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Abstract— Two main objectives in designing real-time embedded 
systems are high reliability and low power consumption. Hardware 
replication (e.g. standby-sparing) can provide high reliability while 
keeping the power consumption under control. In this paper, we 
consider a standby-sparing system where the main tasks on pri-
mary cores are scheduled by our proposed PPA-EDF policy while 
the backup tasks on spare cores are scheduled by our proposed 
PPA-EDL policy to meet the chip TDP constraint. These policies 
provide the best opportunity to shift the task executions as much 
as possible to minimize execution overlaps between main and 
backup tasks that consume high power consumption. Since TDP is 
the maximum amount of power generated by a chip that the cool-
ing component is designed to dissipate under any workload, the 
total power consumption should not be higher than the TDP con-
straint. When a task finishes successfully a larger portion of its 
corresponding copy task can be canceled, resulting in a significant 
amount of peak/average power reduction. To achieve further 
peak/average power reduction, we use Dynamic Voltage and Fre-
quency Scaling (DVFS) and Dynamic Power Management (DPM). 
The main reason of using DPM is that, once the first copy of each 
task has finished successfully, its corresponding copy task is ter-
minated, and if there is no more task for execution, the core goes 
to a low-power mode. We evaluated our scheme under various 
system configurations. Experiments show that our scheme pro-
vides up to 47.6% (on average by 28.2%) peak power reduction 
compared to four state-of-the-art techniques. 

Index Terms – Peak Power Consumption, Real-time 

Embedded Systems, Thermal Design Power, Scheduling. 

 INTRODUCTION  

echnology scaling continues to allow more transistors to 

be integrated onto a multicore chip while power 

consumption increasingly constraints the design of multicore 

embedded systems [1][2][3][4][5][43]. As well, the scaling of 

feature size raises the susceptibility of systems to transient 

faults [3][8][9][10][11][12][13][41]. Task replication is a 

well-established technique to achieve high reliability against 

transient faults. Despite the huge potential for task replication, 

due to the Thermal Design Power (TDP) constraint, 

embedded systems designers face a challenge in using 

multicore platforms [1][2][4][6][7]Error! Reference source 

not found.. TDP is considered as the highest sustainable 

power that a chip can dissipate before being forced to exploit 

a performance throttling mechanisms, e.g. Dynamic Thermal 

Management [1]. The heat-sink and cooling units for a chip 

are designed based on the chip TDP characteristics. If the 

peak power consumption of a chip violates its TDP, it 

automatically restarts or significantly reduces its performance 

to prevent a permanent damage. Therefore, in the embedded 

systems, power consumption is an important design 

concern [1][2]. Since the continuous power density 

increments along with technology scaling, increasing power 

densities have led to violating the chip TDP and making the 

thermal problems [40]. Generally, low power consumption 

and high reliability are the most important metrics in hard 

real-time embedded systems [12][13][14][15][16][23]. To 

achieve the high reliability, most of the studies had used fault-

tolerance techniques. Associated redundancy brings a number 

of penalties: increase in weight, size, cost and power 

consumption. Consequently, in multicore embedded systems, 

increased power densities have introduced the so-called Dark-

Silicon problem [1][42]. As a result of this problem, a 

significant percentage of the cores in a multicore system 

cannot be concurrently active [4]. Increasing the integration 

degree along with using fault-tolerance techniques can 

increase the power consumption and raise the peak power 

which can lead to violating the TDP constraint. In order to 

contrast with the TDP constraint, some solutions like heat-

sink and chip’s cooling are proposed. However, due to their 

negative effects on the system reliability, these solutions are 

not used in real-time embedded systems. Therefore, peak 

power management (or minimization) is an efficient way to 

meet the TDP constraint which prevents the system from 

producing high heat and temperature. Using TDP to define the 

power constraint of a system can be very pessimistic. 

However, one main reason to the widespread use of TDP, 

despite the fact that it is pessimistic, is that it is easy to check 

and easy to be handled in thermal management. 

In multicore embedded systems, reliability is one of the 

main design objectives that is subjected to different types of 

faults [3][16][19][35][29]. The examples of these systems are 

medical care devices, avionics systems, control of chemical 

reactions, and surveillance systems [28]. Transient faults are 

often induced by electromagnetic interference and cosmic ray 

radiations and will disappear after a short time 

interval [11][20][21]. Restoring the system state and repeating 

the computation are a common approach to deal with the 

transient faults [20]. Multicore systems have an inherent 

redundancy which provides opportunities to implement 

various redundancy-based fault-tolerant techniques. The other 

reason that affects the system reliability is a violation of the 

chip TDP. When TDP is violated (due to increase peak 

power), some cores may become reset (inactive) and as a 

result, the system reliability will be reduced. Thus, the 

occurrence of peak power must be reduced in fault-tolerant 
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embedded systems. The purpose of this paper is to reduce 

energy consumption while keeping the peak power 

consumption below the chip TDP at design time in fault-

tolerant real-time embedded systems without violating any 

timing constraints. To achieve the mentioned purpose, we rely 

on scheduling tasks based on power profiles.  

Motivational Example: Let us consider a 4-core chip with 

2W of TDP that executes four tasks T1, T2, T3 and T4. We 

assume that the tasks arrive at time t=0 and have a period 

P1=50ms, P2=100ms, P3=100ms and P4=50ms. Therefore, the 

hyperperiod of the tasks is equal to h=100ms. Also, let us 

assume that the execution time of T1, T2, T3 and T4 are 10ms, 

50ms, 40ms and 20ms, respectively. We also assume that 

each task consumes 0.6W of power throughout its execution 

and after finishing the task, the underlying core goes into 

sleep mode and consumes no power. Here, for ease of 

presentation, we temporarily assume that the tasks’ peak 

power is equal to the task’s average power. In the rest of this 

paper, when we present our technique we consider that the 

power consumption varies during a task execution and 

different tasks have different power traces. In this paper, we 

exploit task replication to achieve fault-tolerance and assume 

that any core can be dynamically coupled to another core to 

form a standby-sparing subsystem. Each standby-sparing 

subsystem executes two primary tasks and their backup tasks. 

