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Abstract 
 

In multi-domain environments, authorization 
policies for each administrative domain are 
determined by either one administrator or through 
cooperation of multiple administrators. Proposed 
logic-based models for multi-domain environments' 
authorization neither consider an administrator as the 
legislator of a policy in policies' representation nor 
specify the domain of a policy explicitly. Considering 
legislators in policy specification provides the 
possibility of presenting composite administration and 
utilizing administrators' characteristics in policy 
analysis such as conflict resolution. In this paper, we 
propose the syntax, proof theory, and semantics of a 
logic in which administrators are considered in 
authorization policies' specification, composite 
administration is presented, and each authorization 
policy is explicitly associated with some administrative 
domains. We also claim that the logic is sound. The 
presented logic is based on modal logic and utilizes 
two calculi named the calculus of administrators and 
the calculus of administrative domains. A case study of 
the logic usage is presented. 
 
1. Introduction 
 

The usage of multi-domain environments (hereafter 
we refer to as MDEs) is continuously increasing.  
MDEs constitute autonomous administrative domains. 
In each domain, several resources exist which may be 
shared among domains in large scale applications. 
Authorization policies regarding the resources of a 
domain are stated by one administrator or multiple 
administrators’ cooperation. When a subject submits a 
request associated with a domain, possibly supported 
by one or more credentials, it must comply with the 
domain’s authorization policies if it is to be granted 
[16]. Important properties of MDEs include the 
following: 

• Authorization policies are created, stored, and 
managed in a dynamic and distributed fashion by 
cooperation among several independent 
administrators [16, 19].  

• MDEs accommodate complex interactions, which 
may involve authorization policies that utilize 
delegations, roles, and groups [5, 21]. 

• Domains are typically heterogeneous; e.g. they have 
diverse restrictions [3, 19].  
The properties raise specific requirements for 

authorization policies’ representation in MDEs 
including the following: 
• More flexible, distributed, and declarative approach 

to authorization representation [4, 16, 23]. 
• More expressive representation supporting 

heterogeneous or unknown policies [4, 22]. 
• Representation controlling interference of different 

authorization policies [4]. 
• More robust validation and analysis of policies [8]. 

Logic has been used to represent authorization 
policies in the literature due to its ability to fulfill most 
of the requirements. In particular, logic provides: 
• Precise and non-ambiguous representation.  
• Sufficient expressiveness, flexibility, and 

declarativeness for representation [20]. 
• Reasoning about authorization policies and proving 

properties on them [4, 23]. 
• Logical transformations of representations [20]. 

Some research [4, 16, 22] has used logic to 
represent authorization policies in MDEs. However, 
proposed models have not considered an administrator 
as the legislator of an authorization policy in its 
representation which can be used in policies’ analysis 
and enforcement. Indeed, the research has not specified 
the administrative domain of an authorization policy 
explicitly. In this paper, we propose a logic that 
considers the inclusion of administrative domains and 
also administrators in the representation of MDEs’ 
authorization policies. Both domains and 
administrators can be either primitive or composite. 
The definition of a prominence relation between 



administrators is provided in the logic. The potential 
conflict among authorization policies can be resolved 
on the basis of the prominence relation. Our proposed 
logic is based on modal logic and utilizes two calculi 
named the calculus of administrators and the calculus 
of administrative domains.  

The rest of this paper is organized as follows. In the 
next section, research related to the usage of logic in 
multi-domain authorization is reviewed. In section 3, a 
broad overview of the proposed logic is stated. The 
main logic, its two accommodated calculi, and its other 
related topics are explained in section 4. A case study 
is explained in section 5; and finally, conclusions are 
summarized in section 6. 
 
2. Related Work 
 

Many researchers have been attracted to use logic in 
presenting their minded knowledge and reason about it. 
Some researches have been done in using logic to 
represent authorization policies in MDEs. Various 
types of logic such as first order logic, modal logic 
(e.g. temporal logic), default logic, and stratified logic 
have been utilized in the representation of MDEs’ 
authorization policies. 

