
A Logic for Multi-Domain Authorization Considering Administrators

Zeinab Iranmanesh, Morteza Amini, and Rasool Jalili
Network Security Center, Department of Computer Engineering,

Sharif University of Technology, Tehran, IRAN
{iranmanesh@ce., m_amini@ce., jalili@} sharif.edu

Abstract

In multi-domain environments, authorization
policies for each administrative domain are
determined by either one administrator or through
cooperation of multiple administrators. Proposed
logic-based models for multi-domain environments'
authorization neither consider an administrator as the
legislator of a policy in policies' representation nor
specify the domain of a policy explicitly. Considering
legislators in policy specification provides the
possibility of presenting composite administration and
utilizing administrators' characteristics in policy
analysis such as conflict resolution. In this paper, we
propose the syntax, proof theory, and semantics of a
logic in which administrators are considered in
authorization policies' specification, composite
administration is presented, and each authorization
policy is explicitly associated with some administrative
domains. We also claim that the logic is sound. The
presented logic is based on modal logic and utilizes
two calculi named the calculus of administrators and
the calculus of administrative domains. A case study of
the logic usage is presented.

1. Introduction

The usage of multi-domain environments (hereafter
we refer to as MDEs) is continuously increasing.
MDEs constitute autonomous administrative domains.
In each domain, several resources exist which may be
shared among domains in large scale applications.
Authorization policies regarding the resources of a
domain are stated by one administrator or multiple
administrators’ cooperation. When a subject submits a
request associated with a domain, possibly supported
by one or more credentials, it must comply with the
domain’s authorization policies if it is to be granted
[16]. Important properties of MDEs include the
following:

• Authorization policies are created, stored, and
managed in a dynamic and distributed fashion by
cooperation among several independent
administrators [16, 19].

• MDEs accommodate complex interactions, which
may involve authorization policies that utilize
delegations, roles, and groups [5, 21].

• Domains are typically heterogeneous; e.g. they have
diverse restrictions [3, 19].
The properties raise specific requirements for

authorization policies’ representation in MDEs
including the following:
• More flexible, distributed, and declarative approach

to authorization representation [4, 16, 23].
• More expressive representation supporting

heterogeneous or unknown policies [4, 22].
• Representation controlling interference of different

authorization policies [4].
• More robust validation and analysis of policies [8].

Logic has been used to represent authorization
policies in the literature due to its ability to fulfill most
of the requirements. In particular, logic provides:
• Precise and non-ambiguous representation.
• Sufficient expressiveness, flexibility, and

declarativeness for representation [20].
• Reasoning about authorization policies and proving

properties on them [4, 23].
• Logical transformations of representations [20].

Some research [4, 16, 22] has used logic to
represent authorization policies in MDEs. However,
proposed models have not considered an administrator
as the legislator of an authorization policy in its
representation which can be used in policies’ analysis
and enforcement. Indeed, the research has not specified
the administrative domain of an authorization policy
explicitly. In this paper, we propose a logic that
considers the inclusion of administrative domains and
also administrators in the representation of MDEs’
authorization policies. Both domains and
administrators can be either primitive or composite.
The definition of a prominence relation between

administrators is provided in the logic. The potential
conflict among authorization policies can be resolved
on the basis of the prominence relation. Our proposed
logic is based on modal logic and utilizes two calculi
named the calculus of administrators and the calculus
of administrative domains.

The rest of this paper is organized as follows. In the
next section, research related to the usage of logic in
multi-domain authorization is reviewed. In section 3, a
broad overview of the proposed logic is stated. The
main logic, its two accommodated calculi, and its other
related topics are explained in section 4. A case study
is explained in section 5; and finally, conclusions are
summarized in section 6.

2. Related Work

Many researchers have been attracted to use logic in
presenting their minded knowledge and reason about it.
Some researches have been done in using logic to
represent authorization policies in MDEs. Various
types of logic such as first order logic, modal logic
(e.g. temporal logic), default logic, and stratified logic
have been utilized in the representation of MDEs’
authorization policies.