Fig. 1a shows an execution scenario for these tasks where the 

primary tasks start as soon as possible and the backup tasks 

start as late as possible, hoping that the primary tasks will 

finish successfully and the backup tasks will be dropped to 

avoid excessive power consumption [35]. Since they do not 

consider the peak power consumption, they may result in 

violating the TDP constraint. This case is shown in Fig. 1a, 

wherein the time interval 30ms to 70ms all the four cores are 

active at the same time and hence the chip total power 

consumption is 2.4W that is higher than the chip TDP 

(i.e. 2W). Fig. 1b shows a possible execution scenario for the 

tasks that does not violate the TDP constraint. In this scenario, 

the first job of the backup task B2 (JB21) and the first job of 

the backup task B3 (JB31) are divided into three parts and two 

parts, respectively. Then, the other tasks and the parts of JB21 

and JB31 are scheduled such that at any time instant at most 

three cores are active. Therefore, since each core consumes 

0.6W, the total chip power consumption is less than or equal 

to 1.8W, and hence, the chip TDP is met. 

Contribution: The main contributions of this paper are: 
 A peak-power-aware energy management scheme that is 

conducted at offline phase through our proposed schedul-
ing algorithm for the standby-sparing technique.  

 Proposing two specific scheduling policies to manage en-
ergy and peak power consumption in the worst-case and 
actual-case fault scenarios. 

 Proposing an online technique to achieve further reduction 
in energy/peak-power consumption through exploiting dy-
namic slacks. 

Organization: In order to evaluate the effectiveness of the 

proposed method, we compared our scheme with four state-

of-the-art techniques. The rest of this paper is formed as 

follows. In section II we review the related work. Section III 

presents our system model. In section IV, we present the 

details of our solution. The experimental results are shown in 

section V and we conclude the paper in section VI. 

 RELATED WORK 

A. Peak Power Reduction 

Some related works [2], [18], and [1] focused on 

minimizing the peak power consumption under real-time 

constraints. [2] proposed a new scheduling algorithm for real-

time tasks to minimize chip-level power consumption, 

without relying on any extra hardware for average power 

reduction. This work restricts the concurrent execution of 

tasks which are assigned to different cores. Lee et al. [18] 

have proposed a task scheduling mechanism for preventing 

the occurrence of peak power consumption for task-graph 

models. The proposed algorithm in this work schedules the 

tasks with the data dependency information while reduces the 

peak power. One other work in high correlation to our work 

is [1]. This work presented a scheme to minimize the peak 

power for frame-based and periodic tasks with real-time 

constraints on multicore systems. In order to minimize the 

peak power, [1] schedules the sleep cycles for each active 

core. It should be noted that researchers that try to minimize 

the peak power, do not consider any fault-tolerant techniques 

to deal with permanent, transient and intermittent faults. In 

this paper, we use a fault-tolerant technique (i.e. standby-

sparing technique) on multicore embedded systems while 

minimizing the peak power consumption. In this paper, we 

aim at considering effects of fault-tolerant techniques on the 

peak power consumption in real-time embedded systems.  

B. Reliability-Aware Energy Management 

Some techniques, like [15], [24], [25], and [26], which 

consider both reliability and energy consumption, reserve a 

part of the available slack time to schedule a recovery task (to 

preserve the system reliability), and then utilize the remaining 

slack for energy savings. In these techniques, since both the 

main and recovery tasks are executed on the same core, tasks 

with utilization greater than 50% cannot be scheduled. 

Furthermore, these techniques cannot tolerate permanent 

faults, since both the main and recovery executions perform 

on the same core. The standby-sparing technique  is a well-

studied hardware replication technique to provide high 

reliability while keeping the energy consumption under 

control [21][27][35][29]. In standby-sparing, the system 

consists of two identical cores: primary and spare. Main tasks 

 
Fig. 1. A motivational example of peak power problem. a) Delayed 

execution of backup tasks[35], b) Peak-power-aware task scheduling. 
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are executed on primary and their backup tasks are executed 

on spare. When the primary core fails (due to either transient 

or permanent fault), it is replaced with the spare core to 

continue the execution of the backup task.  

In order to reduce the energy consumption overhead of 

standby-sparing, [28] has proposed a technique where DVFS 

is used for the primary core while the spare core does not use 

DVFS to preserve the reliability of the system when a fault 

occurs. The work in [35] has proposed an energy-aware 

scheduling scheme for a standby-sparing system that executes 

preemptive periodic real-time applications. They apply 

Earliest-Deadline-First (EDF) scheduling with DVFS on the 

primary core, while the backup tasks are executed on the 

spare core according to Earliest-Deadline-Late (EDL) 

scheduling. Both EDF and EDL assign priorities based on the 

jobs’ deadline, however, EDL delays the jobs as much as 

possible to obtain idle intervals as early as possible in the 

schedule. They aim at minimizing the execution overlap 

between main and backup tasks at run-time to reduce energy 

consumption. Haque et al. [29] have proposed an energy-

management technique for a standby-sparing system that 

executes preemptive fixed-priority real-time tasks. Tasks on 

the primary core are scheduled by the Cycle-Conserving 

DVFS algorithm that has been proposed for Rate Monotonic 

Scheduling (RMS) in [11]. While the spare core uses DPM 

and dual-queue mechanism that tries to maximally delay the 

backup tasks to save more energy. It should be noted that, 

although RMS is optimal for fixed priority tasks, it lowers 

core utilization. 