Some efforts have been put into specifying common 
abstract concepts such as roles, groups, and delegation 
[2, 13, 15]. Abadi, et al. [2] presented a calculus for 
access control in distributed systems. The specification 
of composite requesters, access control lists, role, 
group, and unlimited delegation have been proposed in 
the calculus. Howell and Kotz [13] presented a 
restricted version of delegation stated before in [2]. 
They also described the constructs of SPKI on the 
basis of local namespaces’ logical specification. Some 
has focused on specifying implemented systems [1, 5, 
11, 12, 17, 23]. Bowers, et al. [5] suggested a number 
of mechanisms for consumable credentials’ 
enforcement in a distributed authorization system 
based on linear logic. Zhang, et al. [23] presented a 
logic-based policy specification of usage control. 
Using an extension of Lamport’s temporal logic of 
actions (TLA), they developed a logical specification 
of UCON presented before by Park and Sandhu.  

Woo and Lam [22] presented a general framework 
for authorization in distributed systems. A logical 
language for specifying policy bases proposed in the 
framework. The main drawback of the approach is that 
it is not decidable. Jajodia, et al. [14] presented a 
logical language for authorization specification (ASL). 
Every authorization specification is a stratified datalog 
program. Access control checking can be performed in 
linear time with respect to the number of rules in 
authorization specification. Some ideas have been 

presented to specify a relatively complete set of useful 
authorization scenarios when respecting decidability 
[16, 18]. Li, et al. [16] presented a logic-based 
authorization representation with delegation in 
distributed systems. The delegation logic focuses on 
explicit treatment of delegation depth and delegation to 
complex principals. In the logic, under some 
restrictions, inferencing can be computed in worst case 
polynomial time. Some researches have used 
intuitionistic logics to integrate more policy 
specification and its enforcement [6, 10].  

Dai and Alves-Foss [7] introduced an engineering 
process for distributed logic-based authorization policy 
development. The process includes formal 
specification, verification, testing and integration. In 
order to realize policy engineering, logic programming 
technologies were used. Bonatti, et al. [4] considered 
composition of authorization policies that may be 
independently stated. They proposed an algebra of 
security policies together with its formal semantics. 
Also, it has been illustrated how to formulate complex 
policies and reason about them. Freudenthal, et al. [9] 
proposed a distributed role-based access control for 
systems that span multiple administrative domains. 
One of the most important features of this model is 
third-party delegations related to the speaks for 
relationship of Li’s Delegation Logic. This feature 
allows privileged entities to create roles and designate 
other entities to give out these roles. 

As can be seen, a number of models have been 
presented for the representation of various types of 
MDEs' authorization policies; however, none of these 
models considers the concepts of policies' legislators 
and domains in policies' representation. Consideration 
of legislators and domains (focused in this paper) 
provides the possibility of utilizing them in policy 
analysis and enforcement which has a strong potential 
usage in several real world applications.  

 
3. Overview 
 

Our proposed logic utilizes two calculi defined as 
the calculus of administrators and the calculus of 
administrative domains. The calculus of administrators 
is defined as a formal system whose language ML  
contains proper structured administrators. 
Administrators may be primitive or composite. Every 
administrator represents a corresponding real world's 
authority legislating authorization policies. The 
calculus of administrative domains is also described as 
a formal system; its language DL  includes well formed 
administrative domains’ formulae. The calculus 
formalizes various circumstances of domains. Our 
proposed logic utilizes these two calculi in order to 



describe authorization statements. An authorization 
statement is a policy legislated by an administrator(s) 
and is related to some domains. The logic semantics is 
presented using the standard Kripke model. The 
soundness of the logic is proved. Also, a case study for 
the usage of the logic is explained. 
 
4. The Logic for Multi-Domain 
Authorization 
 
4.1. The Calculus of Administrators 
 

We consider administrators in the specification of 
policies as policies’ legislators by proposing a calculus 
for representing administrators; the calculus used later 
in the logic of policies. The calculus is capable of 
expressing possible combinations of administrators and 
reasoning about them. In MDEs, there are two types of 
administrators (as legislators): primitive and composite. 
Each primitive administrator is a potential single 
legislator and a composite administrator is a 
combination of primitive and/or composite 
administrators. 