Some efforts have been put into specifying common
abstract concepts such as roles, groups, and delegation
[2, 13, 15]. Abadi, et al. [2] presented a calculus for
access control in distributed systems. The specification
of composite requesters, access control lists, role,
group, and unlimited delegation have been proposed in
the calculus. Howell and Kotz [13] presented a
restricted version of delegation stated before in [2].
They also described the constructs of SPKI on the
basis of local namespaces’ logical specification. Some
has focused on specifying implemented systems [1, 5,
11, 12, 17, 23]. Bowers, et al. [5] suggested a number
of mechanisms for consumable credentials’
enforcement in a distributed authorization system
based on linear logic. Zhang, et al. [23] presented a
logic-based policy specification of usage control.
Using an extension of Lamport’s temporal logic of
actions (TLA), they developed a logical specification
of UCON presented before by Park and Sandhu.

Woo and Lam [22] presented a general framework
for authorization in distributed systems. A logical
language for specifying policy bases proposed in the
framework. The main drawback of the approach is that
it is not decidable. Jajodia, et al. [14] presented a
logical language for authorization specification (ASL).
Every authorization specification is a stratified datalog
program. Access control checking can be performed in
linear time with respect to the number of rules in
authorization specification. Some ideas have been

presented to specify a relatively complete set of useful
authorization scenarios when respecting decidability
[16, 18]. Li, et al. [16] presented a logic-based
authorization representation with delegation in
distributed systems. The delegation logic focuses on
explicit treatment of delegation depth and delegation to
complex principals. In the logic, under some
restrictions, inferencing can be computed in worst case
polynomial time. Some researches have used
intuitionistic logics to integrate more policy
specification and its enforcement [6, 10].

Dai and Alves-Foss [7] introduced an engineering
process for distributed logic-based authorization policy
development. The process includes formal
specification, verification, testing and integration. In
order to realize policy engineering, logic programming
technologies were used. Bonatti, et al. [4] considered
composition of authorization policies that may be
independently stated. They proposed an algebra of
security policies together with its formal semantics.
Also, it has been illustrated how to formulate complex
policies and reason about them. Freudenthal, et al. [9]
proposed a distributed role-based access control for
systems that span multiple administrative domains.
One of the most important features of this model is
third-party delegations related to the speaks for
relationship of Li’s Delegation Logic. This feature
allows privileged entities to create roles and designate
other entities to give out these roles.

As can be seen, a number of models have been
presented for the representation of various types of
MDEs' authorization policies; however, none of these
models considers the concepts of policies' legislators
and domains in policies' representation. Consideration
of legislators and domains (focused in this paper)
provides the possibility of utilizing them in policy
analysis and enforcement which has a strong potential
usage in several real world applications.

3. Overview

Our proposed logic utilizes two calculi defined as
the calculus of administrators and the calculus of
administrative domains. The calculus of administrators
is defined as a formal system whose language ML
contains proper structured administrators.
Administrators may be primitive or composite. Every
administrator represents a corresponding real world's
authority legislating authorization policies. The
calculus of administrative domains is also described as
a formal system; its language DL includes well formed
administrative domains’ formulae. The calculus
formalizes various circumstances of domains. Our
proposed logic utilizes these two calculi in order to

describe authorization statements. An authorization
statement is a policy legislated by an administrator(s)
and is related to some domains. The logic semantics is
presented using the standard Kripke model. The
soundness of the logic is proved. Also, a case study for
the usage of the logic is explained.

4. The Logic for Multi-Domain
Authorization

4.1. The Calculus of Administrators

We consider administrators in the specification of
policies as policies’ legislators by proposing a calculus
for representing administrators; the calculus used later
in the logic of policies. The calculus is capable of
expressing possible combinations of administrators and
reasoning about them. In MDEs, there are two types of
administrators (as legislators): primitive and composite.
Each primitive administrator is a potential single
legislator and a composite administrator is a
combination of primitive and/or composite
administrators.