C. A Conclusion of Related Work Overview 

Generally, the previous works in the context of real-time 

systems either present peak power minimization techniques 

without considering reliability like [1] and [2] or consider 

simultaneous management of energy and reliability without 

considering peak power reduction like [16], [28], and [35]. In 

this paper, we exploit a fault-tolerant technique (standby-

sparing technique) to achieve high reliability for real-time 

embedded systems so that peak power consumption is kept 

below the chip TDP constraint.  

 MODELS AND ASSUMPTIONS 

A. System and Task Model 

We consider a multicore system with m cores and m/2 core 

pairs C={{C1, SC1}, …, {Cm/2, SCm/2}} similar to Intel 

SCC [34]. Also, we consider a set of periodic real-time tasks 

ψ={T1,…, Tn}. Each task Ti has a period Pi and a worst-case 

execution time eti under the maximum frequency. The jth job 

of a task Ti (Jij) arrives at time rij=(j−1)×Pi and must complete 

by its deadline j×Pi. Hence, the relative deadline Di of the job 

Jij is equal to the period Pi. The utilization of the task Ti is 

defined as eti/Pi. So, the sum of all tasks utilization is Utot. We 

consider for each task Ti a backup task Bi. We denote the jth 

job of Bi by BJij.  

B. Power Consumption Model 

Each core can operate in active and sleep modes. The core 

executes tasks in the active mode and in this mode we 

compute its power consumption based on Eq. 1. The total 

power consumption of the system consists of static and 

dynamic power components [3]. The static power (Ps) is 

dominated by the leakage current. Dynamic power (Pd) is 

mainly consumed due to system 

activity [4][5][16][21][28][29]Error! Reference source not 

found.. 

total s d
P P P   (1) 

Under DVFS, the voltage Vi that is used for the execution 

of the task Ti should be less than the maximum voltage Vmax. 

Let Vmax be the maximum voltage corresponding to the maxi-

mum frequency fmax. We denote the normalized voltage ρi 

as [16][19][21][28][29][35]Error! Reference source not 

found.: 

maxV

Vi
i   

(2) 

Hence, the dynamic power consumption under the scaled 

voltage Vi can be written as: 
2( )d i eff i iP V C V f  (3) 

where Ceff is the average switched capacitance, Vi and fi are 

supply voltage and operational frequency that is used to 

execute each task Ti. By considering the almost linear 

relationship between voltage and frequency [35], we can 

write: ρi=Vi/Vmax=fi/fmax. Therefore, Eq. 3 can be written as:  
2 3

max max( )d i eff iP T C V f   (4) 

Since CeffVmax
2fmax is constant, the dynamic power 

consumption can be normalized by removing CeffVmax
2fmax. 

Therefore, the normalized power consumption of the core 

while executing the task Ti can be written as [3][21]: 
3( )d i iNP T   (5) 

C. Fault Model 

We consider a transient fault model similar to [29][35]. The 

average fault rate λ is dependent on the core frequency 

whereby decreasing core frequency, λ increases exponentially. 

The average fault rate on the frequency f can be expressed as: 

min1
)1(

100)(
f

fd

f



  (6) 

where λ0=10−7 is the transient fault rate at fmax and d 

determines the sensitivity of the system to voltage scaling. 

Like the works [29][35]Error! Reference source not found., 

we consider d=2 in this paper.  

 OUR PROPOSED METHOD 

A. Concept Overview and Our Novel Contributions 

In this paper, we consider a standby-sparing system that 

executes preemptive periodic real-time tasks. We propose the 

Peak-Power-Aware Earliest-Deadline-First (PPA-EDF) policy 

to schedule the main tasks on the primary cores with DVS and 

DPM. For the spare cores, we propose Peak-Power-Aware 

Earliest-Deadline-Late (PPA-EDL) policy. These policies 

postpone the execution of the tasks as much as possible.  

Peak-Power-Aware Scheduling: The idea of peak power-

aware scheduling is based on the power profile of the tasks. It 

is a strategy for scheduling periodic tasks with both soft and 

hard deadlines in real-time systems such that the chip TDP is 

met. It is assumed that each task has the special power trace. 

Then, we propose a peak-power-aware energy management 

scheme that enables task replication to achieve high reliability 

in multicore embedded systems under timing and TDP 
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constraints. To the best of our knowledge, the power 

management techniques for fault-tolerant systems that have 

been presented in the literature only try to reduce the average 

power and do not consider peak power constraints. In this 

paper, we propose a scheduling algorithm for periodic real-

time applications on multicore embedded systems when the 

standby-sparing technique is used for fault tolerance. At first, 

our proposed scheme generates tasks’ execution time and 

extract tasks’ power trace through offline profiling. Then, our 

proposed scheme uses the Peak-Power-Aware Earliest-

Deadline-First (PPA-EDF) policy for the main tasks and the 

Peak-Power-Aware Earliest-Deadline-Late (PPA-EDL) policy 

for their backup tasks. Finally, the tasks are spread over the 

schedule such that the peak power consumption is kept below 

the chip’s TDP. To achieve further power reduction, if during 

the execution of the first copy of a task no fault has occurred, 

the second copy of the task is not required, and then its 

execution is canceled. We do not propose to execute the 

backup, as we might not require this. Indeed, we only propose 

to reserve a backup to execute it in case a fault occurs but 

usually as no fault occurs we do not require executing the 

backup. Also, it should be noted that in the offline phase we 

guarantee both primary and backup tasks are scheduled and 

will be executed at run-time. Therefore, the reliability of the 

proposed method is preserved at an acceptable level known as 

the reliability of the standby-sparing system. 

