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Abstract—Dynamic Voltage and Frequency Scaling (DVFS) is 
one of the most popular and exploited techniques to reduce power 
consumption in multicore embedded systems. However, this 
technique might lead to a task-reliability degradation because 
scaling the voltage and frequency increases the fault rate and the 
worst-case execution time of the tasks. In order to preserve task-
reliability at an acceptable level as well as achieving power saving, 
in this letter, we have proposed an enhanced DVFS method based 
on reinforcement learning to reduce the power consumption of 
sporadic tasks at runtime in multicore embedded systems without 
task-reliability degradation. The reinforcement learner takes 
decisions based on the power savings and task-reliability variations 
due to DVFS and considers the suitable voltage-frequency level for 
all tasks such that the timing constraints are met. Experimental 
evaluation was done on different configurations and with different 
numbers of tasks to investigate the efficiency of the proposed 
method. Our experiments show that our proposed method works 
efficiently than other existing works for reducing power 
consumption without reliability degradation and deadline misses. 

Index Terms—Power Management, DVFS, Sporadic Tasks, 
Reliability, Reinforcement Learning, Multicore Platforms. 

 INTRODUCTION  

ULTICORE embedded systems, coupled with increased 
power consumption, pose multiple challenges such as 

reliability and performance [1][2]. In order to overcome such 
concerns, exploiting the reliability-aware power management 
technique is a crucial requirement for multicore embedded 
systems [1][8]. Towards meeting the power constraints, the 
Dynamic Voltage and Frequency Scaling (DVFS) technique is 
one of the most effective and widely exploited techniques in the 
mentioned systems [9]. Since most of multicore embedded 
systems are employed for executing real-time tasks [8], 
exploiting DVFS might lead to missing task deadlines, and this 
is not acceptable in real-time embedded systems [7]. 
Advancements in the machine learning (ML) domain led to its 
adoption for prediction of the parameters of DVFS, using 
different techniques such as reinforcement learning (RL), 
regression analysis, etc. For example, the authors in [17] have 
introduced a deep RL method that tries to manage thermal and 
power issues at runtime by efficiently allocating resources and 
distributing tasks to the cores. The main purpose is to 

maximizing performance per watt (PPW) by determining 
performance-energy configurations, which means the number 
and frequency of big.LITTLE cores in the processors. The 
authors in [18] have proposed a deep RL-based reliability 
management method that considers soft and hard errors. The 
proposed method in [18] is based on physics-based three-phase 
electromigration and exponential soft error models, and it 
reduces memory consumption and computational time 
significantly compared to the state-of-the-art RL-based 
methods. In [19], the authors employ RL to introduce a new task 
mapping method, called LifeGuard, to address performance and 
aging issues. The LifeGuard works according to the 
performance requirements of applications and their aging 
behaviors. This method learns and finds the most appropriate 
core (from the lowest frequency to the highest frequency) for 
different types of applications. The authors in [5] illustrated a 
power management method that performs RL to manage power 
consumption without the application- and thermal-reliabilitiy 
degradation. In this method, the learner tries to find suitable VF 
settings for the next execution time of each application and feed 
them to the system at run-time. Since none of the related work 
considers real-time constraints, this paper proposes a reliability-
aware reinforcement learning (RL)-based power management 
technique for multicore real-time embedded systems such that 
all timing constraints are met. 

In this letter, we provide the following novel contributions: 
(i) To the best of our knowledge; this is the first work that 
proposes reliability-aware reinforcement learning (RL)-based 
power management technique for multicore real-time 
embedded systems, (ii) The proposed technique determines the 
VF level for each task such that the power, timing, and 
reliability constraints are met simultaneously. 

 MODELS AND ASSUMPTIONS 

A. Application, Hardware, Reliability, and Power Model 
Application Model: We have considered a set of N independent 
soft sporadic tasks, denoted as . Each task τi 
can be illustrated by a triple , where wi is the 
worst-case execution time, di is the relative deadline, and pi is 
the minimum inter-arrival time (or period). In this work, we 
have considered that . 
Hardware Architecture Model: We have considered a 
processor with M homogeneous cores, denoted as the set of 

