

AdDQ: Low-Energy Hardware Replication for Real-Time

Systems through Adaptive Dual-Queue Scheduling

Mohsen Ansari1, Sepideh Safari1, Farimah R.Poursafaei1, Mohammad Salehi2, and Alireza

Ejlali1

1Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

2Computer Engineering Department, University of Guilan, Rasht, Iran

Abstract

Low energy consumption and high reliability are two major design objectives for real-time embedded systems. Beside other techniques,

hardware replication (e.g. standby-sparing) can provide high reliability while keeping the energy consumption under control. In this paper,

we consider two replicated processors as a standby-sparing system where main copy tasks on primary are scheduled by Earliest-Deadline-

First (EDF) while backup copy tasks on spare are scheduled by our proposed Adaptive Dual-Queue (AdDQ) scheduling. AdDQ provides the

best opportunity to postpone the spare executions as much as possible to minimize execution overlaps between main and backup copy tasks.

Therefore, when a copy task finishes successfully a larger portion of its corresponding copy task can be cancelled, resulting in a significant

amount of energy saving. To achieve further energy saving, we use Dynamic Voltage Scaling (DVS) and, Dynamic Power Management

(DPM). The main reason of using DPM is that, once a copy of task has finished successfully, its other copy task is terminated, and if there is

no more task for execution the processors go to a low-power mode. We evaluated our AdDQ technique under various system configurations.

Experiments show that AdDQ provides up to 36% (on average by 14%) energy savings compared to four state-of-the-art techniques.

Keywords: Real-time Embedded System, Energy Management, Hardware Replication, Scheduling.

1. Introduction and Related Work

Energy consumption is an important design concern for real-

time embedded systems [1, 2]. One of the well-known

techniques to manage the energy is Dynamic Voltage Scaling

(DVS) which reduces energy consumption by scaling the

processor supply voltage and operating frequency [3, 4, 5].

However, the applicability of DVS is limited by the amount

of available slack time in the system [6, 7]. Another

technique is Dynamic Power Management (DPM), where the

system components are put into sleep mode when they are

temporarily unused [4, 8]. The other important design

concerns in designing real-time embedded systems are high

reliability and fault tolerance [6, 9, 10, 11]. Faults in

computer systems are classified into transient, intermittent

and permanent [10]. Transient faults are often induced by

electromagnetic interference and cosmic radiations [10, 12,

13]. Transient faults in real-time embedded systems can be

tolerated using time redundancy (e.g. re-execution and roll-

back recovery [10, 12, 14]). Also, permanent hardware faults

result from hardware component failure or manufacturing

defects. They are usually mitigated through exploiting

replicated hardware component [10, 12]. However, hardware

replication techniques may incur significant energy over-

head to the system [6], [9]. Therefore, there is a need to

manage the energy consumption overhead of fault tolerance

techniques that are exploited for real-time embedded

systems .
Some techniques, like [14, 15, 16, 17, 27], which consider

both reliability and energy consumption, reserve a part of the

available slack time to schedule a recovery task (to preserve

The CSI Journal on

Computer Science and Engineering

Vol. 15, No. 1, 2017

Pages 31-38

Regular Paper

The CSI Journal on Computer Science and Engineering, Vol. 15, No. 1, 2017 32

the system reliability), and then utilize the remaining slack

for energy savings. In these techniques, since both the main

and recovery tasks are executed on the same processor, tasks

with utilization greater than 50% cannot be scheduled.

Furthermore, these techniques cannot tolerate permanent

faults, since both the main and recovery executions perform

on the same processor. Standby sparing [6, 18, 19, 20] is a

well-studied hardware replication technique to provide high

reliability while keeping the energy consumption under

control. In standby sparing, the system consists of two

identical processors: primary and spare. Main tasks are

executed on primary and their backup tasks are executed on

spare. When the primary processor fails (due to either

transient or permanent fault), it is replaced with the spare

processor to continue the execution of the backup task .

To reduce the energy consumption overhead of standby

sparing, [2] has proposed a technique where DVS is used for

the primary processor while the spare processor does not use

DVS to preserve the reliability of the system when a fault

occurs. Upon the successful completion of a main task, the

corresponding backup task is cancelled and excessive energy

consumption is avoided. The scheme proposed in this work is

suitable for non-preemptive and aperiodic tasks. While, most

of the real-time applications on embedded systems are

inherently periodic. The work in [19] has proposed an

energy-aware scheduling scheme for a standby-sparing

system that executes preemptive periodic real-time

applications. They apply Earliest-Deadline-First (EDF)