B. Problem Definition and Schedulibility analysis 

Dertouzos in [36] has demonstrated that EDF is optimal in 

feasibility, i.e. if there exists a feasible schedule for a task 

set ψ, then EDF may find it. However, EDF does not 

guarantee meeting TDP, reliability requirement and deadlines 

simultaneously. In the modern multicore hard real-time 

systems, in addition to meeting all deadlines, the system 

scheduling policy must satisfy the system reliability 

requirement and meet the chip-level power 

constraint [1][4][5][35]. In order to show the difference 

between meeting the three mentioned constraints and meeting 

deadlines without considering other constraints, we define our 

problem. Therefore, we use the following notation to 

represent energy and peak power consumption, voltage and 

frequency level and task-to-core mapping. In this formulation, 

n is the number of tasks, m is the number of cores, v is the 

number of available V-f levels for each core, and s is the 

number of time slots:  

 The peak power consumption is represented by the matrix 

Pϵℝn×m×v×s, in which each element Piklt denotes the power 

consumption for the task i when the task is executed on 

the core k at the time slot t under the V-f level l. 

 The task-to-core mapping and V-f level assignments are 

represented by the matrix Xϵ{0,1}n×m×v. The task i is 

mapped to the core k and is executed under the V-f level l 

if and only if Xikl = 1. 

The goal of our method is to minimize the total energy 

consumption while keeping the instantaneous power 

consumption under chip-level power constraint (PTDP,Chip) and 

meeting tasks timing constraints (deadlines). We formulate 

the above problem in the following.  

Optimization Goal: Minimize the total energy consumption 

defined by the sum of the energy consumption of all tasks. 

1

Minimize ( , )
i n

total STANDBY SPARING i i

i

E E T B






  (7) 

Chip Power Constraint: The instantaneous total power 

consumption, i.e. the sum of the peak power of all underlying 

cores at each time slot t must be less than the chip TDP 

constraint. In the following equation, h is the least common 

multiple (LCM) of all task periods. 

, , , , ,

, ,

: i k l i k l TDP chip

i k l

t h X P P    
(8) 

Tasks Timing Constraint: The worst-case execution time 

eti/fkl for a task i on the core k and at the frequency level l 

should not exceed the task timing constraint (defined by the 

Di).  

, ,
i

i k l i

kl

et
X D

f
  (9) 

Core Assignment Constraint: Each task can be only mapped 

to a core. 

, ,: 1i k l

i k

l X    (10) 

V-f Levels Assignment Constraint: Each task can be only 

executed under a single V-f level on a core (the V-f level does 

not change during the task execution). 

, ,, : 1i k l

l

i k X   (11) 

The order of slices of a task: In order to ensure that the order 

of slices of a task is met, we check that the next part of each 

task Ti(j+1) does not place before the previous parts of the 

selected task. 

( 1)
, :

ij i jT Ti j t t


   (12) 

Since solving the above problem and finding a schedule for a 

multicore system to optimally minimize energy consumption 

is an NP-hard problem [22][35]Error! Reference source not 

found., we present a heuristic to provide a solution for peak 

power reduction and energy minimization (see Section IV.C). 

It should be noted that in this paper we assume that the system 

must meet three constraints: i) the power constraint: Thermal 

Design Power (TDP) constraint, ii) the system reliability 

target, iii) timing constraints (Deadlines). Therefore, we 

propose a peak- power-aware energy management scheme 

that meets the mentioned constraints simultaneously. Such a 

scheme requires more time overhead as compared to other 

schemes that consider fewer constraints especially those 

previous works that do not guarantee to satisfy the TDP 

constraint like [16], [22], and [35]. Therefore, for meeting 

TDP, timing and reliability constraints simultaneously, we 

must consider more time overhead as compared to other 

schemes. 

C. Algorithm Discussion 

In this section, we present the details of our scheme in two 

phases: (i) Offline Phase (before we actually execute all jobs) 

and (ii) Online Phase. The main tasks are executed on the 

primary cores according to the PPA-EDF policy and based on 

the amount of the static and dynamic slack time, we apply 

DVFS and DPM. The spare cores are reserved for the 

execution of backup tasks based on our PPA-EDL policy. 

Also, when the idle time of each core is greater than the break 

to sleep time (see Online Phase), DPM is applied.  

Offline Phase: Algorithm 1 presents the offline task 

mapping and scheduling part of our scheme (Design Time). 
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This algorithm calls two functions: (i) the peak-power-aware 

earliest deadline first function (PPA_EDF(Jij, kij, t)), (ii) the 

peak-power-aware earliest deadline late function 

(PPA_EDL(BJij, kij, t)). The PPA_EDF function implements 

the PPA_EDF policy to make a schedule on the primary 

cores. The PPA_EDF function schedules a time slot of the 

selected job on the schedule of its designated primary core. 

The function uses the variable t to determine the first time slot 

in which the current time slot of the selected job kij can be 

placed. The PPA_EDF function iterates until the deadline of 

job Jij is not violated and then checks free time slots of the 

primary core one after another beginning from the released 

time of a job Jij, and places the current part of the job on the 

first free time slot such that the total peak power consumption 

does not exceed the chip TDP constraint. On the other hand, 

the PPA_EDL function implements the PPA_EDL policy to 

make a schedule on the spare cores. Since the PPA_EDL 

function starts from the end of the execution time for 

scheduling the selected job, it places the current time slot of 

the selected backup job on the schedule of its designated spare 

core. The PPA_EDL function searches to find the best 

position for the current time slot of the selected backup job 

such that the total peak power consumption does not exceed 

the chip TDP constraint. The PPA_EDL function schedules 

the time slots of the backup beginning from the last part. 

Also, until the released time of the selected job j is not 

violated, the function does it.  