The calculus of administrators is a formal system 
),,( mmm IAM Ω=  whose components are defined as 

follows: 
i. mA  is a non-empty, finite, and distinct set of  

elements called primitive administrators and 
are typically shown as …,, 21 mm ; 

ii. mΩ  is a set of three functions called 
combinatory operators; the functions consist 
of: Conjunction (&), Disjunction (|), and 
Delegation (*); 

iii. mI  is a finite set of calculus axioms explained 
later completely. 

Depending on the precise rules of formulas’ 
construction, the left parenthesis, "(", and the right 
parentheses, ")", may be necessary. The calculus 
functions get two primitive or composite 
administrators as their input and their output is a 
composite administrator. 

The language of M, ML , is the set of all 
administrators including primitive and composite 
administrators. Inductively, ML  is defined as the 
smallest set such that: 

i. Every primitive administrator im  is in ML . 
ii. If m and m′  are in ML , then so are ( mm ′& ), 

( mm ′| ), and ( mm ′* ).  
mm ′& , mm ′| , and mm ′*  are composite 

administrators. mm ′&  is used when m and m′  

legislate jointly, mm ′|  is used when either m or m′  
legislates a policy, and mm ′*  is used if m legislates as 
an agent of m′ .  

The administrators' calculus axioms determining the 
characteristics of the calculus functions are as follows: 
(A1) ML  is closed under &, |, and *. 
(A2) &, |, and * are idempotent in a wide sense. 

(A function is idempotent in a wide sense if it 
allows one of its identical operands to be 
deleted; and, an operand to be duplicated 
using it as the operator). 

(A3) & and | are commutative. 
(A4) &, |, and * are associative. 

Considering the above characteristics, 
administrators’ related algebraic structures can be 
distinguished, including: 
• Administrators form a Semilattice under & and |.  
• Administrators form a Band under *.  

The axioms related to the distributivity property of 
the proposed calculus functions are as follows: 
(A5) )&(|)&()|(& mmmmmmm ′′′≡′′′  
(A6) )*(&)*()&(* mmmmmmm ′′′≡′′′  
(A7) )*(|)*()|(* mmmmmmm ′′′≡′′′  

Stipulated axioms are proved to be sound according 
to the presented semantics. 
 
4.2. The Calculus of Administrative Domains 
 

We consider administrative domains in policy 
specification in order to identify each policy’s 
managed domain explicitly. The calculus of 
administrative domains expresses an abstraction of 
administrative domains, their various situations against 
each other, and other useful properties (e.g., algebraic 
properties). The calculus is then used in the logic of 
authorization statements. Consequently, administrative 
domains are accommodated in policy presentation. 
Hereafter, a domain is called primitive if it is an 
identified domain in MDE; and, a domain is named 
composite when it is a proper composition of other 
domains. 

The calculus of administrative domains is defined 
as a formal system ),,( ddd IAD Ω= . The system 
consists of the following sets: 

i. dA  is a non-empty, finite and distinct set of 
primitive domains presented as …,, 21 dd ; 

ii. dΩ  is a set of functions applied on domains, 
including: top (┬), bottom ( ⊥ ), intersection 
( ∩ ), union ( ∪ ), and complement (-); 

iii. dI  is the set of calculus axioms stated later. 



The left parenthesis, "(", and the right parentheses, 
")", may be necessary in formulas’ synthesis. ∪ , ∩ , 
and - take two domains as their input and their output 
being a composite domain is the inputs union, 
intersection, and complement respectively. ┬ and ⊥  
are functions without input; ┬ represents the union of 
all primitive domains and ⊥  presents no domain. 

The language of D  is called DL  consisting of all 
proper structured domains and is defined inductively as 
follows: 

i. Every primitive domain, id , is in DL . 
ii. ┬ and ⊥ are in DL . 

iii. If d and d ′  are in DL , then so are ( dd ′∩ ), 
( dd ′∪ ), and ( dd ′− ).  

The calculus of administrative domains' axioms 
related to its functions’ properties are as follows: 
(A8) DL  is closed under ∩ , ∪ , and -. 
(A9) ∩  and ∪  are idempotent in a wide sense. 
(A10) ∩  and ∪  are commutative. 
(A11) ∩  and ∪  are associative. 
(A12) ∩  and ∪  are unital due to the satisfaction of 

the equations ┬ ∩=∩ dd ┬ d=  and 
ddd ⊥=∪=∪⊥ . 