The calculus of administrators is a formal system
),,(mmm IAM Ω= whose components are defined as

follows:
i. mA is a non-empty, finite, and distinct set of

elements called primitive administrators and
are typically shown as …,, 21 mm ;

ii. mΩ is a set of three functions called
combinatory operators; the functions consist
of: Conjunction (&), Disjunction (|), and
Delegation (*);

iii. mI is a finite set of calculus axioms explained
later completely.

Depending on the precise rules of formulas’
construction, the left parenthesis, "(", and the right
parentheses, ")", may be necessary. The calculus
functions get two primitive or composite
administrators as their input and their output is a
composite administrator.

The language of M, ML , is the set of all
administrators including primitive and composite
administrators. Inductively, ML is defined as the
smallest set such that:

i. Every primitive administrator im is in ML .
ii. If m and m′ are in ML , then so are (mm ′&),

(mm ′|), and (mm ′*).
mm ′& , mm ′| , and mm ′* are composite

administrators. mm ′& is used when m and m′

legislate jointly, mm ′| is used when either m or m′
legislates a policy, and mm ′* is used if m legislates as
an agent of m′ .

The administrators' calculus axioms determining the
characteristics of the calculus functions are as follows:
(A1) ML is closed under &, |, and *.
(A2) &, |, and * are idempotent in a wide sense.

(A function is idempotent in a wide sense if it
allows one of its identical operands to be
deleted; and, an operand to be duplicated
using it as the operator).

(A3) & and | are commutative.
(A4) &, |, and * are associative.

Considering the above characteristics,
administrators’ related algebraic structures can be
distinguished, including:
• Administrators form a Semilattice under & and |.
• Administrators form a Band under *.

The axioms related to the distributivity property of
the proposed calculus functions are as follows:
(A5))&(|)&()|(& mmmmmmm ′′′≡′′′
(A6))*(&)*()&(* mmmmmmm ′′′≡′′′
(A7))*(|)*()|(* mmmmmmm ′′′≡′′′

Stipulated axioms are proved to be sound according
to the presented semantics.

4.2. The Calculus of Administrative Domains

We consider administrative domains in policy
specification in order to identify each policy’s
managed domain explicitly. The calculus of
administrative domains expresses an abstraction of
administrative domains, their various situations against
each other, and other useful properties (e.g., algebraic
properties). The calculus is then used in the logic of
authorization statements. Consequently, administrative
domains are accommodated in policy presentation.
Hereafter, a domain is called primitive if it is an
identified domain in MDE; and, a domain is named
composite when it is a proper composition of other
domains.

The calculus of administrative domains is defined
as a formal system),,(ddd IAD Ω= . The system
consists of the following sets:

i. dA is a non-empty, finite and distinct set of
primitive domains presented as …,, 21 dd ;

ii. dΩ is a set of functions applied on domains,
including: top (┬), bottom (⊥), intersection
(∩), union (∪), and complement (-);

iii. dI is the set of calculus axioms stated later.

The left parenthesis, "(", and the right parentheses,
")", may be necessary in formulas’ synthesis. ∪ , ∩ ,
and - take two domains as their input and their output
being a composite domain is the inputs union,
intersection, and complement respectively. ┬ and ⊥
are functions without input; ┬ represents the union of
all primitive domains and ⊥ presents no domain.

The language of D is called DL consisting of all
proper structured domains and is defined inductively as
follows:

i. Every primitive domain, id , is in DL .
ii. ┬ and ⊥ are in DL .

iii. If d and d ′ are in DL , then so are (dd ′∩),
(dd ′∪), and (dd ′−).

The calculus of administrative domains' axioms
related to its functions’ properties are as follows:
(A8) DL is closed under ∩ , ∪ , and -.
(A9) ∩ and ∪ are idempotent in a wide sense.
(A10) ∩ and ∪ are commutative.
(A11) ∩ and ∪ are associative.
(A12) ∩ and ∪ are unital due to the satisfaction of

the equations ┬ ∩=∩ dd ┬ d= and
ddd ⊥=∪=∪⊥ .