Algorithm 1 gets the ready tasks with their execution time 

and deadline, the set of free cores and the chip TDP constraint 

PTDP,Chip. In line 1, the algorithm computes hyperperiod h 

which is defined as the least common multiple (LCM) of all 

task periods. The algorithm employs a power array including 

h slots that each slot determines the power consumption of the 

system at a time slot. Then, the algorithm initializes two 

schedules S_ci and S_sci to Null for each core of C. In line 5 

to 10, the algorithm iterates until all the tasks are assigned to a 

core pair based on the lowest utilization first policy. To do 

this, we assign tasks one after another to a core pair which has 

the lowest utilization. In line 11, the variable t is initialized to 

zero to show the time of the system schedule. The algorithm 

partitions all the jobs in lines 12-15. The variables kij and bkij 

are initialized to one value and etij to show the current time 

slot of the main and backup jobs, respectively. In lines 18 to 

39, the algorithm iterates until all parts of the main jobs and 

the backup jobs are scheduled based on PPA-EDF and PPA-

EDL, respectively. In line 19, when a job of Ti (Jij) is released 

at time t, the algorithm checks its designated primary core. If 

the primary core is idle, it is scheduled immediately. 

Otherwise, if the primary core ci is busy and the priority of Jij 

is higher than the priority of Jmn which is executing on the 

primary core, the algorithm schedules the current time slot of 

the selected job on the place of it. Therefore, a job preempts a 

primary core only if it has a higher priority than the currently 

executing job according to the PPA-EDF policy (lines 21-23). 

In this case, the current job is preempted. During preemption, 

we update the variable kij to the remaining time required to 

complete the job (Jmn). Otherwise, Jmn is executed on the 

primary core (line 24). This scenario also happens on the 

spare core with the difference that the PPA_EDL policy 

schedules the parts of the backup jobs beginning from the last 

part, i.e. the algorithm checks the free time slots one after 

another starting from the bkij and places BJijk on the first free 

time slot. Finally, if not all the jobs are scheduled, the 

algorithm returns infeasible in line 41.  

Online Phase: At runtime, when a job is released, if the 

primary core is idle, the job is executed on the core. However, 

Function PPA_EDF(Jij, kij, t)                       
1.     foreach free slot l=t→ j×Pi in S_ci do  

2.          if PA[l]+ peak_power(kij)  ≤ PTDP,Chip then 

3.               S_ci.add(l, Jijk); 

4.               PDA[l] = PDA[l]+ peak_power(kij); 
5.               kij=kij+1; 

6.               return kij;  

7.          end if; 

8.     end for;  

END Function 

 

Function PPA_EDL(BJij, bkij,, t) 
1.     foreach free slot l= j×Pi →t in S_sci do  
2.          if PA[l]+ peak_power(bkij)  ≤ PTDP,Chip then 

3.               S_sci.add(l, BJijk); 
4.               PA[l] = PA[l]+ peak_power(bkij); 

5.               bkij=bkij -1; 

6.               return bkij;  

7.          end if; 

8.     end for;  

END Function 
 

Algorithm 1. Design Time: Task Mapping and Scheduling 

INPUT: ready tasks  with the execution time and the deadline, set of free 

cores C, and the chip-level power constraint PTDP,Chip. 

OUTPUT: Task Mapping and Task Scheduling  

BEGIN 

1.  h=LCM(the periods of all tasks);                                  //Calculate hyperperiod 

2.  PA [1...h]={0};                           //Initialize the total power consumption array 

3.  S_ci={Null, 1≤i≤m/2};   //Initialize the primary cores with an empty schedule 

4.  S_sci={Null, 1≤i≤ m/2};          //Initialize spare cores with an empty schedule 

5.  while ( is not empty) do 

6.       Ti=.remove();                                                                        //Select a task  

7.       Φ = C.minutilization;                         //Find a pair core with lowest utilization 

8.       Φ.C.add(Ti);   

9.       Φ.SC.add(Bi);                    

10. end while  
11. t=0; 

12. for all jobs do                                                  //Partition all the jobs into parts 

13.      Jijl = {Jijl, 1≤l≤eti};                     

14.      BJijl={BJijl, 1≤l≤eti};                           
15.  end for; 

16.  kij ={1, for all primary jobs}; 

17.  bkij ={etij, for all backup jobs}; 

18.  while (t≤h) do 

19.      //Event at time t: A job of Ti (Jij) is released at time t on a core pair 
20.      if the primary core ci is busy then 

21.           if priority(Jij) > priority(Jmn) then  

22.                kij=PPA_EDF(Jij, kij, t); 

23.           else   

24.                kij=PPA_EDF(Jmn, kij, t); 

25.           end if  

26.      else                                                                    //The primary core ci is idle 

27.           kij=PPA_EDF(Jij, kij, t); 
28.      end if 

29.      if the spare core sci is busy then 

30.           if priority(BJij) > priority(BJmn) then  

31.                bkij=PPA_EDL(BJij, bkij, t); 

32.           else   

33.                bkij=PPA_EDL(BJmn, bkij, t); 

34.            end if  

35.       else                                                                   //The primary core ci is idle 

36.            bkij=PPA_EDL(BJij, bkij, t); 

37.       end if 

38.       t= t+1; 

39:   end while 

40:   if not all the jobs are scheduled then 

41:       return infeasible; 

42:   end if; 

END 
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if the core is running another job, the execution priorities are 

assigned according to PPA_EDF. If preemption occurs, we 

update the minimum additional time required to complete the 

job in the worst-case (under the maximum frequency). Then, 

we find slack time during t, i.e. the time that a job is executed 

or resumed from preemption, and its deadline. It should be 

noted that if there is no slack time, the job runs with the 

maximum frequency on the primary. To find the minimum 

frequency for a job execution, we use [35]:  

max( , )
ij

ij ee

ij

et
f f

et slack




 
(13) 

where fee is called the energy-efficient speed which is a 

processing frequency that below it, the total energy 

consumption of a task increases [3][5][35][29]. fee is 

computed analytically in [15] and [17]. The function of our 

DVFS technique is shown in Online Manager 1. It should be 

noted that if postponing a task or DVFS is required, the task 

execution parts are shifted over the schedule such that the 

peak power consumption is kept bellow the chip TDP. 