scheduling with DVS on the primary processor, while the

backup tasks are executed on the spare processor according

to Earliest-Deadline-Late (EDL) scheduling. Both EDF and

EDL assign priorities based on the jobs deadline, however

EDL delays the jobs as much as possible to obtain idle

intervals as early as possible in the schedule. They aim at

minimizing the execution overlap between main and backup

tasks at run-time to reduce energy consumption. They have

presented two algorithms denoted as Aggressive Standby-

Sparing for Periodic Tasks (ASSPT) and Conservative

Standby-Sparing for Periodic Tasks (CSSPT). They differ in

the way that they use the available slack at run-time for

frequency assignment. ASSPT allows a task to aggressively

utilize the entire available slack time to reduce operational

frequency as much as possible. CSSPT aims at achieving a

balanced slack time distribution among all tasks. Since

ASSPT and CSSPT use the slack time on spare to apply DVS

on primary, in some conditions primary tasks may miss their

deadlines. Also, these schemes do not use DPM on the

primary and spare processors, while putting a processor into

the sleep/low-power mode when it is idle can pro-vide

further energy saving. [20] has proposed an energy-

management technique for a standby sparing system that

executes preemptive fixed-priority real-time tasks. Tasks on

the primary processor are scheduled by the Cycle-

Conserving DVS algorithm that has been proposed for Rate

Monotonic Scheduling (RMS) in [5]. While the spare uses

DPM and dual-queue mechanism that tries to maximally

delaying the backup tasks to save more energy. It should be

noted that, although RMS is optimal for fixed priority tasks,

it lowers processor utilization.

1.1. Concept Overview and Our Novel

Contribution

In this paper, we consider a dual-processor standby-sparing

system that executes preemptive periodic real-time tasks. We

apply the Earliest-Deadline-First (EDF) scheduling on the

primary processor with DVS and DPM. For the spare

processor we propose an adaptive dual-queue scheduling.

Dual-queue scheduling postpones the execution of backup

tasks, as much as possible [20]. Furthermore, we introduce

an approach to apply DPM on the spare processor to achieve

more energy saving .

Adaptive Dual-Queue (AdDQ) Scheduling: The idea of

dual-priority scheduling was proposed in [22]. It is a strategy

for scheduling periodic, sporadic and adaptive tasks with

both soft and hard deadlines in real-time systems. It is

assumed that the system has three queues according to the

tasks execution priorities: Upper, Middle and Lower. Under

dual-priority scheduling, hard tasks (i.e. tasks with hard

deadlines) are executed either on an upper or lower priority

queue. At run-time, when a hard task releases, it is put into

the lower queue. However, after a while, the task is promoted

to the upper queue. Other tasks, typically with firm or soft

deadlines, are put into the middle queue. The main challenge

of dual-priority scheduling is to determine the promotion

time for hard tasks, to make sure that they will eventually

meet their deadlines in the upper queue.

Zhu et al. [20] have proposed a dual-queue mechanism

based on dual-priority scheduling, which is applied to the

spare processor. Their mechanism has two queues denoted as

lower and upper. When a job arrives, it is put into the lower

queue and after the corresponding promotion time it is

promoted to the upper queue for execution. The promotion

time is computed statically for each task at design time. The

mechanism in [20] schedules fixed-priority tasks and jobs in

the upper queue based on RMS.

Our AdDQ technique is based on [20] and the only

difference is that in AdDQ, jobs in the upper queue are

scheduled by EDF while in [20] they are scheduled by RMS.

It adaptively updates the promotion time to more delay

backup executions at run-time according to available slack

time. The slack time releases when a primary task finishes

successfully and its corresponding backup execution is

canceled (Section 3) .

The rest of the paper is organized as follows. In section 2

we present task, energy and fault models. In section 3, we

present the details of our solution. Our experimental results

are shown in section 4 and we conclude the paper in

section 5.

2. Model and Assumptions

2.1. Application Model

We consider a set of periodic real-time tasks ψ={τ1,…, τn}.

Each task τi has a period Pi, a worst-case execution time WCi

(under the maximum frequency), and an actual execution

time ACi. The j-th job of a task τi (Ji,j) arrives at time

ri,j=(j−1)×Pi and must complete by its deadline j×Pi. Hence,

the relative deadline Di of the job Ji,j is equal to the period Pi.

The utilization of the task τi is defined as WCi/Pi. So, the sum

of all tasks utilization is Utot. We consider for each task τi a

M. Ansari et al.: Low-Energy Hardware Replication for Real-Time Systems through Adaptive Dual-Queue Scheduling (Regular Paper) 33

backup task Bi. τi and Bi have the same timing parameters

(i.e. Pi and WCi). We denote the j-th job of Bi by Bi,j.

