDP, reliability requirement and deadlines

simultaneously. In the modern multicore hard real-time

systems, in addition to meeting all deadlines, the system

scheduling policy must satisfy the system reliability

requirement and meet the chip-level power

constraint [1][4][5][35]. In order to show the difference

between meeting the three mentioned constraints and meeting

deadlines without considering other constraints, we define our

problem. Therefore, we use the following notation to

represent energy and peak power consumption, voltage and

frequency level and task-to-core mapping. In this formulation,

n is the number of tasks, m is the number of cores, v is the

number of available V-f levels for each core, and s is the

number of time slots:

 The peak power consumption is represented by the matrix

Pϵℝn×m×v×s, in which each element Piklt denotes the power

consumption for the task i when the task is executed on

the core k at the time slot t under the V-f level l.

 The task-to-core mapping and V-f level assignments are

represented by the matrix Xϵ{0,1}n×m×v. The task i is

mapped to the core k and is executed under the V-f level l

if and only if Xikl = 1.

The goal of our method is to minimize the total energy

consumption while keeping the instantaneous power

consumption under chip-level power constraint (PTDP,Chip) and

meeting tasks timing constraints (deadlines). We formulate

the above problem in the following.

Optimization Goal: Minimize the total energy consumption

defined by the sum of the energy consumption of all tasks.

1

Minimize (,)
i n

total STANDBY SPARING i i

i

E E T B






 (7)

Chip Power Constraint: The instantaneous total power

consumption, i.e. the sum of the peak power of all underlying

cores at each time slot t must be less than the chip TDP

constraint. In the following equation, h is the least common

multiple (LCM) of all task periods.

, , , , ,

, ,

: i k l i k l TDP chip

i k l

t h X P P  
(8)

Tasks Timing Constraint: The worst-case execution time

eti/fkl for a task i on the core k and at the frequency level l

should not exceed the task timing constraint (defined by the

Di).

, ,
i

i k l i

kl

et
X D

f
 (9)

Core Assignment Constraint: Each task can be only mapped

to a core.

, ,: 1i k l

i k

l X   (10)

V-f Levels Assignment Constraint: Each task can be only

executed under a single V-f level on a core (the V-f level does

not change during the task execution).

, ,, : 1i k l

l

i k X  (11)

The order of slices of a task: In order to ensure that the order

of slices of a task is met, we check that the next part of each

task Ti(j+1) does not place before the previous parts of the

selected task.

(1)
, :

ij i jT Ti j t t


  (12)

Since solving the above problem and finding a schedule for a

multicore system to optimally minimize energy consumption

is an NP-hard problem [22][35]Error! Reference source not

found., we present a heuristic to provide a solution for peak

power reduction and energy minimization (see Section IV.C).

It should be noted that in this paper we assume that the system

must meet three constraints: i) the power constraint: Thermal

Design Power (TDP) constraint, ii) the system reliability

target, iii) timing constraints (Deadlines). Therefore, we

propose a peak- power-aware energy management scheme

that meets the mentioned constraints simultaneously. Such a

scheme requires more time overhead as compared to other

schemes that consider fewer constraints especially those

previous works that do not guarantee to satisfy the TDP

constraint like [16], [22], and [35]. Therefore, for meeting

TDP, timing and reliability constraints simultaneously, we

must consider more time overhead as compared to other

schemes.

C. Algorithm Discussion

In this section, we present the details of our scheme in two

phases: (i) Offline Phase (before we actually execute all jobs)

and (ii) Online Phase. The main tasks are executed on the

primary cores according to the PPA-EDF policy and based on

the amount of the static and dynamic slack time, we apply

DVFS and DPM. The spare cores are reserved for the

execution of backup tasks based on our PPA-EDL policy.

Also, when the idle time of each core is greater than the break

to sleep time (see Online Phase), DPM is applied.

Offline Phase: Algorithm 1 presents the offline task

mapping and scheduling part of our scheme (Design Time).

ANSARI et al.: PEAK-POWER-AWARE ENERGY MANAGEMENT FOR PERIODIC REAL-TIME APPLICATIONS

5

This algorithm calls two functions: (i) the peak-power-aware

earliest deadline first function (PPA_EDF(Jij, kij, t)), (ii) the

peak-power-aware earliest deadline late function

(PPA_EDL(BJij, kij, t)). The PPA_EDF function implements

the PPA_EDF policy to make a schedule on the primary

cores. The PPA_EDF function schedules a time slot of the

selected job on the schedule of its designated primary core.

The function uses the variable t to determine the first time slot

in which the current time slot of the selected job kij can be

placed. The PPA_EDF function iterates until the deadline of

job Jij is not violated and then checks free time slots of the

primary core one after another beginning from the released

time of a job Jij, and places the current part of the job on the

first free time slot such that the total peak power consumption

does not exceed the chip TDP constraint. On the other hand,

the PPA_EDL function implements the PPA_EDL policy to

make a schedule on the spare cores. Since the PPA_EDL

function starts from the end of the execution time for

scheduling the selected job, it places the current time slot of

the selected backup job on the schedule of its designated spare

core. The PPA_EDL function searches to find the best

position for the current time slot of the selected backup job

such that the total peak power consumption does not exceed

the chip TDP constraint. The PPA_EDL function schedules

the time slots of the backup beginning from the last part.

Also, until the released time of the selected job j is not

violated, the function does it.