. Each core ci can execute tasks on k different 
voltage-frequency (VF) levels from  to . We 
have assumed that the cores operating at higher VF levels 
consume more power, and hence, have higher performance [1]. 
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Also, we have assumed that idle cores go to sleep mode to 
reduce dynamic power consumption [1][8].  
Reliability Model: In this letter, we have considered transient 
faults. In most cases, transient faults are modeled as a Poisson 
distribution using the average fault rate of λ [1][7]. The average 
fault rate depending on the voltage of the processing core is 
calculated as follows [1][5][7][8]: 

 (1) 
As can be seen, decreasing voltage increases the fault rate 
exponentially [1]. Also, the maximum stable frequency for a 
core is limited by its supply voltage [2]. Therefore, reducing 
supply voltage and operating frequency using DVFS increases 
the fault rate  significantly [1]. In Eq. (1),  and  are 
sensitivity factor to voltage changes and fault rate at maximum 
frequency, respectively. We have assumed volt and 

faults/μsec [7]. Also, Eq. (2) shows the reliability 
model of the task τ with the actual execution time t in supply 
voltage V in which is given by Eq. (1) [1][5][7][8]. 

 (2) 
Power Model: The total power consumption of each core 
consists of dynamic and static components [1][7][8]. System 
activity and leakage power are the main reasons for dynamic 
and static power consumption, and the total power consumption 
is modeled by the following equation [1][7][8][12]: 

 (3) 

Where α is the switching activity factor, C is the average 
capacitance, I0 and η are technology parameters, VT is the 
thermal voltage, and Vth is the threshold voltage [1][7][8]. 

B. Reinforcement Learning (RL) 
Reinforcement Learning (RL) is a machine learning technique 
that enables an agent to learn through trial-and-error in an 
uncertain or dynamic environment and to gain experience from 
its own previous actions [3][4][5]. The agent should select 
sequential actions in such a way that the total future reward is 
maximized [3][4][5]. The interactions between agent and 
environment are modeled using a finite state space S, a set of 
available actions A, and a future reward function
[9]. The policy π is a map from state s to action a 
, and its stochastic form is [9][10]. 
Q-Learning: Q-learning is one of the most popular algorithms 
exploited to perform RL [3][4]. This is a value-based RL 
algorithm that is exploited on the Q-value denoted as Q(s, a) for 
each state-action pair, and its value approximates the expected 
long-term cumulative discounted reward of taking action a 
starting from state s, using temporal difference [5][10]. Q-
values are updated when an action is issued, and the 
corresponding reward is received [5]. The Q-value is equal to 
the sum of the actual current reward and discounted estimated 
future value that can be computed as follows [5][9][11]: 

 (4) 

Where  is the learning rate, is the expected 
reward after taking action a from state s, and  is the 
discount factor. In Eq. (4), and are states 
and Q-states, respectively. represents the consideration 

of taking action a from state s, and its value, as mentioned 
earlier, is the expected long-term cumulative discounted reward. 
Therefore, the learner selects the maximum Q-value during the 
learning process. In our proposed method, we have assumed that 
α is fixed, like [5], and is equal to 0.75. Also, the discount factor 
is equal to 0.25. According to Eq. (4), is 
the agent’s policy that selects the maximum Q-value at each 
time [5][11]. Also, Eq. (5) shows the optimal policy  
based on Bellman’s principle of optimality [11] when the 
current state is s and is given by Eq. (4) [16]. 

 (5) 

Where is a subset of A that determines the set of the 
appropriate actions (VF levels) for the corresponding task 
according to real-time constraints.  

 PROBLEM DEFINITION AND OUR SOLUTION 

A. Concept Overview 
In this letter, we have proposed an enhanced DVFS method to 
reduce power consumption in a homogeneous multicore system 
that executes sporadic tasks without reliability degradation 
exploiting RL. 