2.2. Energy Consumption Model

Each processor can operate in active and sleep modes. The

processor executes tasks in the active mode and in this mode

we compute its energy consumption based on Eq. 1. Total

energy consumption of the system consists of static and

dynamic energy components [18]. The static energy (Es) is

dominated by the leakage current. Dynamic energy (Ed) is

mainly consumed due to system activity.

dstotal
EEE (1)

Under DVS, the voltage Vi that is used for the execution of

the task τi may be less than the maximum voltage Vmax. We

denote the normalized voltage ρi as:

maxV

Vi
i

(2)

Hence, the dynamic energy consumption under the scaled

voltage Vi can be written as:

)()(2

i

i
iieffid

AC
fVCE

 (3)

where, Ceff is the average switched capacitance, Vi and fi are

supply voltage and operational frequency that is used to

execute each task τi, and ACi/ρi is the scaled task execution

time under ρi. Let Vmax be the maximum voltage

corresponding to the maximum frequency fmax. Considering

the almost linear relationship between voltage and frequency

[18], we can write: ρi=Vi/Vmax=fi/fmax. Therefore, Eq. 3 can be

written as:

iieffid ACfVCE 2

max

2

max)((4)

Since CeffVmax
2fmax is constant, the energy consumption can be

normalized by removing CeffVmax
2fmax. Therefore, the

normalized energy consumption of the processor while

executing the task τi can be written as:

iiid ACNE 2)((5)

In this paper, the static energy Es is set to 15% of the

maximum dynamic energy, like the works [19], [20]. In order

to apply DPM on both processors, let assume we have a

break to sleep time (Δcritical). When the idle time of a

processor is greater than Δcritical, processor switches to sleep

mode, and hence, all energy components other than the static

energy Es are removed.

2.3. Fault Model

We consider a transient fault model similar to [19], [20]. The

average fault rate λ is dependent on the processor frequency

where by decreasing processor frequency, λ increases

exponentially. The average fault rate on the frequency f can

be expressed as:

min1
)1(

100)(
f

fd

f

 (6)

where λ0 = 10−7 is the transient fault rate at fmax and d

determines the sensitivity of the system to voltage scaling.

Like the works [19], [20], we consider d=2 in this paper.

3. Our Proposed Adaptive Dual-Queue

Technique

3.1. Illustrative Example

Our AdDQ technique executes preemptive periodic real-time

tasks on a standby-sparing system. On the primary processor,

we use EDF scheduling with DVS and DPM. The spare

processor uses adaptive dual-queue scheduling with DPM.

As an example let us consider three periodic task τ1, τ2 and τ3

with the period Pi and worst-case execution time WCi: P1=5,

WC1=1, P2 =10, WC2 =2, P3 =20, WC3=4. For this task set,

the total utilization is 0.6 and the hyperperiod is H=20

(which is the least common multiple of all the task periods).

Therefore, within a hyperperiod, 4 jobs of τ1, 2 jobs of τ2 and

1 job of τ3 are executed. Fig. 1 shows how this task set is

scheduled and executed by AdDQ. In this example, for ease

of presentation, we temporarily do not exploit DVS. On the

primary processor, the tasks are scheduled by the use of the

preemptive Earliest-Deadline-First (EDF) scheduling

(Fig. 1a). Note that if the main and backup tasks are

scheduled in the same way on the primary and spare

processors (e.g. both are scheduled with EDF), the energy

consumption will significantly increases. This is because

main tasks are executed with their backups in parallel. The

energy overhead can be reduced through delaying the

execution of backup tasks on the spare processor [2].

However, the deadlines of the backup tasks have to be

guaranteed. To address this issue, for the spare processor

(Fig. 1b), we exploit the adaptive dual-queue scheduling

which is based on the dual-queue mechanism presented in

[20]. In dual-queue scheduling we have two queues that we

call them lower and upper queues. When a job arrives, it is

put into the lower queue. In order to promote jobs to upper

queue for execution we should find the exact promotion time,

since tasks should not miss their deadlines in the upper

queue. The first step in finding the exact promotion time is

computing the worst-case response time of each task. There

are multiple techniques to compute the worst-case response

time of the tasks, e.g. [23]. We propose Eq. 7 for dynamic-

priority tasks.

Fig. 1. Scheduling the example task set in Section 3. A

through: (a) EDF on primary, (b) our AdDQ-EDF on spare.

In this figure, DVS is not used and the tasks are executed

on the maximum frequency.

J11

 0 1 3 5 6 8 10 11 13 15 16 20

J12J21 J31 J13 J22 J14

J11

J21

J31

J12 J13

J22

J14

J31

(a) The Primary Processor

J31

R
ea

d
y

 Q
u

e
u

e

B11 B12B21 B31 B31 B13 B22 B14

 0 4 5 6 8 9 10 13 14 15 16 18 19 20

(b) The Spare Processor

U
p

p
er

 Q
u

eu
e

B22B11 B21 B31 B13 B14B12

B31

The CSI Journal on Computer Science and Engineering, Vol. 15, No. 1, 2017 34

ihp j

j

i
i WCWC

P

P
S

ij

)(

 (7)

where hp(τi) is the set of tasks with priority higher than τi.

The second step is computing the promotion time for τi by

substituting Eq. 7 in Eq. 8 as:

iii SDY (8)

In Eq. 8, Di is the deadline of τi and Yi is its promotion time.