Algorithm 1 gets the ready tasks with their execution time

and deadline, the set of free cores and the chip TDP constraint

PTDP,Chip. In line 1, the algorithm computes hyperperiod h

which is defined as the least common multiple (LCM) of all

task periods. The algorithm employs a power array including

h slots that each slot determines the power consumption of the

system at a time slot. Then, the algorithm initializes two

schedules S_ci and S_sci to Null for each core of C. In line 5

to 10, the algorithm iterates until all the tasks are assigned to a

core pair based on the lowest utilization first policy. To do

this, we assign tasks one after another to a core pair which has

the lowest utilization. In line 11, the variable t is initialized to

zero to show the time of the system schedule. The algorithm

partitions all the jobs in lines 12-15. The variables kij and bkij

are initialized to one value and etij to show the current time

slot of the main and backup jobs, respectively. In lines 18 to

39, the algorithm iterates until all parts of the main jobs and

the backup jobs are scheduled based on PPA-EDF and PPA-

EDL, respectively. In line 19, when a job of Ti (Jij) is released

at time t, the algorithm checks its designated primary core. If

the primary core is idle, it is scheduled immediately.

Otherwise, if the primary core ci is busy and the priority of Jij

is higher than the priority of Jmn which is executing on the

primary core, the algorithm schedules the current time slot of

the selected job on the place of it. Therefore, a job preempts a

primary core only if it has a higher priority than the currently

executing job according to the PPA-EDF policy (lines 21-23).

In this case, the current job is preempted. During preemption,

we update the variable kij to the remaining time required to

complete the job (Jmn). Otherwise, Jmn is executed on the

primary core (line 24). This scenario also happens on the

spare core with the difference that the PPA_EDL policy

schedules the parts of the backup jobs beginning from the last

part, i.e. the algorithm checks the free time slots one after

another starting from the bkij and places BJijk on the first free

time slot. Finally, if not all the jobs are scheduled, the

algorithm returns infeasible in line 41.

Online Phase: At runtime, when a job is released, if the

primary core is idle, the job is executed on the core. However,

Function PPA_EDF(Jij, kij, t)
1. foreach free slot l=t→ j×Pi in S_ci do

2. if PA[l]+ peak_power(kij) ≤ PTDP,Chip then

3. S_ci.add(l, Jijk);

4. PDA[l] = PDA[l]+ peak_power(kij);
5. kij=kij+1;

6. return kij;

7. end if;

8. end for;

END Function

Function PPA_EDL(BJij, bkij,, t)
1. foreach free slot l= j×Pi →t in S_sci do
2. if PA[l]+ peak_power(bkij) ≤ PTDP,Chip then

3. S_sci.add(l, BJijk);
4. PA[l] = PA[l]+ peak_power(bkij);

5. bkij=bkij -1;

6. return bkij;

7. end if;

8. end for;

END Function

Algorithm 1. Design Time: Task Mapping and Scheduling

INPUT: ready tasks  with the execution time and the deadline, set of free

cores C, and the chip-level power constraint PTDP,Chip.

OUTPUT: Task Mapping and Task Scheduling

BEGIN

1. h=LCM(the periods of all tasks); //Calculate hyperperiod

2. PA [1...h]={0}; //Initialize the total power consumption array

3. S_ci={Null, 1≤i≤m/2}; //Initialize the primary cores with an empty schedule

4. S_sci={Null, 1≤i≤ m/2}; //Initialize spare cores with an empty schedule

5. while ( is not empty) do

6. Ti=.remove(); //Select a task

7. Φ = C.minutilization; //Find a pair core with lowest utilization

8. Φ.C.add(Ti);

9. Φ.SC.add(Bi);

10. end while
11. t=0;

12. for all jobs do //Partition all the jobs into parts

13. Jijl = {Jijl, 1≤l≤eti};

14. BJijl={BJijl, 1≤l≤eti};
15. end for;

16. kij ={1, for all primary jobs};

17. bkij ={etij, for all backup jobs};

18. while (t≤h) do

19. //Event at time t: A job of Ti (Jij) is released at time t on a core pair
20. if the primary core ci is busy then

21. if priority(Jij) > priority(Jmn) then

22. kij=PPA_EDF(Jij, kij, t);

23. else

24. kij=PPA_EDF(Jmn, kij, t);

25. end if

26. else //The primary core ci is idle

27. kij=PPA_EDF(Jij, kij, t);
28. end if

29. if the spare core sci is busy then

30. if priority(BJij) > priority(BJmn) then

31. bkij=PPA_EDL(BJij, bkij, t);

32. else

33. bkij=PPA_EDL(BJmn, bkij, t);

34. end if

35. else //The primary core ci is idle

36. bkij=PPA_EDL(BJij, bkij, t);

37. end if

38. t= t+1;

39: end while

40: if not all the jobs are scheduled then

41: return infeasible;

42: end if;

END

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

6

if the core is running another job, the execution priorities are

assigned according to PPA_EDF. If preemption occurs, we

update the minimum additional time required to complete the

job in the worst-case (under the maximum frequency). Then,

we find slack time during t, i.e. the time that a job is executed

or resumed from preemption, and its deadline. It should be

noted that if there is no slack time, the job runs with the

maximum frequency on the primary. To find the minimum

frequency for a job execution, we use [35]:

max(,)
ij

ij ee

ij

et
f f

et slack




(13)

where fee is called the energy-efficient speed which is a

processing frequency that below it, the total energy

consumption of a task increases [3][5][35][29]. fee is

computed analytically in [15] and [17]. The function of our

DVFS technique is shown in Online Manager 1. It should be

noted that if postponing a task or DVFS is required, the task

execution parts are shifted over the schedule such that the

peak power consumption is kept bellow the chip TDP.