According to the stated properties, a number of
algebraic structures formed from DL and the functions
defined in the calculus consist of:
• DL under ∩ and ∪ forms a Monoid and also a

Semilattice.
• DL under – forms a Magma.

Some of the calculus axioms are related to the
distributivity property of the calculus functions over
each other including:
(A13))()()(ddddddd ′′∩∪′∩≡′′∪′∩
(A14))()()(ddddddd ′′∩−′∩≡′′−′∩
(A15))()()(ddddddd ′′∪∩′∪≡′′∩′∪

Soundness of the specified axioms has been proved.

4.3. The Logic of Authorization Statements

In this paper, authorization policies are expressed
using modal logic, as authorization statements. The
primary contribution is the inclusion of an
administrator legislating an authorization statement and
an administrative domain associated with the statement
in its specification. Composite administrators and
various compositions of domains’ situations can be
stated in the logic due to the inclusion of the calculi.

The alphabet of the logic is as follows:

i. A non-empty, finite and distinct set of
authorization propositions shown in the form
of …,, 21 pp .

ii. ML : The set of administrators.
iii. DL : The set of administrative domains.
iv. The connectives of the logic: ∧ , ∨ , ¬ ,

→ , leg (legislation), ~, and 6 .
v. The left parenthesis, "(", and the right

parentheses, ")".
The defined calculi have been included in the logic

by accommodating ML and DL . ∧ , ∨ , ¬ , and →
are primitive logical connectives. The modal logic
connective is leg. The left operand of ~ is from ML
and its right operand is from DL . Both operands of 6
are from ML .

The set of all proper authorization statements, S, is
the smallest set such that:

i. Every authorization proposition, ip , is in S.
ii. If m and m′ are in ML , then mm ′6 is in S.

iii. If s and s′ are in S, then so are (ss ′∧),
(ss ′∨), (ss ′→), and s¬ .

iv. If s is in S, m is in ML , and d is in DL , then
slegdm ~ is in S.

mm ′6 expression implies that m′ dominates m;
consequently, m′ would own every authorization that
m had. The authorization statement slegdm ~
expresses m (administrator) legislates the authorization
statement s related to d (administrative domain).

4.4. Proof Theory

The logic of authorization statements' inference

rules consist of:

(R1)
s

sss
′

′→ ;

(R2)
dmslegdm

s
,every for , ~

In the propositional logic, R1 is known as modus
ponens; in the modal logic, R2 is called necessitation.

Some axioms are proved to be valid in the logic of
authorization statements, including:
(A16) If s is a tautology in the propositional logic,

then s is valid in the logic of authorization
statements.

(A17))) ~() ~(() ~(slegdmslegdmsslegdm ′→→′→
(A18)) ~() ~(slegdmslegdm ¬¬→
(A19)) ~() ~(~& slegdmslegdmslegdmm ′∧≡′

 (A20)) ~(~ ~* slegdmlegdmslegdmm ′≡′

(A21)) ~|()) ~() ~((slegdmmslegdmslegdm ′→′∨
(A22)) ~() ~(~ slegdmslegdmslegddm ′∧≡′∪
(A23)) ~() ~(~ slegdmslegdmslegddm ′¬∨≡′−
(A24)) ~()) ~() ~((slegddmslegdmslegdm ′∩→′∨

¬ and → are formed a complete set on which
basis ∧ and ∨ can be defined; so, the following
equations are established according to A17 and A18:
(Eq1))) ~() ~(() ~(slegdmslegdmsslegdm ′∧≡′∧
(Eq2)) ~()) ~() ~((sslegdmslegdmslegdm ′∨→′∨

The axioms are proved to be sound according to the
proposed semantics.

4.5. Semantics

We express the semantics of the authorization
statements’ logic using the standard Kripke model. The
Kripke-style structure for the proposed logic is
presented as JIWM ,,= . The components of M
consist of:
• W is the set of possible worlds.
• WPI 2: → is an interpretation function mapping

every authorization proposition to a subset of W in
which the proposition is true.