Now we give an example to illustrate how AdDQ works. For

the example task set, the promotion times (Yi = Di −Si) can be

computed as: Y1 = 4, Y2 = 6, and Y3 = 8. Fig. 1b shows the

delayed execution scenario. Despite the explicitly enforced

delays, all the jobs still meet their deadlines.

Now, we consider a standby-sparing system where the

DVS-enabled primary processor executes main tasks

according to the EDF scheduling. Since the total utilization

of the task set is 0.6, each task τi takes up to WCi/fi time units

when executed at frequency f=0.6. The spare processor

executes the backup jobs {Bi,j} through the described

adaptive dual-queue scheduling at the maximum frequency.

Fig. 2 shows the corresponding schedules for the primary and

spare processors. By applying dual-queue scheduling, the

backup tasks on the spare processor are sufficiently delayed

and their overlaps with the main tasks on the primary

processor are reduced significantly.

By the use of the adaptive dual-queue scheduling further

energy saving can be gained. Since, when a main job

completes successfully or early, its corresponding backup job

on the spare processor can be cancelled. Fig. 3 shows this

fault free situation. For instance, assuming that J11, J21 and J12

complete successfully on the primary, B11, B21 and B12 are

completely cancelled. J31 will be preempted by J13. Note that,

based on our AdDQ scheme B31 promotes to the upper queue

at the time 8 (see Fig. 2b). However, in the fault-free state,

B12 is canceled at the time 6 since J12 finishes successfully at

that time, and hence, the promotion time of B31 is updated to

9 in Fig. 3b. When the backup copy B31 finishes at the time

13, we cancel the remaining parts of the main job J31 that are

scheduled in the time slots 13-15 and 16-20 on the primary

processor (Fig. 3a). Assuming that all the remaining main

tasks complete successfully, we obtain the schedules in Fig.

3.

3.2. Algorithm Discussion

In this sub-section, we present the details of our AdDQ

technique. Main tasks are executed on the primary processor

according to the EDF scheduling and based on the amount of

the static and dynamic slack time, we apply DVS. The spare

processor is reserved for the execution of backup tasks based

on our adaptive dual-queue scheduling. Also, when the idle

time of each of the processors is greater than the break to

sleep time, DPM is applied. Algorithm 1 shows the event on

the primary processor and the corresponding actions.

In Algorithm 1, in lines 1-15 when a job arrives, the main

job is added to the ready queue (which is the only queue for

primary processor), and its corresponding backup job is

added to the lower queue on the spare. At run time, when a

job is released, if the primary processor is idle, the job is

executed. However, if the processor is running another job,

the execution priorities are assigned according to EDF. If

preemption occurs we update the minimum additional time

required to complete the job (WCm,n) in the worst-case (under

the maximum frequency). In lines 16-20, we find slack time

between t, i.e. the time that a job is executed or resumed

from preemption, and its deadline. It should be noted that if

there is no slack time, the job runs with the maximum

frequency on the primary. To find the minimum frequency

for a job execution, we use [19]:

),,max(
,

,

,
slackWC

WC
Uff

ji

ji

avgeeji

(9)

where fee is called the energy-efficient speed which is a

processing frequency that below it, the total energy

consumption of a task increases. fee can be computed

analytically in advance [11] [24]. Uavg is the average-case

total utilization of the task set. In this scheme, a job is not

allowed to run at a frequency lower than Uavg. In lines 21-22,

when a job completes on the primary, we call an acceptance

test [10] to check the correctness of the task execution. In

lines 23-25 if the acceptance test does not detect any fault,

we cancel the corresponding backup task in the spare

processor. Then, the primary processor continues with

executing the next job in the ready queue. On the other hand,

Fig. 2. Scheduling the example task set in Section III.A

through: (a) EDF with DVS on primary, (b) our AdDQ-EDF on

spare. Note that in our system DVS is only used for the

primary processor.

J11

 0 1 3 5 6 8 10 11 13 15 16 20

J12J21 J31 J13 J22 J14

J11

J21

J31

J12 J13

J22

J14

J31

(a) The Primary Processor

J31

R
ea

d
y

 Q
u

e
u

e

J31

J31

J31

B11 B12B21 B31 B31 B13 B22 B14

 0 4 5 6 8 9 10 13 14 15 16 18 19 20

(b) The Spare Processor

U
p
p
er

 Q
u
eu

e

B22B11 B21 B31 B13 B14B12

B31

Fig. 2. Scheduling the example task set in Section III.A

through: (a) EDF with DVS on primary, (b) our AdDQ-

EDF on spare. Note that in our system DVS is only used

for the primary processor.