Therefore, we always check the peak power consumption kept

bellow the chip TDP. Also, when a job completes on each

core, we call an acceptance test [37] to check the correctness

of the task execution. If the acceptance test does not detect

any fault, we cancel the corresponding copy task in the

corresponding core. Then, the designated core continues with

executing the next job in the ready queue. On the other hand,

if the first copy of job is faulty, we can continue running the

corresponding core as scheduled. If there is no ready task

available for execution, the core will remain idle. The core

will start executing jobs again when the next job arrives. By

the use of the task period values, we can compute the earliest

release times among all future jobs in linear time. In order to

apply DPM on cores, let assume we have a break to sleep

time (Δcritical) [29]. When the idle time of a core is greater than

Δcritical, the core switches to sleep mode, and hence, all power

components other than the static power Ps are removed.

Therefore, if the idle time exceeds the break to sleep time

(Δcritical), the core is put into sleep mode until next release.

Finally, if there is ready task available for execution, the core

will execute the task. The function of our DPM technique and

task dropping method is shown in Online Manager 2. As the

final discussion of this subsection, we explain the time

required to meet the TDP, timing and reliability constraints

simultaneously. Since we shift some tasks to the next time

slots to reduce peak power, we need more time slots for

meeting the deadline. In order to shift tasks to the next time

slots for execution, we should find the exact execution time

because tasks should not miss their deadlines. It should be

noted that in this paper, we have focused on meeting TDP,

timing and reliability constraints simultaneously. Therefore,

our proposed scheme incurs more time overhead as compared

to other schemes that consider fewer constraints, e.g. the

references [29], [35], and [38]. Therefore, for meeting TDP,

timing and reliability constraints simultaneously, we must

consider more time slots.

D. Complexity Analysis

In our problem formulation, n is the number of tasks, m is the

number of free cores, h is the total time slots, and l is the

number of V-f levels. In Algorithm 1, the ready tasks and free

cores are sorted in O(n log (n)) and O(m log (m)),

respectively. In the rest of the algorithm, the main

computation is performed to examine all V-f level scalings

and scheduling parts (h parts) for all ready tasks and then

putting them into a max-heap. Therefore, for n ready tasks

and l V-f levels, building the max-heap is performed in

Fig. 2. Offline scheduling the tasks of the illustrative example, (a) Scheduling

the tasks based on the PPA-EDF and PPA-EDL policies without DVFS, (b)
Applying DVFS.

J11 J12 J13 J14 J15J22J21

P
r
im

a
ry

C
o

re

S
p

a
re

C
o

re

T
o

ta
l

P
o

w
e
r

0 20 40 60 80 100

TDP = 700 mW

J11 J12 J13 J14 J15J22J21

P
r
im

a
ry

C
o

re

S
p

a
re

C
o

re

T
o

ta
l

P
o

w
e
r

0 20 40 60 80 100

TDP = 700 mW

Time (ms)

(b)

Time (ms)

(a)

Fig. 3. Taking advantage of fault-free execution and shifting the remaining

tasks, (a) Executing and shifting the backup job (bj21) due to the faulty
execution of the main job, (b) The other faulty condition in executing the tasks

of the example.

J11 J12 J13 J14 J15J22J21

P
r
im

a
ry

C
o

re

S
p

a
re

C
o

re

T
o

ta
l

P
o

w
e
r

0 20 40 60 80 100

TDP = 700 mW

J11 J12 J13 J14 J15J22J21

TDP = 700 mW

P
r
im

a
ry

C
o

re

S
p

a
re

C
o

re

T
o

ta
l

P
o

w
e
r

0 20 40 60 80 100

Time (ms)

(b)

Time (ms)

(a)

Online Manager 1: DVFS Function

1. Function DVFS(Jij);

2. slack ← Extract_Slack(t, deadline(Jij));

3. fij← max(fee,
𝑒𝑡𝑖𝑗

𝑒𝑡𝑖𝑗+𝑠𝑙𝑎𝑐𝑘
);

4. Execute Jij at frequency fij;
5. End Function

Online Manager 2: Acceptance Test Function

1. Event – A job completes at time t:

2. Run the acceptance test; //A low-cost hardware checker, Argus [37]

3. If no error is detected then

4. Cancel the corresponding copy of the job;

5. end if

6. If ready queue of the core is empty then

7. Δer ← time to earliest release time;

8. If Δer ˃ Δcritical then

9. Put core to sleep mode for Δer units of time;
10. end If

11. else /* jobs are available for execution */

12. Execute a job;

13. end If

ANSARI et al.: PEAK-POWER-AWARE ENERGY MANAGEMENT FOR PERIODIC REAL-TIME APPLICATIONS

7

O(n×h×l). The first while loop iterates for O(n×m) times.