• WWDMJ ×→× 2: is an interpretation function
mapping each pair formed from an administrator
and an administrative domain to a binary relation
from W to W. The administrator and administrative
domain are primitive.
To determine the semantics of an authorization

statement comprising an administrator and an
administrative domain, the semantics of administrators
and domains should be defined; J is used for this
purpose. J, based on its inputs being an administrator
and a domain, specifies paired possible worlds being
reachable from each other through the inputs. Each
possible world is considered as an authorized state in
which several requests are allowed; a request is
disallowed if it is explicitly forbidden or just not
permitted. If an administrator m being in w knows w′
reachable according to his knowledge about a domain
d, then),(),(dmJww ∈′ is established. An
administrator’s knowledge about a domain d is
considered as allowable requests regarding d from the
administrator’s view point. The function R extends J to
accept composite administrators and/or composite
domains as input:
•),(),(dmJdmR =

For a primitive administrator and a primitive
domain, R and J results are the same.

•),(),(),&(dmRdmRdmmR ′∪=′

Suppose w is a typical possible world where
administrators m and m′ list reachable worlds; w′
is a reachable world from w through m and a domain
d; and, w ′′ is a reachable world from w through m′
and d. The union of administrators’ knowledge is
obtained by their conjunction. Accordingly, both w′
and w ′′ are reachable from w through mm ′& and
d.

•),(),(),*(dmRodmRdmmR ′=′
The delegation of administrators bridges between
reachable worlds according to their knowledge
about some domains.

•),(),(),|(dmRdmRdmmR ′∩=′
By administrators’ disjunction, either their common
knowledge or the knowledge of one is considered in
specifying reachable worlds. The smallest set is
resulted from their common knowledge.

•),(),(),(dmRdmRddmR ′∪=′∪
The knowledge of an administrator about the union
of two domains is the union of his knowledge about
each of them.

• ,(mR ┬ ∪
id

idmR
∀

=),()

Where id is a typical primitive administrative
domain.

•),(),(),(dmRdmRddmR ′∩=′∩
Based on an administrator’s knowledge about two
domains d and d ′ , his knowledge about their
intersection is the intersection of his knowledge
about each of them. As both domains’ allowable
requests are supposed to be allowable in their
common area, contradictory ones are eliminated.

•),(),(),(dmRdmRddmR ′−=′−
The knowledge of an administrator about dd ′− is
through removing his knowledge about d ′
(analogously his knowledge about two domains’
intersection) from his knowledge about d.

•),(),(),(ii dmRdmRmR −=⊥
Where id can be any primitive administrative
domain. As ⊥ is the symbol of no domain, it can be
defined as the difference of any domain and itself.
The function K extends I by mapping each

authorization statement to a subset of possible worlds
where it is true. It is defined as follows:
•)()(ii pIpK =

K and I give an identical set of possible worlds if
their input is an authorization proposition.

•)()(sKWsK −=¬
•)()()(sKsKssK ′∩=′∧

•)()()(sKsKssK ′∪=′∨
•)}()(|{)(sKwthensKwifwssK ′∈∈=′→
•)}(),(),.(|{) ~(sKwthendmRwwwwslegdmK ∈′∈′′∀=
• ,(),.((|{)(mRwwwifwmmK ∈′′∀=′6 ┬)

,(),(mRwwthen ′∈′ ┬))}

4.6. Soundness

The authorization statements’ logic is claimed to be

sound. A logic is sound if:
i. Each of its axioms is valid according to the

logic semantics.
ii. Its inference rules preserve the validity.

Then by induction on the length of proof, one can
verify that every well-formed expression would also be
valid semantically.