Therefore, we always check the peak power consumption kept 

bellow the chip TDP. Also, when a job completes on each 

core, we call an acceptance test [37] to check the correctness 

of the task execution. If the acceptance test does not detect 

any fault, we cancel the corresponding copy task in the 

corresponding core. Then, the designated core continues with 

executing the next job in the ready queue. On the other hand, 

if the first copy of job is faulty, we can continue running the 

corresponding core as scheduled. If there is no ready task 

available for execution, the core will remain idle. The core 

will start executing jobs again when the next job arrives. By 

the use of the task period values, we can compute the earliest 

release times among all future jobs in linear time. In order to 

apply DPM on cores, let assume we have a break to sleep 

time (Δcritical) [29]. When the idle time of a core is greater than 

Δcritical, the core switches to sleep mode, and hence, all power 

components other than the static power Ps are removed. 

Therefore, if the idle time exceeds the break to sleep time 

(Δcritical), the core is put into sleep mode until next release. 

Finally, if there is ready task available for execution, the core 

will execute the task. The function of our DPM technique and 

task dropping method is shown in Online Manager 2. As the 

final discussion of this subsection, we explain the time 

required to meet the TDP, timing and reliability constraints 

simultaneously. Since we shift some tasks to the next time 

slots to reduce peak power, we need more time slots for 

meeting the deadline. In order to shift tasks to the next time 

slots for execution, we should find the exact execution time 

because tasks should not miss their deadlines. It should be 

noted that in this paper, we have focused on meeting TDP, 

timing and reliability constraints simultaneously. Therefore, 

our proposed scheme incurs more time overhead as compared 

to other schemes that consider fewer constraints, e.g. the 

references [29], [35], and [38]. Therefore, for meeting TDP, 

timing and reliability constraints simultaneously, we must 

consider more time slots.  

D. Complexity Analysis 

In our problem formulation, n is the number of tasks, m is the 

number of free cores, h is the total time slots, and l is the 

number of V-f levels. In Algorithm 1, the ready tasks and free 

cores are sorted in O(n log (n)) and O(m log (m)), 

respectively. In the rest of the algorithm, the main 

computation is performed to examine all V-f level scalings 

and scheduling parts (h parts) for all ready tasks and then 

putting them into a max-heap. Therefore, for n ready tasks 

and l V-f levels, building the max-heap is performed in 

 
Fig. 2. Offline scheduling the tasks of the illustrative example, (a) Scheduling 

the tasks based on the PPA-EDF and PPA-EDL policies without DVFS, (b) 
Applying DVFS. 
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Fig. 3. Taking advantage of fault-free execution and shifting the remaining 

tasks, (a) Executing and shifting the backup job (bj21) due to the faulty 
execution of the main job, (b) The other faulty condition in executing the tasks 

of the example. 
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Online Manager 1: DVFS Function  

1.  Function DVFS(Jij); 

2.                slack ← Extract_Slack(t, deadline(Jij)); 

3.                fij← max( fee, 
𝑒𝑡𝑖𝑗

𝑒𝑡𝑖𝑗+𝑠𝑙𝑎𝑐𝑘
); 

4.                Execute Jij at frequency fij; 
5.  End Function 
 

Online Manager 2: Acceptance Test Function 

1.  Event – A job completes at time t: 

2.                Run the acceptance test;  //A low-cost hardware checker, Argus [37] 

3.                If no error is detected then 

4.                     Cancel the corresponding copy of the job; 

5.                end if 

6.                If ready queue of the core is empty then 

7.                     Δer ← time to earliest release time; 

8.                     If Δer ˃ Δcritical then 

9.                         Put core to sleep mode for Δer units of time; 
10.                   end If 

11.              else /* jobs are available for execution */ 

12.                         Execute a job; 

13.              end If 
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O(n×h×l). The first while loop iterates for O(n×m) times. 

The For loop iterates for O(n×h) times. The main while loop 

iterates for O(n×m×h) times. Finally, the algorithm removes 

the V-f level scalings from the heap one after another and 

checks whether the TDP constraint is met. This step is also 

done in O(m×n×l). Therefore, the order of the algorithm is 

max{O(m log (m)), O(n log (n)), O(m×n×l), O(n×m×h)}. For 

the final discussion of the complexity, it should be noted that 

the parameter h is defined as the least common multiple 

(LCM) of all task periods. Therefore, there is no reason that h 

increases exponentially as the input size increases. Even if h 

was exponentially proportional to task periods, this could 

cause problems for large task periods. However, in practical 

real-time embedded systems, the task period does not usually 

get that large even though we may have many tasks in the 

schedule. It is also noteworthy that when determining 

hyperperiod it is common to slightly increase basic periods to 

avoid large hyperperiods [2][5][35].   