The For loop iterates for O(n×h) times. The main while loop

iterates for O(n×m×h) times. Finally, the algorithm removes

the V-f level scalings from the heap one after another and

checks whether the TDP constraint is met. This step is also

done in O(m×n×l). Therefore, the order of the algorithm is

max{O(m log (m)), O(n log (n)), O(m×n×l), O(n×m×h)}. For

the final discussion of the complexity, it should be noted that

the parameter h is defined as the least common multiple

(LCM) of all task periods. Therefore, there is no reason that h

increases exponentially as the input size increases. Even if h

was exponentially proportional to task periods, this could

cause problems for large task periods. However, in practical

real-time embedded systems, the task period does not usually

get that large even though we may have many tasks in the

schedule. It is also noteworthy that when determining

hyperperiod it is common to slightly increase basic periods to

avoid large hyperperiods [2][5][35].

E. Illustrative Example

As an example let us consider two periodic task T1 and T2

with the period Pi: P1=20ms and P2 =50ms. We consider a

dual-core chip with 700mW of TDP where the cores (C1 and

C2) constitute a core pair. In this example, we consider an

architecture model which is based on ARM’s Big.LITTLE

architecture [30] to show that due to the heterogeneity

different applications have different values (the worst-case

execution time, peak power, and etc.) when running on the

different types of cores. Since heterogeneous multicore

embedded systems have at least two types of cores (low-

power type and high-performance type), we can use the high-

performance type as the primary core and the low-power type

as the spare core. Therefore, the worst-case execution time eti

is different between the primary core and the spare core. The

worst-case execution time of the tasks on the primary core is:

et1=8ms and et2=20ms; and the worst-case execution time of

the tasks on the spare core are: et1=7ms and et2 =15ms. For

this task set, the hyperperiod is h=100ms which is the least

common multiple of all the task periods. Therefore, within a

hyperperiod, 5 jobs of T1 and 2 jobs of T2 are executed. By the

use of the tasks power traces, the peak power values for the

parts of the tasks are determined. In this example, the

different parts of each task have different peak power values.

Fig. 2 shows how this task set is scheduled and executed by

our scheme. On the primary core, the tasks are scheduled by

the use of the preemptive Peak-Power-Aware Earliest-

Deadline-First (PPA-EDF) scheduling (Fig. 2a). Note that if

the main and backup tasks are scheduled in the same way on

the primary and spare cores (e.g. both are scheduled with

EDF), the energy consumption will significantly increase.

This is because main tasks are executed with their backups in

parallel. The energy overhead can be reduced by delaying the

execution of backup tasks on the spare core [16]. However,

the deadlines of the backup tasks have to be guaranteed. To

address this issue, for the spare core (Fig. 2a), we exploit the

preemptive Peak-Power-Aware Earliest-Deadline-Late (PPA-

EDL) scheduling while the total power consumption is kept

below the TDP constraint. In Fig. 2b, we exploit the DVFS

technique to reduce both the peak power and energy

consumption. For example, the jobs J12, J13, and J15 in the

primary core are executed using DFVS to reduce peak power

and to save energy. On the spare core, the backup tasks are

executed at maximum voltage/frequency (see Fig. 2b). Fig. 3

shows two faulty scenarios, where some tasks are faulty and

some other tasks are executed successfully. We observe that

the backup tasks can be avoided entirely in many scenarios.

For instance, when J11 is executed successfully, the

corresponding backup task is canceled in the time slot

[13ms, 20ms] on the spare core and excessive power and

energy consumption is avoided. Also, when the backup tasks

are canceled on the spare core, we shift some other tasks to

the next time slots to further reduce peak power and energy.

In order to shift jobs to the next time slots for execution, we

should find the exact promotion time since tasks should not

miss their deadlines and the chip TDP. The first step in

finding the exact promotion time is computing the worst-case

response time of each task. There are multiple techniques to

compute the worst-case response time of the tasks, e.g. [29].

For instance, when J21 is faulty, the corresponding backup job

should be executed on the spare core. Since the backup job of

the main job J12 is dropped in the time slot [30ms, 38ms], the

two part of the backup job of J21 is shifted in the time slot

[36ms, 38ms]. Therefore, by the use of the PPA-EDL

scheduling further power reduction and energy saving can be

gained.

 RESULTS AND DISCUSSION

In this section, we evaluate the effectiveness of our

proposed scheme via simulation with various task sets

including real-life embedded applications of MiBench

Table 1. Characteristics of the benchmark applications

 BITCOUNT SUSAN MATH CRC32 SHA QSORT JPEG FFT DIJKSTRA LAME GSM

Execution time (ms) 388 238 2198 4158 80 414 98 1924 182 8990 1412

Energy consumption (mJ) 138.45 88.12 773.82 1283.97 29.05 146.35 36.62 676.72 60.80 3158.55 482.96

Min. Power (mW) 308.63 307.05 299.76 294.84 304.34 308.67 306.93 307.38 308.77 307.07 351.7

Max. Power (mW) 391.77 387.76 362.17 315.2 424.88 363.94 482.37 368.01 350.02 357.8 307.1

Fig. 4. Our tool flow for power, energy and feasibility analysis

Applications

Input Set

Binary

gem5 Simulator

Microarchitecture

McPAT

Data from gem5

Technological parameters

Available

Voltages and

frequencies

System Configuration

 The Peak-Power-Aware Reliability Management Simulator

Fault

Generation

and Injection

Inputs

TDP

Set of cores

Set of tasks

Schedulability Test

Peak Power and

Energy consumption

Analysis

Fault Injection Scenarios

The Worst-Case Scenario

The Actual-Case scenario

The Best-Case Scenario

Power Traces

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

8

Benchmark suite [31] running on a target multicore chip. Our

evaluation consists of the comparison between our scheme

and four state-of-the-art schemes. We compared our scheme

with the ASSPT [35], CSSPT [35], RAPM [38] and

SSFP [29] algorithms:
 ASSPT and CSSPT [35]: These techniques are proposed to

manage energy consumption in conjunction with fault-
tolerance. ASSPT and CSSPT execute original tasks as
soon as possible through EDF and backup tasks as late as
possible through EDL. ASSPT allows a job to utilize the
entire available slack and slow down as much as possible
while CSSPT tries to achieve a balanced slack distribution
among all jobs.