J11

 0 1 3 5 6 8 10 11 13 15 16 20

J12J21 J31 J13 J22 J14

J11

J21

J31

J12 J13

J22

J14

J31

(a) The Primary Processor

J31

R
ea

d
y

 Q
u

e
u

e

J31

J31

J31

B11 B12B21 B31 B31 B13 B22 B14

 0 4 5 6 8 9 10 13 14 15 16 18 19 20

(b) The Spare Processor

U
p
p
er

 Q
u
eu

e

B22B11 B21 B31 B13 B14B12

B31

Fig. 3. Fault-free execution of Fig. 2.

J11

 0 1 3 5 6 8 10 11 13 15 16 20

J12J21 J31 J13 J22 J14

J11

J21

J31

J12 J13

J22

J14

(a) The Primary Processor

J31

R
ea

d
y

 Q
u

e
u

e

J31

J31

B31

 0 4 5 6 8 9 10 13 14 15 16 18 19 20

(b) The Spare Processor

U
p
p
er

 Q
u
eu

e

B22B11 B21 B31 B13 B14B12

B31

M. Ansari et al.: Low-Energy Hardware Replication for Real-Time Systems through Adaptive Dual-Queue Scheduling (Regular Paper) 35

if the main job is faulty, we can continue running the spare as

scheduled. In lines 26-31 if there is no ready task available

for execution, the processor will remain idle. The primary

processor will start executing jobs again when the next job

arrives. By the use of the task period values, we can compute

the earliest release times among all future jobs in linear time.

The time to the earliest release time is denoted by the

earliest_release in the pseudo code. If the idle time exceeds

the break to sleep time (Δcritical), the primary processor is put

into sleep mode until next arrival (release). In lines 32-34 if

there is ready task available for execution, the processor will

execute the task.

Algorithm 2 gives the actions taken in response to the

events on the spare processor. The spare processor uses

adaptive dual-queue scheduling and applies only DPM for

energy management. According to lines 1-3 of the algorithm

2, when a job Bi,j is promoted to the upper queue it

is qualified for execution under EDF scheduling. Lines 4-8

explain that, if a backup job Bi,j is completed successfully

earlier than the corresponding main task Ji,j, the execution of

remaining part of Ji,j will be cancelled on the primary

processor. In lines 9-16, if a backup job is entirely cancelled

before execution, we compute the slack time that obtains

from cancelling Bi,j. All the tasks that are released until now

will be postponed according to the computed slack time.

However corresponding deadlines of spare tasks should not

be missed. Lines 17-26 express that if a backup job is

cancelled but we cannot use slack time to postpone the other

spare jobs, therefore, we apply DPM on the processor. The

time to earliest promotion event is denoted by variable

earliest_promotion. If the idle interval is greater than Δcritical,

the spare processor is put into the sleep mode and the

corresponding sleep-exit event is scheduled. Lines 27-37

explain that at sleep-exit, the spare inspects the upper queue.

If the upper queue is empty, by considering the earliest

promotion time it switches to the sleep mode. Otherwise, the

highest-priority job is executed.

4. Results and Discussion

Our evaluation consists of the comparison between AdDQ

and state-of-the-art RAPM. Also we compared AdDQ with

the ASSPT, CSSPT and SSFP algorithms (explained in

Section 1). To evaluate AdDQ we constructed a discrete-

event simulator. In our simulations, for each data point, we

generated 1000 task sets and the average results are reported.

Each task set consists of 10 tasks. The task periods are

generated randomly between 10 and 100 ms. The worst-case

utilization of the tasks, are generated randomly using the

UUnifast scheme [25]. The worst-case execution time (WC)

is computed as the product of the period and worst-case

utilization. Like [19] and [20], the actual execution time

Algorithm 2: Our AdDQ Scheduler and Energy Manager for
the Spare Processor

1. Event – Promotion of backup job Bi,j:

2. Put Bi,j into the upper queue on the spare

3. Execute the highest EDF priority job on spare

4. Event – Completion of backup job Bi,j:

5. Run the acceptance test for Bi,j

6. if Ji,j is not completed yet then

7. Cancel Ji,j on the primary

8. end if

9. Event – Cancellation of backup job Bi,j:

10. S←Slack time obtain from canceling the Bi,j

11. for every Bm,n before the Bi,j then

12. if Ym,n+S+WCi,j< Deadline(Bi,j)

13. Ym,n ← Ym,n +S

14. end if

15. Set new promotion event

16. end for

17. if Bi,j is the current active job then

18. /* Check if the spare can ‘sleep’ in the slack of Bi,j*/

19. earliest_promotion←

20. time_to_earliest_promotion_event

21. Δep← earliest_promotion

22. if Δep ˃ Δcritical then

23. Set sleep_exit event at t = time + Δep

24. Put spare into sleep mode

25. end if

26. end if

27. Event – Sleep_exit:

28. if the upper queue is not empty then

29. /* There are backups not yet cancelled */

30. Execute the highest EDF priority job on spare

31. else

32. Δep ← earliest_promotion

33. if Δer ˃ Δcritical then

34. Set wake-up event at t = time + Δer

35. Put spare to sleep mode

36. end if

37. end if

Algorithm 1: Scheduler and Energy Manager for the
Primary Processor

1. Event – A job of τi (namely, Ji,j) is released at time t:

2. Add Ji,j to the ready queue on the primary

3. Add Bi,j to the lower queue on spare

4. If the processor is busy then

5. If priority(Ji,j) > priority(Jm,n) then

6. /* preemption case */

7. WCm,n ← WCm,n – fm,n* em,n

8. /* execution time of Jm,n until now */

9. Execute(Ji,j);

10. else

11. /* Execute Jm,n */;