According to the stated properties, a number of 
algebraic structures formed from DL  and the functions 
defined in the calculus consist of: 
• DL  under ∩  and ∪  forms a Monoid and also a 

Semilattice. 
• DL  under – forms a Magma. 

Some of the calculus axioms are related to the 
distributivity property of the calculus functions over 
each other including: 
(A13) )()()( ddddddd ′′∩∪′∩≡′′∪′∩  
(A14) )()()( ddddddd ′′∩−′∩≡′′−′∩  
(A15) )()()( ddddddd ′′∪∩′∪≡′′∩′∪  

Soundness of the specified axioms has been proved. 
 
4.3. The Logic of Authorization Statements 
 

In this paper, authorization policies are expressed 
using modal logic, as authorization statements. The 
primary contribution is the inclusion of an 
administrator legislating an authorization statement and 
an administrative domain associated with the statement 
in its specification. Composite administrators and 
various compositions of domains’ situations can be 
stated in the logic due to the inclusion of the calculi. 

The alphabet of the logic is as follows: 

i. A non-empty, finite and distinct set of 
authorization propositions shown in the form 
of …,, 21 pp . 

ii. ML : The set of administrators. 
iii. DL : The set of administrative domains. 
iv. The connectives of the logic: ∧ , ∨ , ¬ ,   

→ , leg (legislation), ~, and 6 . 
v. The left parenthesis, "(", and the right 

parentheses, ")". 
The defined calculi have been included in the logic 

by accommodating ML  and DL . ∧ , ∨ , ¬ , and →  
are primitive logical connectives. The modal logic 
connective is leg. The left operand of ~ is from ML  
and its right operand is from DL . Both operands of 6  
are from ML .  

The set of all proper authorization statements, S, is 
the smallest set such that: 

i. Every authorization proposition, ip , is in S. 
ii. If m and m′  are in ML , then mm ′6  is in S.  

iii. If s and s′  are in S, then so are ( ss ′∧ ), 
( ss ′∨ ), ( ss ′→ ), and s¬ . 

iv. If s is in S, m  is in ML , and d is in DL , then 
slegdm     ~  is in S. 

mm ′6  expression implies that m′  dominates m; 
consequently, m′  would own every authorization that 
m had. The authorization statement slegdm     ~  
expresses m (administrator) legislates the authorization 
statement s related to d (administrative domain). 
 
4.4. Proof Theory 

 
The logic of authorization statements' inference 

rules consist of:  

(R1) 
s

sss
′

′→  ;   

(R2)       
dmslegdm

s
,every for   ,    ~

 

In the propositional logic, R1 is known as modus 
ponens; in the modal logic, R2 is called necessitation. 

Some axioms are proved to be valid in the logic of 
authorization statements, including: 
(A16) If s is a tautology in the propositional logic, 

then s is valid in the logic of authorization 
statements. 

(A17)   ))    ~( )    ~(()    ~( slegdmslegdmsslegdm ′→→′→  
(A18)   )    ~()    ~( slegdmslegdm ¬¬→  
(A19)   )    ~()    ~(    ~& slegdmslegdmslegdmm ′∧≡′

 (A20)   )    ~(    ~    ~* slegdmlegdmslegdmm ′≡′  



(A21)  )    ~|())    ~()    ~(( slegdmmslegdmslegdm ′→′∨  
(A22)   )    ~()    ~(    ~ slegdmslegdmslegddm ′∧≡′∪  
(A23)   )    ~()    ~(    ~ slegdmslegdmslegddm ′¬∨≡′−  
(A24)   )    ~())   ~()   ~(( slegddmslegdmslegdm ′∩→′∨  

¬  and →  are formed a complete set on which 
basis ∧  and ∨  can be defined; so, the following 
equations are established according to A17 and A18: 
(Eq1)  ))    ~( )    ~(()    ~( slegdmslegdmsslegdm ′∧≡′∧  
(Eq2)  )    ~())    ~( )    ~(( sslegdmslegdmslegdm ′∨→′∨  

The axioms are proved to be sound according to the 
proposed semantics.  