 RAPM [38]: This technique is proposed in [38]. For the
fair comparison, we assumed that RAPM uses one backup
task for each task to achieve fault tolerance. This technique
proposed both individual-recovery and shared-recovery
based reliability-aware power management heuristics.

 SSFP [29]: This technique has proposed an energy man-
agement technique for a standby-sparing system that exe-
cutes preemptive fixed-priority real-time tasks.

In order to evaluate our scheme, we constructed a system-

level simulator. In our simulations, for each data point, we

generated 1000 task sets and the average results are reported.

Each task set consists of 10 tasks. The task sets are selected

randomly from Table. 1. To generate Table. 1, we use gem5

full-system simulator [32] and McPAT [33]. Since ARM

processors are widely used in many embedded systems, we

consider an ARM processor. Therefore, a detailed model of

ARM processors provided by gem5 is used in this paper. This

ARM core has an area of 9.74mm2 with 32KB L1 cache and a

shared 1MB L2 cache. Fig. 4 shows our tool flow and

simulation setup with fault generation and injection,

scheduling simulation, and power/energy evaluation. We

considered that the system supports DVFS and can work at

five different voltage and frequency levels be-tween

[0.85Volt, 1GHz] and [1.1Volt, 2GHz]. Also, we evaluate the

actual-case execution scenario where both faulty and fault-

free execution scenarios were considered. To generate fault

rate and pattern, in our experiments, transient faults were

generated using a Poisson process where the fault rate λ

corresponding to different voltage levels was modeled using

Eq. 6 under the parameters λ0=10-6 faults/us and d=2 [3].

Therefore, the fault rate varies between 10-6 faults/us and 10-2

faults/us corresponding to fmax and fmin, respectively. To do

this, we exploited a system-level fault injection. At first, we

generate a fault vector that determines at which times faults

occur. Then, based on the fault vector, we decide which task

becomes faulty during the execution of a task set.

Fig. 5 shows the power profile of our scheme and

CSSPT [35] for a different number of cores (M=4, 8 and 12)

and core workload (Uper_core=0.75). As Fig. 5 shows, our

scheme reduce peak power through distributing power

consumption over the whole execution hyperperiod. In this

figure, CSSPT misses the TDP constraint. Then, we evaluated

the ratio of peak power reduction and energy saving of our

scheme versus RAPM, ASSPT, CSSPT, and SSFP across

different system parameters including the total utilization

(Utot). We evaluated the impact of the total utilization varies

from 0.8 to 8. Fig. 6 and Fig. 7 show the results for the cases

when tasks worst-case execution times are generated based on

Table. 1 and the number of cores is equal to 8. What can be

inferred from these figures is that our scheme completely

outperforms the other four schemes for all utilization values.

This is achieved through reducing the overlap of the execution

of main tasks on the primary core and their corresponding

backup tasks on the spare core. Therefore, by further

postponing the backup tasks at runtime, in many cases we can

cancel the backup tasks on the spare core. Each case of Fig. 6

was simulated for 1000 times with different parameters of the

Fig. 6. Peak power reduction in different system utilizations.

Fig. 7. Energy saving in different system utilizations.

0

10

20

30

40

50

60

0 . 8 1 . 6 2 . 4 3 . 2 4 4 . 8 5 . 6 6 . 4 7 . 2

P
ea

k
 P

o
w

er
 R

ed
u

ct
io

n
(%

)

Total Utilization

vs. RAPM vs. ASSPT vs. CSSPT vs. SSFP a

0

5

10

15

20

25

30

35

0 . 8 1 . 6 2 . 4 3 . 2 4 4 . 8 5 . 6 6 . 4 7 . 2 8

E
n

er
g
y
 S

av
in

g
 (

%
)

Total Utilization

vs. RAPM vs. ASSPT vs. CSSPT vs.SSFP a

 (a) # cores=4

 (b) # cores=8

 (c) # cores=12

Fig. 5. Power consumption profile for a periodic task set in the actual-case execution scenario.

ANSARI et al.: PEAK-POWER-AWARE ENERGY MANAGEMENT FOR PERIODIC REAL-TIME APPLICATIONS

9

applications and the average results are reported. This figure

shows that our scheme provides up to 47.6% (on average by

28.2%) peak power reduction compared to four state-of-the-art

techniques. From Fig. 6 it can be concluded that in all

utilization points, the peak power reduction of our scheme is

higher than other schemes. When the utilization point is

between Utot=3.2 to Utot=6.4, the peak power reduction of our

scheme is better than when it is Utot=5.6 or Utot=7.2. This is

because the probability of TDP violation in the higher

utilization points in all techniques is high and the amount of

the slack times in the lower utilization points for peak power

reduction is high. Also, in Fig. 7, for all utilization values our

scheme can save more energy, compare to RAPM. The main

reason is that RAPM is forced to run at high frequency and

consequently consuming too much energy; on the whole, by

increasing the utilization, the energy saving decreases (Fig. 7).