The axioms and inference rules of the logic are
arranged in three categories: the calculus of
administrators, the calculus of administrative domains,
and the logic related axioms and inference rules. Each
group is proved to be sound. We present soundness
proof of one axiom in each group due to high volume
of proofs if we want to explain all axioms' soundness
proofs. In the following proofs, Suppose a typical
model JIWM ,,= and typical possible worlds

Www ∈′, .
Soundness of A5, A6, and A7: A5, A6, and A7 are
sound.
Proof:)&(|)&()|(& mmmmmmm ′′′≡′′′ is proved to
be sound. Suppose we have)),|(&(),(idmmmRww ′′′∈′
(id can be any typical administrative domain).

)),&(|)&((),(iff
)),(),(()),(),((),(iff

)),(),((),(),(iff
),|(),(),(iff

)),|(&(),(

i

iiii

iii

ii

i

dmmmmRww
dmRdmRdmRdmRww

dmRdmRdmRww
dmmRdmRww

dmmmRww

′′′∈′
′′∪∩′∪∈′

′′∩′∪∈′
′′′∪∈′

′′′∈′

The distributivity property of ∪ over ∩ (as set theory
operators) is used in the above proof.

)&(|)&()|(& mmmmmmm ′′′≡′′′ is valid due to the
generality of M, w, and w′ . There are analogous
justifications for the soundness proof of A6 and A7.
Soundness of A12: A12 is sound.
Proof: ∩d ┬ d= is proved to be sound. Suppose we
have ∩∈′ dmRww ,(),(┬) (m can be any administrator).
 ∩∈′ dmRww ,(),(┬)

,(),(),(iff mRdmRww ∩∈′ ┬)

∩∈′),(),(iff dmRww ∪
id

idmR
∀

),(

),(),(iff

)),(),((),(iff

dmRww

dmRdmRww
id

i

∈′

∩∈′
∀
∪

),(),(idmRdmR ∩ is the subset of),(dmR ; since for
every id the subsets’ union set is computed,),(dmR is
obtained finally. The soundness of dd ⊥=∪ is also
proved similarly.
Soundness of A22: A22 is sound.
Proof: Suppose we have slegddmM

w ~ | ′∪= .

)) ~() ~((iff
) ~() ~(iff

)}(),(),.(|{ iff
)}(),(),.(|{ iff

)}(()),(),((),.((|{ iff
)}(),(),.((|{ iff

) ~(

slegdmslegdmK
slegdmKslegdmK

sKwthendmRwwww
sKwthendmRwwww

sKwthendmRdmRwwww
sKwthenddmRwwww

slegddmK

′∧
′∩

∈′′∈′′∀
∩∈′∈′′∀

∈′′∪∈′′∀
∈′′∪∈′′∀

′∪

Thus,) ~(slegddmKw ′∪∈ if and only if
)) ~() ~((slegdmslegdmKw ′∧∈ ; accordingly,

slegddmM
w ~ | ′∪=) ~() ~(slegdmslegdm ′∧≡ . The

axiom is valid due to the generality of M, w, and w′ .
As R1 and R2 are got from the propositional logic

and the modal logic respectively, they preserve validity
in our proposed logic as well.

5. Case Study

In order to show the applicability of the proposed

logic in real world applications, we present a case
study using the logic. The case study is related to
electronic meeting systems.

Typically, an electronic meeting system is based
upon a network (either wired or wireless) of
microcomputers situated in an electronic meeting
room. Using the system, group participants perform
collaborative group work. Each group participant is
considered as an administrator of the system; he/she
legislates policies, including authorization policies,
regarding resources (mainly micricomputers and their
documents) being under his/her management. There
may be several resources under the administration of a
single group member. Also, several participants may
use a common resource and set authorization policies
cooperatively. The concept of electronic meeting
system has been considered in many projects such as
WeBex Meeting Center and PlaceWare Conference
Center. For security management of an electronic
meeting system, we suggest applying our proposed
logic. For this purpose, we define the following
scenario.