 
4.5. Semantics 
 

We express the semantics of the authorization 
statements’ logic using the standard Kripke model. The 
Kripke-style structure for the proposed logic is 
presented as JIWM ,,= . The components of M 
consist of: 
• W is the set of possible worlds. 
• WPI 2: →  is an interpretation function mapping 

every authorization proposition to a subset of W in 
which the proposition is true. 

• WWDMJ ×→× 2:  is an interpretation function 
mapping each pair formed from an administrator 
and an administrative domain to a binary relation 
from W to W. The administrator and administrative 
domain are primitive. 
To determine the semantics of an authorization 

statement comprising an administrator and an 
administrative domain, the semantics of administrators 
and domains should be defined; J is used for this 
purpose. J, based on its inputs being an administrator 
and a domain, specifies paired possible worlds being 
reachable from each other through the inputs. Each 
possible world is considered as an authorized state in 
which several requests are allowed; a request is 
disallowed if it is explicitly forbidden or just not 
permitted. If an administrator m being in w knows w′  
reachable according to his knowledge about a domain 
d, then ),(),( dmJww ∈′  is established. An 
administrator’s knowledge about a domain d is 
considered as allowable requests regarding d from the 
administrator’s view point. The function R extends J to 
accept composite administrators and/or composite 
domains as input: 
• ),(),( dmJdmR =  

For a primitive administrator and a primitive 
domain, R and J results are the same. 

• ),(),(),&( dmRdmRdmmR ′∪=′  

Suppose w is a typical possible world where 
administrators m and m′  list reachable worlds; w′  
is a reachable world from w through m and a domain 
d; and, w ′′  is a reachable world from w through m′  
and d. The union of administrators’ knowledge is 
obtained by their conjunction. Accordingly, both w′  
and  w ′′  are reachable from w through mm ′&  and 
d. 

• ),( ),(),*( dmRodmRdmmR ′=′  
The delegation of administrators bridges between 
reachable worlds according to their knowledge 
about some domains. 

• ),(),(),|( dmRdmRdmmR ′∩=′  
By administrators’ disjunction, either their common 
knowledge or the knowledge of one is considered in 
specifying reachable worlds. The smallest set is 
resulted from their common knowledge.  

• ),(),(),( dmRdmRddmR ′∪=′∪  
The knowledge of an administrator about the union 
of two domains is the union of his knowledge about 
each of them.  

• ,(mR ┬ ∪
id

idmR
∀

= ),()  

Where id  is a typical primitive administrative 
domain.  

• ),(),(),( dmRdmRddmR ′∩=′∩  
Based on an administrator’s knowledge about two 
domains d and d ′ , his knowledge about their 
intersection is the intersection of his knowledge 
about each of them. As both domains’ allowable 
requests are supposed to be allowable in their 
common area, contradictory ones are eliminated.  

• ),(),(),( dmRdmRddmR ′−=′−  
The knowledge of an administrator about dd ′−  is 
through removing his knowledge about d ′  
(analogously his knowledge about two domains’ 
intersection) from his knowledge about d.  

• ),(),(),( ii dmRdmRmR −=⊥  
Where id  can be any primitive administrative 
domain. As ⊥  is the symbol of no domain, it can be 
defined as the difference of any domain and itself.  
The function K extends I by mapping each 

authorization statement to a subset of possible worlds 
where it is true. It is defined as follows: 
• )()( ii pIpK =  

K and I give an identical set of possible worlds if 
their input is an authorization proposition.  

• )()( sKWsK −=¬  
• )()()( sKsKssK ′∩=′∧  



• )()()( sKsKssK ′∪=′∨  
• )}(    )(  |{)( sKwthensKwifwssK ′∈∈=′→  
• )}(    ),(),.(|{)    ~( sKwthendmRwwwwslegdmK ∈′∈′′∀=  
• ,(),.(  (|{)( mRwwwifwmmK ∈′′∀=′6 ┬ )

,(),(                               mRwwthen ′∈′ ┬ ))} 
 

4.6. Soundness 
 
The authorization statements’ logic is claimed to be 

sound. A logic is sound if: 
i. Each of its axioms is valid according to the 

logic semantics. 
ii. Its inference rules preserve the validity. 

Then by induction on the length of proof, one can 
verify that every well-formed expression would also be 
valid semantically.  