12. end If

13. else /* processor is idle */

14. Execute(Ji,j);

15. end If

16. Function Execute(Ji,j);

17. slack ← EDF_Slack(t, deadline(Ji,j))

18. fi,j← max(fee, Uavg,
𝑊𝐶𝑖,𝑗

𝑊𝐶𝑖,𝑗+𝑠𝑙𝑎𝑐𝑘
)

19. Execute Ji,j on the primary processor at frequency fi,j

20. End Function

21. Event – Ji,j completes at time t:

22. Run the acceptance test

23. If no error is detected then

24. Cancel the backup Bi,j on the spare processor

25. end if

26. If ready queue of primary is empty then

27. earliest_release ← time to earliest release time

28. Δer ← earliest _release

29. If Δer ˃ Δcritical then

30. Put primary to sleep mode for Δer units of time

31. end If

32. else /* jobs are available for execution */

33. Execute a job on the primary

34. end If

The CSI Journal on Computer Science and Engineering, Vol. 15, No. 1, 2017 36

(AC) of a task instance is obtained randomly according to the

uniform distribution or normal distribution with mean

(WC+BC)/2 and variance (WC+BC)/6 to ensure that 99.7%

of the actual execution times lies within the [BC, WC] range

of the task [7] [26]. We evaluated the ratio of energy saving

of AdDQ versus RAPM, ASSPT, CSSPT and SSFP across

different system parameters including the total utilization

(Utot) and ratio between worst-case to best-case execution

time (WC/BC). We first evaluated the impact of the system

utilization when WC/BC=5 and the total utilization varies

from 0.1 to 1. Fig. 4 and Fig. 5 show the results for the cases

when tasks actual execution times (AC) are generated based

on the uniform and normal distributions. What can be

inferred from these figures is that, AdDQ completely

outperforms the other four schemes for all utilization values.

This is achieved through reducing the overlap of the

execution of main tasks on the primary processor and their

corresponding backup tasks on the spare processor.

Therefore, by further postponing the backup tasks at run

time, in many cases we can cancel the backup tasks on the

spare processor. Also, for all utilization values AdDQ can

save more energy compare to RAPM. The main reason is

that RAPM is forced to run at high frequency and

consequently consuming too much energy; on the whole, by

increasing the utilization, the energy saving decreases (see

Fig. 4 and Fig. 5). Since, when utilization is low, more slack

time can be achieved, this further slack time helps us to save

more energy through DVS and DPM.

In this part we show the impact of workload variability.

We set the total utilization to 0.5 and vary the WC/BC ratio

from 1 to 10. Fig. 6 and Fig. 7 show the results for the cases

when tasks actual execution times (AC) are generated based

on the uniform and normal distributions. As the WC/BC ratio

increases, there is more dynamic slack for the algorithms to

reclaim and the energy consumption decreases

correspondingly and the energy saving increases for all

schemes. However, AdDQ has better performance against

other schemes since it tries to slow down all the jobs in a

balanced order.

Fig. 4. Energy saving in different system utilizations.

Tasks AC are generated based on the uniform distribution

and WC/BC=5.

Fig. 6. Energy saving for different workload variability.

Tasks AC are generated based on the uniform

distribution and Utot=0.5.

Fig. 5. Energy saving in different system utilizations.

Tasks AC are generated based on the normal distribution

and WC/BC=5.

Fig. 7. Energy saving for different workload variability.

Tasks AC are generated based on the normal distribution

and Utot=0.5.

0

5

10

15

20

25

30

35

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

E
n
er

g
y

S
av

in
g
s

(%
)

Total Utilization

vs. RAPM vs. ASSPT vs. CSSPT vs. SSFP

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 1 0

E
n
er

g
y

S
av

in
g

(%
)

𝑊𝐶/𝐵𝐶 Ratio

vs. RAPM vs. ASSPT vs. CSSPT vs. SSFP

0

5

10

15

20

25

30

35

40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n
er

g
y
 s

av
in

g
 (

%
)

Total Utilization

vs. RAPM vs. ASSPT vs. CSSPT vs.SSFP

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 1 0

E
n
er

g
y

S
av

in
g

(%
)

𝑊𝐶/𝐵𝐶 Ratio

vs. RAPM vs. ASSPT vs. CSSPT vs. SSFP

M. Ansari et al.: Low-Energy Hardware Replication for Real-Time Systems through Adaptive Dual-Queue Scheduling (Regular Paper) 37