Since, when utilization is low, more slack time can be

achieved, this further slack time helps us to save more energy

through DVFS and DPM. Experiments show that our scheme

provides up to 32.1% (on average by 16.3%) energy savings

compared to four state-of-the-art techniques. Also, it can be

seen from Fig. 7 that when the utilization of the cores

increases, the energy saving decreases. This is because the

amount of static and dynamic slack times decreases, and

hence we cannot achieve significant energy savings.

However, the energy consumption of our scheme is always

less than the other schemes. Also, it should be noted that the

schedulability of the results shown in the figures 6 and 7 is

100%. Indeed, all the results in these figures meet all their

deadlines. Moreover, our scheme always meets TDP

constraint but other schemes violate TDP in some cases. As

the final discussion, we discuss the feasibility of the proposed

method. To demonstrate this, we generated 1000 task sets

from the tasks shown in Table. 1 and repeated the simulations

for several utilization values (Uper-core= 0.4, 0.5, 0.6, 0.7, and

0.8). Since the proposed approach never violates TDP, we

show the frequency of power budget violations during

execution. Fig. 8 shows the frequency of meeting TDP for our

proposed scheme and other schemes. It can be seen from Fig.

8 that the proposed approach never violates TDP while the

state-of-the-art schemes violate it because the state-of-the-art

schemes do not consider it. Then, we verified the

schedulability of the proposed method and other schemes for

each generated task set. Then we obtain the percentage of

meeting the deadlines and the TDP constraint simultaneously.

The results show that our scheme meets the timing and TDP

constraints on average by 78% while the other schemes meet

the mentioned constraints on average by 63%. Therefore, our

proposed method is more suitable and efficient than other

schemes for meeting the timing and TDP constraints

simultaneously.

 CONCLUSIONS

In this paper, we have considered two main objectives in

designing real-time embedded systems, denoted as reliability

and power consumption. To achieve these objectives, we

proposed a scheduling scheme for standby-sparing systems that

executes periodic real-time tasks. We have proposed the PPA-

EDF and PPA-EDL policies on the primary and spare cores,

respectively. The proposed scheme postpones the execution of

tasks on spare cores. Since faults are a naturally rare event and

also tasks often consume less than their worst-case execution

time, tasks commonly complete early or successfully. Another

feature of our scheme is that it provides a good opportunity to

cancel the second copy of a task when the first copy of the task

completes early or successfully; resulting in a reduced power

consumption. We compared our scheme with the RAPM, SSFP,

ASSPT and CSSPT schemes. Simulation results show that our

scheme provides up to 47.6% peak power reduction compared

to the other schemes.

REFERENCES

[1] W. Munawar, H. Khdr, S. Pagani, M. Shafique, J.-J. Chen, and J. Hen-

kel, “Peak Power Management for Scheduling Real-time Tasks on Het-
erogeneous Many-Core Systems,” in 20th IEEE Intern. Conf. on Par.

and Dist. Sys. (ICPADS), Hsinchu, Taiwan, December 2014.

[2] J. Lee, B. Yun and K. G. Shin, “Reducing Peak Power Consumption in
Multi-Core Systems without Violating Real-Time Constraints,” IEEE

Trans. on Par. and Dis. Sys., vol. 25, no. 4, pp. 1024-1033, April 2014.

[3] M. Salehi, A. Ejlali, and B.M. Al-Hashimi, “Two-Phase Low-Energy

N-Modular Redundancy for Hard Real-Time Multi-Core Systems,”

IEEE Trans. on Par. and Dis. Sys. (TPDS), vol. 25, no. 4, pp. 1024-

1033, April 2015.

[4] S. Pagani, H. Khdr, J. J. Chen, M. Shafique, M. Li and J. Henkel,

“Thermal Safe Power (TSP): Efficient Power Budgeting for Heteroge-

neous Manycore Systems in Dark Silicon,” IEEE Trans. on Comp., vol.
66, no. 1, pp. 147-162, 2017.

[5] M. A. Haque, H. Aydin and D. Zhu, “On Reliability Management of

Energy-Aware Real-Time Systems Through Task Replication,” IEEE

Trans. on Par. and Dis. Sys., vol. 28, no. 3, pp. 813-825, 2017.

[6] S. Pagani, H. Khdr, W. Munawar, J. J. Chen, M. Shafique, M. Li, and J.
Henkel “TSP: Thermal Safe Power - Efficient Power Budgeting for

Many-Core Systems in Dark Silicon,” in IEEE/ACM Intern. Conf. on
Hard./Soft. Codesign and Sys. Syn., New Delhi, India, Oct. 2014.

[7] M. Al Faruque, J. Jahn, T. Ebi and J. Henkel, “Runtime Thermal Man-

agement Using Software Agents for Multi- and Many-Core Architec-
tures,” IEEE Design & Test, vol. 27, no. 6, pp. 58-68, 2010.

[8] D. Pradhan, Fault-tolerant computer system design. Upper Saddle Riv-

er, N.J.: Prentice Hall PTR, 1996.