E. Illustrative Example 

As an example let us consider two periodic task T1 and T2 

with the period Pi: P1=20ms and P2 =50ms. We consider a 

dual-core chip with 700mW of TDP where the cores (C1 and 

C2) constitute a core pair. In this example, we consider an 

architecture model which is based on ARM’s Big.LITTLE 

architecture [30] to show that due to the heterogeneity 

different applications have different values (the worst-case 

execution time, peak power, and etc.) when running on the 

different types of cores. Since heterogeneous multicore 

embedded systems have at least two types of cores (low-

power type and high-performance type), we can use the high-

performance type as the primary core and the low-power type 

as the spare core. Therefore, the worst-case execution time eti 

is different between the primary core and the spare core. The 

worst-case execution time of the tasks on the primary core is: 

et1=8ms and et2=20ms; and the worst-case execution time of 

the tasks on the spare core are: et1=7ms and et2 =15ms. For 

this task set, the hyperperiod is h=100ms which is the least 

common multiple of all the task periods. Therefore, within a 

hyperperiod, 5 jobs of T1 and 2 jobs of T2 are executed. By the 

use of the tasks power traces, the peak power values for the 

parts of the tasks are determined. In this example, the 

different parts of each task have different peak power values.     

Fig. 2 shows how this task set is scheduled and executed by 

our scheme. On the primary core, the tasks are scheduled by 

the use of the preemptive Peak-Power-Aware Earliest-

Deadline-First (PPA-EDF) scheduling (Fig. 2a). Note that if 

the main and backup tasks are scheduled in the same way on 

the primary and spare cores (e.g. both are scheduled with 

EDF), the energy consumption will significantly increase. 

This is because main tasks are executed with their backups in 

parallel. The energy overhead can be reduced by delaying the 

execution of backup tasks on the spare core [16]. However, 

the deadlines of the backup tasks have to be guaranteed. To 

address this issue, for the spare core (Fig. 2a), we exploit the 

preemptive Peak-Power-Aware Earliest-Deadline-Late (PPA-

EDL) scheduling while the total power consumption is kept 

below the TDP constraint. In Fig. 2b, we exploit the DVFS 

technique to reduce both the peak power and energy 

consumption. For example, the jobs J12, J13, and J15 in the 

primary core are executed using DFVS to reduce peak power 

and to save energy. On the spare core, the backup tasks are 

executed at maximum voltage/frequency (see Fig. 2b). Fig. 3 

shows two faulty scenarios, where some tasks are faulty and 

some other tasks are executed successfully. We observe that 

the backup tasks can be avoided entirely in many scenarios. 

For instance, when J11 is executed successfully, the 

corresponding backup task is canceled in the time slot 

[13ms, 20ms] on the spare core and excessive power and 

energy consumption is avoided. Also, when the backup tasks 

are canceled on the spare core, we shift some other tasks to 

the next time slots to further reduce peak power and energy. 

In order to shift jobs to the next time slots for execution, we 

should find the exact promotion time since tasks should not 

miss their deadlines and the chip TDP. The first step in 

finding the exact promotion time is computing the worst-case 

response time of each task. There are multiple techniques to 

compute the worst-case response time of the tasks, e.g. [29]. 

For instance, when J21 is faulty, the corresponding backup job 

should be executed on the spare core. Since the backup job of 

the main job J12 is dropped in the time slot [30ms, 38ms], the 

two part of the backup job of J21 is shifted in the time slot 

[36ms, 38ms]. Therefore, by the use of the PPA-EDL 

scheduling further power reduction and energy saving can be 

gained.         

 RESULTS AND DISCUSSION 

In this section, we evaluate the effectiveness of our 

proposed scheme via simulation with various task sets 

including real-life embedded applications of MiBench 

Table 1. Characteristics of the benchmark applications 

 BITCOUNT SUSAN MATH CRC32 SHA QSORT JPEG FFT DIJKSTRA LAME GSM 

Execution time (ms) 388 238 2198 4158 80 414 98 1924 182 8990 1412 

Energy consumption (mJ) 138.45 88.12 773.82 1283.97 29.05 146.35 36.62 676.72 60.80 3158.55 482.96 

Min. Power (mW) 308.63 307.05 299.76 294.84 304.34 308.67 306.93 307.38 308.77 307.07 351.7 

Max. Power (mW) 391.77 387.76 362.17 315.2 424.88 363.94 482.37 368.01 350.02 357.8 307.1 

 

 
Fig. 4. Our tool flow for power, energy and feasibility analysis 
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Benchmark suite [31] running on a target multicore chip. Our 

evaluation consists of the comparison between our scheme 

and four state-of-the-art schemes. We compared our scheme 

with the ASSPT [35], CSSPT [35], RAPM [38] and 

SSFP [29] algorithms: 
 ASSPT and CSSPT [35]: These techniques are proposed to 

manage energy consumption in conjunction with fault-
tolerance. ASSPT and CSSPT execute original tasks as 
soon as possible through EDF and backup tasks as late as 
possible through EDL. ASSPT allows a job to utilize the 
entire available slack and slow down as much as possible 
while CSSPT tries to achieve a balanced slack distribution 
among all jobs. 

 RAPM [38]: This technique is proposed in [38]. For the 
fair comparison, we assumed that RAPM uses one backup 
task for each task to achieve fault tolerance. This technique 
proposed both individual-recovery and shared-recovery 
based reliability-aware power management heuristics. 

 SSFP [29]: This technique has proposed an energy man-
agement technique for a standby-sparing system that exe-
cutes preemptive fixed-priority real-time tasks. 

In order to evaluate our scheme, we constructed a system-

level simulator. In our simulations, for each data point, we 

generated 1000 task sets and the average results are reported. 

Each task set consists of 10 tasks. The task sets are selected 

randomly from Table. 1. To generate Table. 1, we use gem5 

full-system simulator [32] and McPAT [33]. Since ARM 

processors are widely used in many embedded systems, we 

consider an ARM processor. Therefore, a detailed model of 

ARM processors provided by gem5 is used in this paper. This 

ARM core has an area of 9.74mm2 with 32KB L1 cache and a 

shared 1MB L2 cache. Fig. 4 shows our tool flow and 

simulation setup with fault generation and injection, 

scheduling simulation, and power/energy evaluation. We 

considered that the system supports DVFS and can work at 

five different voltage and frequency levels be-tween 

[0.85Volt, 1GHz] and [1.1Volt, 2GHz]. Also, we evaluate the 

actual-case execution scenario where both faulty and fault-

free execution scenarios were considered. To generate fault 

rate and pattern, in our experiments, transient faults were 

generated using a Poisson process where the fault rate λ 

corresponding to different voltage levels was modeled using 

Eq. 6 under the parameters λ0=10-6 faults/us and d=2 [3]. 