5. Conclusion

In this paper, we considered two main objectives in de-

signing real-time embedded systems, denoted as reliability

and energy consumption. To achieve these objectives we

proposed a scheduling scheme for standby-sparing systems

that execute periodic real-time tasks. Our scheme uses the

EDF scheduling and DPM on the primary processor. On the

spare processor, we apply our proposed adaptive dual-queue

(AdDQ) scheduling along with DPM. AdDQ postpones the

execution of backup tasks on the spare processor as much as

possible. Since faults are naturally rare event and also tasks

often consume less than their worst-case execution time,

tasks commonly complete early or successfully. Another

feature of AdDQ is that, it provides a good opportunity to

cancel the backup tasks on the spare processor when its main

task completes early or successfully on the spare processor;

resulting in a reduced energy consumption. We compared

our AdDQ with the RAPM, SSFP, ASSPT and CSSPT

schemes. Simulation results show that AdDQ provides 14%

energy saving compared to the other schemes.

References
[1] S. Aminzadeh, and A. Ejlali, “A Comparative Study of System-Level

Energy-Management Methods for Fault-Tolerant Hard Real-Time
Systems,” IEEE Trans. on Computers, vol. 60, no. 9, pp. 1288-1299,
2011.

[2] A. Ejlali, and B.M. Al-Hashimi, “A standby-sparing technique with
low energy-overhead for fault-tolerant hard real-time systems,” in
Proc. of the 7th IEEE/ACM int’l conf. on Hardware/software codesign
and system synthesis (CODES+ISSS '09), New York, 2009.

[3] T.D. Burd, T.A. Pering, and A.J. Stratakos, “A dynamic voltage scaled
microprocessor system,” IEEE J. Solid-State Circuits (JSSC), vol. 35,
no. 11, pp. 1571-1580, 2000.

[4] M. Salehi, and A. Ejlali, “A Hardware Platform for Evaluating Low-
Energy Multiprocessor Embedded Systems Based on COTS Devices,”
IEEE Trans. on Industrial Electronics, vol. 62, no. 2, pp. 1262-1269,
2015.

[5] P. Pillai, and K.G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” in SOSP ACM Symposium on
Operating Systems Principles, Dec. 2001.

[6] A. Ejlali, B.M. Al-Hashimi, and P. Eles, “Low-Energy Standby-
Sparing for Hard Real-Time Systems,” IEEE Trans. on Computer
Aided Design of Integrated Circuits and Systems, vol. 31, no. 3, pp.
329-342, 2012.

[7] H. Aydin, and R. Melhem, “Power-aware scheduling for periodic real-
time tasks,” IEEE Trans. on Computers, vol. 53, no. 5, pp. 584 - 600,
May 2004.

[8] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design
techniques for system-level dynamic power management,” IEEE
Trans. on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 3,
pp. 299,316, 2000.

[9] M. Salehi, A. Ejlali, and B.M. Al-Hashimi, “Two-Phase Low-Energy
N-Modular Redundancy for Hard Real-Time Multi-Core Systems,”
IEEE Trans. on Parallel and Distributed Systems, no. 99, 2015.

[10] D. Pradhan, Fault Tolerant Computer System Design, Prentice-Hall,
1996.

[11] D. Zhu, R. Melhem, and D. Mossé, “The effects of energy
management on reliability in real-time embedded systems,” in
IEEE/ACM int’l Conf. on Computer Aided Design, Nov. 2004.

[12] I. Koren, and C.M. Krishna, Fault-Tolerant Systems, Morgan
Kaufman, 2007.

[13] P. Pop, V. Izosimov, P. Eles, and Z. Peng “Design optimization of
time-and cost-constrained fault-tolerant embedded systems with
checkpointing and replication,” IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, vol. 17, no. 3, pp. 389-402, 2009.

[14] R. Melhem, D. Mosse, and E. Elnozahy, “The Interplay of Power
Management and Fault Recovery in Real-Time Systems,” IEEE Trans.
on computers, vol. 53, pp. 217-231, 2004.

[15] B. Zhao, H. Aydin, and D. Zhu, “Enhanced reliability-aware power
management through shared recovery technique,” in Proc. int’l conf.
on Computer Aided Design (ICCAD), 2009.

[16] D. Zhu, and H. Aydin, “Reliability-Aware Energy Management for
Periodic Real-Time Tasks,” IEEE Trans. on Computers, vol. 58, no.
10, pp. 1382-1397, April 2009.

[17] R. Sridharan, and R. Mahapatra, “Reliability aware power
management for dual-processor real-time embedded systems,” in Proc.
of the 47th Design Automation Conference (DAC), New York, 2010.

[18] M. Khavari Tavana, M. Salehi, and A. Ejlali, “Feedback-Based Energy
Management in a Standby-Sparing Scheme for Hard Real-Time
Systems,” in Proc. of the 32nd IEEE Real-Time Systems Symposium,
RTSS, Vienna, 2011.