The axioms and inference rules of the logic are 
arranged in three categories: the calculus of 
administrators, the calculus of administrative domains, 
and the logic related axioms and inference rules. Each 
group is proved to be sound. We present soundness 
proof of one axiom in each group due to high volume 
of proofs if we want to explain all axioms' soundness 
proofs. In the following proofs, Suppose a typical 
model JIWM ,,=  and typical possible worlds 

Www ∈′, .  
Soundness of A5, A6, and A7: A5, A6, and A7 are 
sound. 
Proof: )&(|)&()|(& mmmmmmm ′′′≡′′′  is proved to 
be sound. Suppose we have )),|(&(),( idmmmRww ′′′∈′  
( id  can be any typical administrative domain). 

)),&(|)&((),( iff
)),(),(()),(),((),( iff

)),(),((),(),(iff
),|(),(),(iff

)),|(&(),(   

i

iiii

iii

ii

i

dmmmmRww
dmRdmRdmRdmRww

dmRdmRdmRww
dmmRdmRww

dmmmRww

′′′∈′
′′∪∩′∪∈′

′′∩′∪∈′
′′′∪∈′

′′′∈′

The distributivity property of ∪  over ∩  (as set theory 
operators) is used in the above proof. 

)&(|)&()|(& mmmmmmm ′′′≡′′′  is valid due to the 
generality of M, w, and w′ . There are analogous 
justifications for the soundness proof of A6 and A7. 
Soundness of A12: A12 is sound. 
Proof: ∩d ┬ d=  is proved to be sound. Suppose we 
have ∩∈′ dmRww ,(),( ┬ )  (m can be any administrator).  
    ∩∈′ dmRww ,(),(   ┬ )  

,(),(),(   iff mRdmRww ∩∈′ ┬ )  

∩∈′ ),(),(   iff dmRww ∪
id

idmR
∀

),(  

),(),(   iff

)),(),((),(   iff

dmRww

dmRdmRww
id

i

∈′

∩∈′
∀
∪  

),(),( idmRdmR ∩  is the subset of ),( dmR ; since for 
every id  the subsets’ union set is computed, ),( dmR  is 
obtained finally. The soundness of dd ⊥=∪  is also 
proved similarly.  
Soundness of A22: A22 is sound. 
Proof: Suppose we have slegddmM

w     ~ | ′∪= . 

))    ~()    ~((  iff
)    ~()    ~(  iff

)}(  ),(),.(|{  iff
)}(  ),(),.(|{  iff

)}((   )),(),((),.((|{  iff
)}(  ),(),.((|{  iff

)    ~(

slegdmslegdmK
slegdmKslegdmK

sKwthendmRwwww
sKwthendmRwwww

sKwthendmRdmRwwww
sKwthenddmRwwww

slegddmK

′∧
′∩

∈′′∈′′∀
∩∈′∈′′∀

∈′′∪∈′′∀
∈′′∪∈′′∀

′∪

Thus, )    ~( slegddmKw ′∪∈  if and only if 
))    ~()    ~(( slegdmslegdmKw ′∧∈ ; accordingly, 

slegddmM
w     ~ | ′∪= )    ~()    ~( slegdmslegdm ′∧≡ . The 

axiom is valid due to the generality of M, w, and w′ . 
As R1 and R2 are got from the propositional logic 

and the modal logic respectively, they preserve validity 
in our proposed logic as well.  

 
5. Case Study 

 
In order to show the applicability of the proposed 

logic in real world applications, we present a case 
study using the logic. The case study is related to 
electronic meeting systems.  

Typically, an electronic meeting system is based 
upon a network (either wired or wireless) of 
microcomputers situated in an electronic meeting 
room. Using the system, group participants perform 
collaborative group work. Each group participant is 
considered as an administrator of the system; he/she 
legislates policies, including authorization policies, 
regarding resources (mainly micricomputers and their 
documents) being under his/her management. There 
may be several resources under the administration of a 
single group member. Also, several participants may 
use a common resource and set authorization policies 
cooperatively. The concept of electronic meeting 
system has been considered in many projects such as 
WeBex Meeting Center and PlaceWare Conference 
Center. For security management of an electronic 
meeting system, we suggest applying our proposed 
logic. For this purpose, we define the following 
scenario. 