In an instant electronic meeting system, there are
four participants named m1, m2, m3 and m4. The
resources of the electronic meeting room include four
PCs and three PDAs connected to each other using
wired and wireless networks. The PCs are called c1,
c2, c3 and c4 and the PDAs are called a1, a2 and a3. ci
is under the management of mi. a1 is under the
cooperative administration of m1 and m2, a2 is under
the cooperative administration of m2 and m3, and a3 is
under the cooperative administration of m3 and m4. In
order to determine the administrative domain of an
administrator (a meeting member) explicitely, we
define the administrative domain for each
administrator as di including all rsources being under
his management; e.g. d2 is the administrative domian
of m2 and contains c2, a1, and a2. If two domains have
some resources in common (such as d1 and d2), it is
assumed that the domains are under the management of
both domains’ administrators.

We assume that there is a central security service
controling accesses throughout the electronic meeting
system according to the policies at hand legislated by
different administrators.

In the scenario, the set of policies available for the
central security service (in the form of our proposed
logic) is as follows:

)()21(~)2&1(
 2~)1*2(

)(4~4
)32(~)3&2(

) 3~2() 3~3(
)(2~2

)(1~1

61

7

51

2

23

54

31

pplegddmm
plegdmm
pplegdm

plegddmm
plegdmplegdm

pplegdm
pplegdm

∧∪

∨¬
∩
∨
→

∧

It is assumed that policies existing in a list are
connected to each other with ∧ ; also, the list of
policies is supposed to be consistent. Each ip is an
authorization proposition implies a set of permissions.
Users presenting the set iAttribute of credentials can
perform the set iAction of possible actions on the set

ires of resources.
In addition to being an administrator and the

legislator of a policy, meeting members are the users of
each other’s resources. A user presents his request
concerning a resource and does not mention its
domain. The central service is responsible for
specifying the domain of a resource. When a user
offers his request, the central security service is
responsible for authorization usually assisted by an
inference engine. The service inspects all existing and
inferred policies; if the request is complied with a
policy, it is granted; otherwise, it is rejected. If a

resource concerned in a request would not be in some
domains common area (dd ′∩), every policy
regarding the resource’s domain, d, and its two
combinations with any typical domain, idd ∪ and

idd − , is considered in authorization. Otherwise,
policies concerning d and its combinations except

idd − are considered. Indeed, among considered
policies containing a type of domains’ combinations,
those are selected whose legislator is a combination of
the domains’ administrators. Then, compliance of a
request with selected policies is checked.
For instance, consider the following two requests. User
u1 presents a request whose resources are related to

32 dd ∩ and actions are permitted according to

32 pp ∨ based on its offered credentials. The request
is granted due to the following inference:

)(3~)3|2(
) 3~2() 3~3(

32

)21(),18(),17(

23

pplegdmm
plegdmplegdm

AAA

∨
⇒∨

User u2 requests some actions on resources existing in
4d ; permission granting for the actions’ performing

requires a policy containing 7p . The request is
rejected because no policy is found containing 7p and
one of the domain combinations including 4d ,

idd ∪4 , or idd −4 .

6. Conclusions

In multi-domain environments, the authorization
policies of an administrative domain are legislated by
one administrator or multiple administrators’
cooperation. In addition, policies may be associated
with a predefined domain or domains’ various
combinations such as their intersection.

The proposed logic in this paper considers
administrators as the legislators of policies in policies’
representation. This approach makes the possibility of
utilizing administrators’ characteristics in policies’
analysis e.g. in conflict resolution. Administrator being
in a policy representation can be primitive or
composite. Three styles of administrators’ composition
are presented. The other contribution of this paper is
the explicitly and exactly defined inclusion of
administrative domains in policies’ representation and
their association with authorization policies. Indeed,
three styles of administrative domains’ combination
are considered. The exactly defined semantics and
proof theory of the logic provides the possibility of
authorization policies’ representation and reasoning
about them regarding their legislators and related

domains. The soundness of the logic is proved and its
completeness proof is postponed as a future work.

7. References

[1] M. Abadi, “On SDSI’s linked local name spaces” Journal
of Computer Security, 1998, 6(1–2):3–21.