[9] X. Castillo, S.R. McConnel, and D. P. Siewiorek, “Derivation and cali-

bration of a transient error reliability model,” IEEE Trans. on Comp.,
vol. 31, pp. 658-671, July 1982.

[10] R. K. lyer, D.J. Rossetti, and M. C. Hsueh, “Measurement and model-

ing of computer reliability as affected by system activity,” ACM Trans.

Comput. Syst., vol. 4, pp. 214-237, August 1986.

[11] P. Pillai and K. Shin, “Real-Time Dynamic Voltage Scaling for Low-
Power Embedded Operating Systems,” ACM SIGOPS Operating Sys-

tems Review, vol. 35, no. 5, p. 89, 2001.

[12] J.-J. Chen, S. Wang, and L. Thiele, “Proactive Speed Scheduling for

Real-Time Tasks under Thermal Constraints,” Proc. IEEE Real-Time
and Embedded Tech. and App. Symp. (RTAS), pp. 141-150, 2009.

Fig. 8. The frequency of meeting power constraint.

0

20

40

60

80

100

0 . 8 1 . 6 2 . 4 3 . 2 4 4 . 8 5 . 6 6 . 4 7 . 2

M
ee

ti
n

g
 T

D
P

 (
%

)

Total Utilization

RAPM ASSPT CSSPT Our Scheme

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

10

[13] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele, “Thermal-Aware Global

Real-Time Scheduling on Multicore Systems,” Proc. 15th IEEE Real-
Time Tech. and App. Sym. (RTAS), pp. 131- 140, 2009.

[14] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,

and K. Flautner, “Razor: circuit-level correction of timing errors for

low- power operation,” Micro IEEE, vol. 6, pp. 10–20, 2004.

[15] D. Zhu, R. Melhem, and Mosse, “The effects of energy management on
reliability in real-time embedded systems,” in Proceedings of Int’l Conf.

Computer Aided Design, pp. 35–40, 2004.

[16] A. Ejlali, B.M. Al-Hashimi, and P. Eles, “A Standby-Sparing Technique

with Low Energy-Overhead for Fault-Tolerant Hard Real-
Time System,” in Proc. International Conference on Hardware-

Software Codesign and System Synthesis (CODES+ISSS 2009), pp.

193-202, Grenoble, France, October 2009.

[17] R. Jejurikar, C. Pereira and R. Gupta, “Leakage aware dynamic voltage
scaling for real-time embedded systems,” Design Automation Confer-

ence, 2004. Proceedings. 41st, pp. 275-280, 2004

[18] B. Lee, J. Kim, Y. Jeung, J. Chong, “Peak power reduction methodolo-

gy for multi-core systems,” International SoC Design Conference

(ISOCC), 2010, pp.233-235, 22-23 Nov. 2010.

[19] S. Aminzadeh, and A. Ejlali, “A Comparative Study of System-Level

Energy-Management Methods for Fault-Tolerant Hard Real-Time

Systems,” IEEE Trans. on Comp., vol. 60, no. 9, pp. 1288-1299, 2011.

[20] T.D. Burd, T.A. Pering, and A.J. Stratakos, “A dynamic voltage scaled
microcore system,” IEEE J. Solid-State Circuits (JSSC), vol. 35, no. 11,

pp. 1571-1580, 2000.

[21] M. Salehi, and A. Ejlali, “A Hardware Platform for Evaluating Low-
Energy Multicore Embedded Systems Based on COTS Devices,” IEEE

Trans. on Industrial Electronics, vol. 62, no. 2, pp. 1262-1269, 2015.

[22] A. Ejlali, B.M. Al-Hashimi, and P. Eles, “Low-Energy Standby-Sparing

for Hard Real-Time Systems,” IEEE Trans. on Computer Aided Design
of Integrated Circuits and Systems, vol. 31, no. 3, pp. 329-342, 2012.

[23] T. Ebi, D. Kramer, W. Karl and J. Henkel, “Economic learning for

thermal-aware power budgeting in many-core architectures,” Proceed-

ings of the Ninth IEEE/ACM/IFIP Intern. Con. on Hardware/Software
Codesign and Sys. Syn. (CODES+ISSS), Taipei, 2011, pp. 189-196.

[24] I. Koren, and C.M. Krishna, Fault-Tolerant Systems, Morgan Kaufman,

2007.

[25] P. Pop, V. Izosimov, P. Eles, and Z. Peng “Design optimization of

time-and cost-constrained fault-tolerant embedded systems with
checkpointing and replication,” IEEE Trans. on Very Large Scale

Integration (VLSI) Systems, vol. 17, no. 3, pp. 389-402, 2009.

[26] R. Melhem, D. Mosse, and E. Elnozahy, “The Interplay of Power

Management and Fault Recovery in Real-Time Systems,” IEEE Trans.
on computers, vol. 53, pp. 217-231, 2004.

[27] B. Zhao, H. Aydin, and D. Zhu, “Enhanced reliability-aware power

management through shared recovery technique,” in Proc. int’l conf. on

Computer Aided Design (ICCAD), 2009.

[28] M. Khavari Tavana, M. Salehi, and A. Ejlali, “Feedback-Based Energy
Management in a Standby-Sparing Scheme for Hard Real-Time

Systems,” in Proc. of the 32nd IEEE Real-Time Sys. Sym., 2011.