In an instant electronic meeting system, there are 
four participants named m1, m2, m3 and m4. The 
resources of the electronic meeting room include four 
PCs and three PDAs connected to each other using 
wired and wireless networks. The PCs are called c1, 
c2, c3 and c4 and the PDAs are called a1, a2 and a3. ci 
is under the management of mi. a1 is under the 
cooperative administration of m1 and m2, a2  is under 
the cooperative administration of m2 and m3, and a3 is 
under the cooperative administration of m3 and m4. In 
order to determine the administrative domain of an 
administrator (a meeting member) explicitely, we 
define the administrative domain for each 
administrator as di including all rsources being under 
his management; e.g. d2 is the administrative domian 
of m2 and contains c2, a1, and a2. If two domains have 
some resources in common (such as d1 and d2), it is 
assumed that the domains are under the management of 
both domains’ administrators. 

We assume that there is a central security service 
controling accesses throughout the electronic meeting 
system according to the policies at hand legislated by 
different administrators.  

In the scenario, the set of policies available for the 
central security service (in the form of our proposed 
logic) is as follows: 

)(    )21(~)2&1(
    2~)1*2(

)(    4~4
    )32(~)3&2(

)    3~2()    3~3(
)(    2~2

)(    1~1

61

7

51

2

23

54

31

pplegddmm
plegdmm
pplegdm

plegddmm
plegdmplegdm

pplegdm
pplegdm

∧∪

∨¬
∩
∨
→

∧

 

It is assumed that policies existing in a list are 
connected to each other with ∧ ; also, the list of 
policies is supposed to be consistent. Each ip  is an 
authorization proposition implies a set of permissions. 
Users presenting the set iAttribute  of credentials can 
perform the set iAction  of possible actions on the set 

ires  of resources.        
In addition to being an administrator and the 

legislator of a policy, meeting members are the users of 
each other’s resources. A user presents his request 
concerning a resource and does not mention its 
domain. The central service is responsible for 
specifying the domain of a resource. When a user 
offers his request, the central security service is 
responsible for authorization usually assisted by an 
inference engine. The service inspects all existing and 
inferred policies; if the request is complied with a 
policy, it is granted; otherwise, it is rejected. If a 

resource concerned in a request would not be in some 
domains common area ( dd ′∩ ), every policy 
regarding the resource’s domain, d, and its two 
combinations with any typical domain, idd ∪  and 

idd − , is considered in authorization. Otherwise, 
policies concerning d and its combinations except 

idd −  are considered. Indeed, among considered 
policies containing a type of domains’ combinations, 
those are selected whose legislator is a combination of 
the domains’ administrators. Then, compliance of a 
request with selected policies is checked.  
For instance, consider the following two requests. User 
u1 presents a request whose resources are related to 

32 dd ∩  and actions are permitted according to 

32 pp ∨  based on its offered credentials. The request 
is granted due to the following inference: 

)(    3~)3|2(
)    3~2()    3~3(

32
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23
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AAA

∨
⇒∨  

User u2 requests some actions on resources existing in 
4d ; permission granting for the actions’ performing 

requires a policy containing 7p . The request is 
rejected because no policy is found containing 7p  and 
one of the domain combinations including 4d , 

idd ∪4 , or idd −4 . 
 
6. Conclusions 
 

In multi-domain environments, the authorization 
policies of an administrative domain are legislated by 
one administrator or multiple administrators’ 
cooperation. In addition, policies may be associated 
with a predefined domain or domains’ various 
combinations such as their intersection.  

The proposed logic in this paper considers 
administrators as the legislators of policies in policies’ 
representation. This approach makes the possibility of 
utilizing administrators’ characteristics in policies’ 
analysis e.g. in conflict resolution. Administrator being 
in a policy representation can be primitive or 
composite. Three styles of administrators’ composition 
are presented. The other contribution of this paper is 
the explicitly and exactly defined inclusion of 
administrative domains in policies’ representation and 
their association with authorization policies. Indeed, 
three styles of administrative domains’ combination 
are considered. The exactly defined semantics and 
proof theory of the logic provides the possibility of 
authorization policies’ representation and reasoning 
about them regarding their legislators and related 



domains. The soundness of the logic is proved and its 
completeness proof is postponed as a future work.  
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