B. Problem Definition 
State Space: There are several criteria for determining the state 
of the system [5][9]. In our proposed method, the state of the 
system for the agent is the per-task power consumption and 
reliability based on Eq. (3) and Eq. (2), respectively. Therefore, 
we have considered  
as a set of states, where RT is a subset of T that determines the 
set of the running tasks, n is the number of quantized power 
levels, and each state  represents the power 
consumption of the running task τ and its reliability. Also, the 
states sorted by the power consumption in ascending order. 
Action Space: We have assumed there are k actions, denoted as 
the set of . Each action ai illustrates assigning 
i-th VF level to the task, i.e., . As mentioned earlier 
in section II.A, the variable k indicates the number of available 
VF levels. It should be noted that some VF levels cannot be 
applied to some tasks due to the reliability target. In this work, 
like [5], we have considered only six VF levels (i.e., ) to 
limit the number of feasible actions and reduce complexity and 
convergence issues. 
Reward: A reward is a scalar feedback signal that indicates 
how well the agent did in the last step. In order to manage power 
consumption without reliability degradation, a reward should be 
calculated as a function of variations in power consumption and 
reliability simultaneously [5]. Similar to the work [5], we have 
overcome these concerns, i.e., power consumption and 
reliability, by using principal component analysis [6]. In other 
words, the calculation of the reward of the transition of task τ 
from state s with action a to state (all possible states for task 
τ from state s with action a) is as follows [5]:  

 (6) 
Where  and  are the variations in power 
consumption and reliability due to transition. In this letter, 
reliability is based on Eq. (2), and also we have assumed 
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C. Power Predictor Policy 
Due to computational issues of reactive power management, we 
have to predict power trace according to previous traces for 
efficient run-time power management, like [5]. This prediction 
is based on Eq. (7). 

 (7) 

Where is the predicted power for time-slot , is 
the regression coefficient, and  is the error. We have assumed 

 in our evaluations. After power prediction, in order to 
avoid complexity and convergence issues, the predicted power 
is quantized, and the state with the closest power consumption 
is selected as the current state. We have considered four states 
(i.e., ) in this work. 

D. Ring-DVFS Power Management 
An overview of the design flow of Ring-DVFS is presented in 
Fig. 1. Also, we have provided an Algorithm 1 to show the 
pseudo-code of the Ring-DVFS power management method. 
First, in Line 1, the power trace of the next time-slot of an issued 
sporadic task is predicted through Eq. (7). Then, the 
corresponding reliability is estimated through (2) in Line 2. 
According to Lines 1-2 and the set of states, one of the states is 
selected in Line 3. In Lines 4-5, based on Bellman’s principle 
of optimality, i.e., Eq. (5), maximum Q-value is selected as the 
action and fed to the VF controller. Finally, the reward is 
calculated based on Eq. (6), and Q-values are updated based on 
Eq. (4) in Lines 6 and 7, respectively. In our evaluations, to 
overcome the convergence issue, we have done Ring-DVFS at 
regular intervals to have enough time for making decisions, and 
also limited the number of iterations because using deep RL 
might increase computational and latency overheads. 

 RESULTS AND DISCUSSION 

In this section, we evaluate the effectiveness of Ring-DVFS, 
employing a gem5 full-system simulator [16]. 

A. System Settings 
We ran our simulations with various task sets, including real-
life applications of the MiBench benchmark suite [13] running 
on a target homogeneous multicore platform. We considered 
that the system supports per-core DVFS. The details of 
simulation configurations for the processing cores of our system 
are summarized in Table 1. Then, we have connected the gem5 
to a simulator that is written by Python.  

B. Power Savings 
We have compared our proposed method with other methods in 
terms of reducing power consumption. Fig. 2 shows the 
comparison of [5]-RLPM, [14]-Linear, [15]-STM, [17]-PPW, 
[18]-DRL, [19]-LG, and our proposed method. As can be seen, 

by increasing the number of cores, RL-based methods have 
better performance in reducing power consumption. In other 
words, in small systems with a small number of cores (e.g., 
single- or dual-core), lightweight methods, like [14]-Linear, are 
more effective than the others. RL-based power management 
methods have more complexity and computations than power 
savings at runtime. Therefore, exploiting them in small systems 
are not efficient. The evaluations’ results indicate that our 
proposed method provides, on average by –3.2%, 42.75%, 
33.5%, –11.5%, –14.75%, and 9% average power reduction 
compared to [5]-RLPM, [14]-Linear, [15]-STM, [17]-PPW, 
[18]-DRL, and [19]-LG, respectively. The increased run-time 
power savings with [5]-RLPM, [17]-PPW, and [18]-DRL 
compared to our method is because of the real-time 
characteristics of our workloads. 