[19] M.A. Haque, H. Aydin, and D. Zhu, “Energy-Aware Standby-Sparing
Technique for Periodic Real-Time Applications,” Proc. IEEE 29th
Int‘l Conf. Comput. Design (ICCD'11), pp. 190-197, Oct. 2011.

[20] M.A. Haque, H. Aydin, and D. Zhu, “Energy Management of Standby-
Sparing Systems for Fixed-Priority Real-Time Workloads,” Green
Computing Conf. (IGCC), Arlington, June 2013.

[21] C.L. Liu, and W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,” Journal of the
ACM (JACM), vol. 20, no. 1, pp. 46-61, Jan. 1973.

[22] R. Davis, and A. Wellings, “Dual Priority Scheduling,” in the 16th
IEEE Real-Time Systems Symposium, Pisa, 1995.

[23] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,” in
Proc. of IEEE Real Time Systems Symposium, 1989.

[24] R. Gupta, “Dynamic Voltage Scaling for Systemwide Energy
Minimization in Real-Time Embedded Systems,” in Proc. of the int’l
Symposium on Low Power Electronics and Design, Newport Beach,
Aug. 2004.

[25] E. Bini, and G.C. Buttazzo, “Measuring the Performance of
Schedulability Tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129-
154, 2005.

[26] F. Gruian, “Hard real-time scheduling for low-energy using stochastic
data and DVS processors,” in Proc. of IEEE int’l Symposium on Low
power electronics and design (ISLPED), 2001.

[27] F. R. Poursafaei, S. Safari, M. Ansari, M. Salehi ,and A. Ejlali "Offline
replication and online energy management for hard real-time multicore
systems." in Proc. of IEEE int’l Symposium on Real-Time and
Embedded Systems and Technologies (RTEST), pp. 1-7, 2015.

Mohsen Ansari received the M.Sc.

degree in computer engineering from

Sharif University of Technology,

Tehran, Iran, in 2016. He is currently

working toward the PhD degree in

computer engineering form Sharif

University, Tehran, Iran. He is now the

member of Embedded Systems Research

Laboratory (ESR-LAB) at the

department of computer engineering, Sharif University of

Technology. His research interests include low-power design

of embedded systems, peak power management in fault-

tolerant embedded systems, and multi-/many-core systems

with a focus on dependability/reliability.

Email: mansari@ce.sharif.edu

Sepideh Safari received the M.Sc.

degree in computer engineering from

Sharif University of Technology,

Tehran, Iran, in 2016. She is currently

pursuing her PhD degree with Sharif

University of Technology, Tehran, Iran.

She is now the member of VLSI

Laboratory at the department of

computer engineering, Sharif

University of Technology. Her research interests include

The CSI Journal on Computer Science and Engineering, Vol. 15, No. 1, 2017 38

low-power design, multi-/many-core systems, and energy

management in fault-tolerant real-time systems.

Email: ssafari@ce.sharif.edu

Farimah R. Poursafaei received her

B.Sc. degree in computer engineering

from Amirkabir University of

Technology, and her M.Sc. degree from

Sharif University of Technology, in

2016, Tehran, Iran. Her research

interests include multi-/many-core

systems, low-power design, real-time

embedded systems, and optimization

and management of non-volatile memories.

Email: poursafaei@ce.sharif.edu

Mohammad Salehi received the PhD

degree in computer engineering from

Sharif University of Technology,

Tehran, Iran, in 2016. He is currently an

assistant professor of computer

engineering at University of Guilan,

Rasht, Iran. From 2014 to 2015, he was

a visiting researcher in the Chair for

Embedded Systems (CES), Karlsruhe

Institute of Technology (KIT), Germany. His research

interests include design of low-power, reliable and real-time

embedded systems with a focus on dependability and energy

efficiency in cyber-physical systems and Internet of Things

(IoT).

Email: mohammad.salehi@guilan.ac.ir

Alireza Ejlali received the PhD degree

in computer engineering from Sharif

University of Technology in, Tehran,

Iran, in 2006. He is currently an

associate professor of computer

engineering at Sharif University of

Technology. From 2005 to 2006, he was

a visiting researcher in the Electronic

Systems Design Group, University of

Southampton, Southampton, United Kingdom. In 2006, he

joined Sharif University of Technology as a faculty member

in the department of computer engineering and from 2011 to

2015 he was the director of Computer Architecture Group in

this department. His research interests include low power

design, real-time embedded systems, and fault-tolerant

embedded systems.

Email: ejlali@sharif.edu

Paper Handling Data:

Submitted: 15.04.2017

Received in revised form: 10.04.2018

Accepted: 27.04.2018

Corresponding author: Dr. Alireza Ejlali,

Department of Computer Engineering, Sharif University

of Technology, Tehran, Iran.