[29] M.A. Haque, H. Aydin, and D. Zhu, “Energy Management of Standby-

Sparing Systems for Fixed-Priority Real-Time Workloads,” Green
Computing Conf. (IGCC), Arlington, June 2013.

[30] P. Greenhalgh, “Big.LITTLE processing with ARM Cortex-A15 &

Cortex-A7,” ARM Limited, White Paper, September 2011.

[31] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and

R.B. Brown, “MiBench: A Free, Commercially Representative Embed-
ded Benchmark Suite,” Proc. Fourth IEEE Ann. Workshop on Work-

load Characterization, pp. 3-14, 2001.

[32] N. Binkert, et. al, “The gem5 simulator,” ACM SIGARCH Computer

Architecture News,vol. 39, no. 2, pp. 1–7, May 2011.

[33] S. Li, et. al, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, pp.

469–480, 2009.

[34] Intel Corporation, “Single-chip cloud computer (SCC),” 2009. [Online].

Available: http://www.intel.com/content/www/us/en/research/intel-labs-
single-chip-cloud-overview-paper.html

[35] M.A. Haque, H. Aydin, and D. Zhu, “Energy-Aware Standby-Sparing

Technique for Periodic Real-Time Applications,” Proc. IEEE 29th Int‘l

Conf. Comput. Design (ICCD'11), pp. 190-197, Oct. 2011.

[36] M. L. Dertouzos. “Control robotics: the procedural control of physical
processes,” Information Processing, 74, 1974.

[37] A. Meixner, M. E. Bauer and D. Sorin, “Argus: Low-Cost, Comprehen-

sive Error Detection in Simple Cores,” 40th Annual IEEE/ACM Intern.

Symp. on Microarchitecture (MICRO), Chicago, IL, pp. 210-222, 2007.

[38] Y. Guo, D. Zhu, and H. Aydin, “Reliability-Aware Power Management
for Parallel Real-Time Applications with Precedence Constraints,” in

Proc. Int’l Green Computing Conf. and Work. (IGCC), pp.1-8, 2011.

[39] M. Ansari, S. Safari, A. Yeganeh-Khaksar, M. Salehi and A. Ejlali,
“Peak Power Management to Meet Thermal Design Power in Fault-
Tolerant Embedded Systems,” in IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 1, pp. 161-173, 1 Jan. 2019.

[40] T. Ebi, M. A. A. Faruque and J. Henkel, “TAPE: Thermal-aware agent-

based power econom multi/many-core architectures,” IEEE/ACM Inter-
national Conference on Computer-Aided Design - Digest of Technical

Papers, pp. 302-309, San Jose, CA, 2009.

[41] K. Chen, J. Chen, F. Kriebel, S. Rehman, M. Shafique and J. Henkel,

“Task Mapping for Redundant Multithreading in Multi-Cores with Re-
liability and Performance Heterogeneity,” in IEEE Transactions on

Computers, vol. 65, no. 11, pp. 3441-3455, 1 Nov. 2016.

[42] M. Shafique, D. Gnad, S. Garg and J. Henkel, “Variability-aware dark

silicon management in on-chip many-core systems,” Design, Auto. &
Test in Europe Conf. & Exh. (DATE), Grenoble, pp. 387-392, 2015.

[43] A. K. Singh, M. Shafique, A. Kumar and J. Henkel, “Resource and

Throughput Aware Execution Trace Analysis for Efficient Run-Time

Mapping on MPSoCs,” in IEEE Trans. on Comp.-Aid. Design of Inte-
grated Circ. and Sys., vol. 35, no. 1, pp. 72-85, Jan. 2016.

Mohsen Ansari received the M.Sc. degree in computer

engineering from Sharif University of Technology,

Tehran, Iran, in 2016. He is currently working toward the

PhD degree in computer engineering at Sharif University,

Tehran, Iran, from 2016 until now. He is now the member
of Embedded Systems Research Laboratory (ESR-LAB)

at the department of computer engineering, Sharif

University of Technology. His research interests include
low-power design of embedded systems, peak power

management in embedded systems, and multi-/many-core systems with a

focus on dependability/reliability.
Amir Yeganeh-Khaksar is currently a M.Sc. student in

the Department of Computer Engineering at Sharif

University of Technology, Tehran, Iran. He received the
B.Sc. degree in computer engineering from Ferdowsi

University of Mashhad. His research interest lies in

computer architecture, especially in Low Power Design
and Embedded Systems.

Sepideh Safari received the M.Sc. degree in computer

engineering from Sharif University of Technology,

Tehran, Iran, in 2016. She is currently working toward

the PhD degree in computer engineering at Sharif
University of Technology. Her research interests include

low-power design of cyber-physical systems, energy

management in fault-tolerant embedded systems, and
multi-/many-core systems with a focus on

dependability/reliability.

Alireza Ejlali received the PhD degree in computer
engineering from Sharif University of Technology in,

Tehran, Iran, in 2006. He is currently an associate

professor of computer engineering at Sharif University of
Technology. In 2006, he joined Sharif University of

Technology as a faculty member in the department of

computer engineering and from 2011 to 2015 he was the
director of Computer Architecture Group in this

department. His research interests include low power

design, real-time embedded systems, and fault-tolerant embedded systems.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Izosimov,%20V..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Eles,%20P..QT.&newsearch=true
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-overview-paper.html
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-overview-paper.html