Therefore, the fault rate varies between 10-6 faults/us and 10-2 

faults/us corresponding to fmax and fmin, respectively. To do 

this, we exploited a system-level fault injection. At first, we 

generate a fault vector that determines at which times faults 

occur. Then, based on the fault vector, we decide which task 

becomes faulty during the execution of a task set.  

Fig. 5 shows the power profile of our scheme and 

CSSPT [35] for a different number of cores (M=4, 8 and 12) 

and core workload (Uper_core=0.75). As Fig. 5 shows, our 

scheme reduce peak power through distributing power 

consumption over the whole execution hyperperiod. In this 

figure, CSSPT misses the TDP constraint. Then, we evaluated 

the ratio of peak power reduction and energy saving of our 

scheme versus RAPM, ASSPT, CSSPT, and SSFP across 

different system parameters including the total utilization 

(Utot). We evaluated the impact of the total utilization varies 

from 0.8 to 8. Fig. 6 and Fig. 7 show the results for the cases 

when tasks worst-case execution times are generated based on 

Table. 1 and the number of cores is equal to 8. What can be 

inferred from these figures is that our scheme completely 

outperforms the other four schemes for all utilization values. 

This is achieved through reducing the overlap of the execution 

of main tasks on the primary core and their corresponding 

backup tasks on the spare core. Therefore, by further 

postponing the backup tasks at runtime, in many cases we can 

cancel the backup tasks on the spare core. Each case of Fig. 6 

was simulated for 1000 times with different parameters of the 

 
Fig. 6. Peak power reduction in different system utilizations. 

 
Fig. 7. Energy saving in different system utilizations.  
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Fig. 5.  Power consumption profile for a periodic task set in the actual-case execution scenario. 
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applications and the average results are reported. This figure 

shows that our scheme provides up to 47.6% (on average by 

28.2%) peak power reduction compared to four state-of-the-art 

techniques. From Fig. 6 it can be concluded that in all 

utilization points, the peak power reduction of our scheme is 

higher than other schemes. When the utilization point is 

between Utot=3.2 to Utot=6.4, the peak power reduction of our 

scheme is better than when it is Utot=5.6 or Utot=7.2. This is 

because the probability of TDP violation in the higher 

utilization points in all techniques is high and the amount of 

the slack times in the lower utilization points for peak power 

reduction is high. Also, in Fig. 7, for all utilization values our 

scheme can save more energy, compare to RAPM. The main 

reason is that RAPM is forced to run at high frequency and 

consequently consuming too much energy; on the whole, by 

increasing the utilization, the energy saving decreases (Fig. 7). 

Since, when utilization is low, more slack time can be 

achieved, this further slack time helps us to save more energy 

through DVFS and DPM. Experiments show that our scheme 

provides up to 32.1% (on average by 16.3%) energy savings 

compared to four state-of-the-art techniques. Also, it can be 

seen from Fig. 7 that when the utilization of the cores 

increases, the energy saving decreases. This is because the 

amount of static and dynamic slack times decreases, and 

hence we cannot achieve significant energy savings. 

However, the energy consumption of our scheme is always 

less than the other schemes. Also, it should be noted that the 

schedulability of the results shown in the figures 6 and 7 is 

100%. Indeed, all the results in these figures meet all their 

deadlines. Moreover, our scheme always meets TDP 

constraint but other schemes violate TDP in some cases. As 

the final discussion, we discuss the feasibility of the proposed 

method. To demonstrate this, we generated 1000 task sets 

from the tasks shown in Table. 1 and repeated the simulations 

for several utilization values (Uper-core= 0.4, 0.5, 0.6, 0.7, and 

0.8). Since the proposed approach never violates TDP, we 

show the frequency of power budget violations during 

execution. Fig. 8 shows the frequency of meeting TDP for our 

proposed scheme and other schemes. It can be seen from Fig. 

8 that the proposed approach never violates TDP while the 

state-of-the-art schemes violate it because the state-of-the-art 

schemes do not consider it. Then, we verified the 

schedulability of the proposed method and other schemes for 

each generated task set. Then we obtain the percentage of 

meeting the deadlines and the TDP constraint simultaneously. 

The results show that our scheme meets the timing and TDP 

constraints on average by 78% while the other schemes meet 

the mentioned constraints on average by 63%. Therefore, our 

proposed method is more suitable and efficient than other 

schemes for meeting the timing and TDP constraints 

simultaneously.   

 CONCLUSIONS 

In this paper, we have considered two main objectives in 

designing real-time embedded systems, denoted as reliability 

and power consumption. To achieve these objectives, we 

proposed a scheduling scheme for standby-sparing systems that 

executes periodic real-time tasks. We have proposed the PPA-

EDF and PPA-EDL policies on the primary and spare cores, 

respectively. The proposed scheme postpones the execution of 

tasks on spare cores. Since faults are a naturally rare event and 

also tasks often consume less than their worst-case execution 

time, tasks commonly complete early or successfully. Another 

feature of our scheme is that it provides a good opportunity to 

cancel the second copy of a task when the first copy of the task 

completes early or successfully; resulting in a reduced power 

consumption. We compared our scheme with the RAPM, SSFP, 

ASSPT and CSSPT schemes. Simulation results show that our 

scheme provides up to 47.6% peak power reduction compared 

to the other schemes.   
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