C. Reliability 
As stated in section III.B, the reward function considers both 
power savings and reliability variations in this work. Also, as 
mentioned earlier in section II.A, we have considered volt 
and  faults/μsec. According to Fig. 3, the results show 
that our proposed method achieves higher reliability than other 
power management methods. In the situation of executing 
various sets of tasks based on MiBench benchmark suite on the 
16-core processor, compared to the proposed method, [5]-
RLPM, [14]-Linear, [15]-STM, [17]-PPW, [18]-DRL, and [19]-
LG have on average by 7%, 59%, 50.1%, 93%, 6.5%, and 5.8% 
more variance in reliability, respectively. It should be noted that 
[5]-RLPM considers both application- and thermal-reliabilities’ 
variations. 

D. Overhead Analysis 
Run-time power management techniques impose computation 
overheads (e.g., determining the appropriate VF settings and 
assigning them to the processing cores) to the system. In this 
letter, we have considered the additional execution time of each 

0( 1) ( )i
x
ip t w p t i e=+ = - +å

( 1)p t + 1t + iw
e

4x =

4n =

1D =
7

0 10l -=

 
Fig. 1. The overview of the design flow of Ring-DVFS. 

 
 

Algorithm 1. Ring-DVFS Power Management 
Input: Tasks’ Power Traces, Reliabilities, and Characteristics 
Output: VF Settings 

start Ring-DVFS 
1: Predict the power trace through Eq. (7). 
2: Estimate corresponding reliability through Eq. (2). 
3: Determine the state according to Lines 1-2. 
4: Select an action (VF settings) through Eq. (5). 
5: Feed VF settings to the VF controller. 
6: Calculate the reward through Eq. (6). 
7: Calculate the Q-values through Eq. (4). 
end Ring-DVFS 

 

Table 1. The details of system configuration 

Parameter Configuration 
Core Type ARM Cortex-A7 
Machine Type In-Order 

Core Volt. And Freq. Six different VF levels from  
[0.85Volt, 1GHz] to [1.1Volt, 2GHz] 

The Number of Cores 4, 8, 12, and 16-core system 
Core Microarchitecture ARMv7-A 
L1 Cache 32KB, 8KB block-width, 4-way 
L2 Cache 2MB, 16-way 
Memory 2GB, 32-bit LPDDR3e 
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task as an overhead, and we have compared the average run-
time of our proposed method with different power management 
techniques. Table 2 shows the average percentage of additional 
execution time for various sets of tasks based on MiBench 
benchmark suite running on 4-, 8-, 12-, and 16-core systems, 
and also under six different VF levels. Our evaluations show, in 
similar situations, [14]-Linear has more additional execution 
time than the others. Also, due to embedded learning based on 
tasks’ characteristics, RL-based methods have less additional 
execution time than [14]-Linear and [15]-STM. Our proposed 
method has on average by 2.1%, 5.7%, and 4.3% more 
additional execution time than [5]-RLPM, [18]-DRL, and [19]-
LG, respectively. It should be noted that these differences are 
mainly because of considering real-time constraints and related 
computations in our proposed method. 

 CONCLUSIONS 

In this letter, we have studied three main concerns in 
homogeneous multicore embedded systems, i.e., low power 
consumption, high reliability, and real-time computing. In order 
to overcome these concerns, we have proposed an RL-based 
DVFS method to reduce power consumption without reliability 
degradation for executing sporadic tasks. The proposed method 
has the ability to adapt to different situations using learning 
capabilities to prevail over the above-mentioned concerns. 
Experimental evaluation was done on different configurations 
and with different numbers of tasks to investigate the efficiency 
of the proposed method. Our experiments show that our 
proposed method works efficiently than other existing works for 
reducing power consumption without reliability degradation and 
deadline misses. 
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Table 2. Average percentage of additional execution time for MiBench 
applications running on multicore system 

[14]- 
Linear 

[15]- 
STM 

[17]- 
PPW 

Ring- 
DVFS 

[5]- 
RLPM 

[19]- 
LG 

[18]- 
DRL 

47.5% 28.7% 26.9% 24.8% 22.7% 20.5% 19.1% 
 

 
Fig. 2. Average power consumption comparison of different power 
management schemes. 

 

0
0.2
0.4
0.6
0.8

1

4 8 12 16N
or

m
al

iz
ed

 P
ow

er

Number of Cores

[5]-RLPM [14]-Linear [15]-STM [17]-PPW
[18]-DRL [19]-LG Ring-DVFS

 
Fig. 3. Average task reliability comparison of different power 
management schemes. 
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