[2] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, “A
Calculus for Access Control in Distributed Systems”, ACM
Transactions on Programming Languages and Systems,
1993, 15(4):706–734.

[3] P. Belsis, S. Gritzalis, and S.K. Katsikas, “Partial and
Fuzzy Constraint Satisfaction to Support Coalition
Formation”, Electronic Notes in Theoretical Computer
Science, Elsevier, 2007, pp. 75-86.

[4] P. Bonatti, S.D.C.D. Vimercati, and P. Samarati, “An
Algebra for Composing Access Control Policies”, ACM
Transactions on Information and System Security, ACM,
USA, 2002, 5(1): 1-35.

[5] K.D. Bowers, L. Bauer, D. Garg, F. Pfenning, and M.K.
Reiter, “Consumable Credentials in Logic-Based Access-
Control Systems”, In Proceedings of the 2007 Network and
Distributed Systems Security Symposium, 2007, pp. 143-157.

[6] J. G. Cederquist, R. J. Corin, M. A. C. Dekker, S. Etalle,
J. I. den Hartog, and G. Lenzini, “The audit logic: Policy
compliance in distributed systems” Technical Report TR-
CTIT- 06-33, Centre for Telematics and Information
Technology, University of Twente, 2006.

[7] J. Dai and J. Alves-Foss, “Logic Based Authorization
Policy Engineering”, In 6th World Multiconference on
Systemics, Cybernetics, and Informatics, 2002, pp. 230-238.

[8] A. El-Atawy, “Survey on the Use of Formal
Languages/Models for the Specification, Verification, and
Enforcement of Network Access-lists”, 2006.

[9] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V.
Karamcheti, “dRBAC: Distributed Role-based Access
Control for Dynamic Coalition Environments”, In 22nd
International Conference on Distributed Computing Systems,
2002, pp. 411-420.

[10] D. Garg and F. Pfenning, “Non-interference in
constructive authorization logic” In Proceedings of the 19th
IEEE Computer Security Foundations Workshop, 2006, pp.
283–296.

[11] J. Y. Halpern and R. van der Meyden, “A logic for
SDSI’s linked local name spaces”, In Proceedings of the 12th
IEEE Computer Security Foundations Workshop, 1999, pp.
111–122.

[12] J. Y. Halpern and R. van der Meyden, “A logical
reconstruction of SPKI”, In Proceedings of the 14th IEEE

Computer Security Foundations Workshop, 2001, pp. 59 –
70.

[13] J. Howell and D. Kotz, “A formal semantics for SPKI”,
In Proceedings of the 6th European Symposium on Research
in Computer Security, 2000, pp. 140–158.

[14] S. Jajodia, P. Samarati, and V. S. Subrahmanian, “A
logical language for expressing authorizations” In IEEE
Symposium on Security and Privacy, USA, 1997, pp. 31–42.

[15] B. Lampson, M. Abadi, M. Burrows, and E. Wobber,
“Authentication in distributed systems: Theory and practice”,
ACM Transactions on Computer Systems, 1992, 10(4):265–
310.

[16] N. Li, B.N. Grosof, and J. Feigenbaum, “A Logic-based
Knowledge Representation for Authorization with
Delegation”, In Proceedings of the 12th IEEE workshop on
Computer Security Foundations, IEEE Computer Society,
USA, 1999, page 162.

[17] N. Li and J. C. Mitchell, “Understanding SPKI/SDSI
using first-order logic”, In Proceedings of the 16th IEEE
Computer Security Foundations Workshop, 2003, pp. 89–
103.

[18] N. Li, J. C. Mitchell, and W. H. Winsboroug, “Design of
a role-based trust management framework”, In Proceedings
of the 2002 IEEE Symposium on Security and Privacy, 2002,
pp. 114–130.

[19] J.D. Moffett and M.S. Sloman, “Policy Conflict
Analysis in Distributed System Management”, Journal of
Organizational Computing, 1994, pp. 1-22.

[20] R. Ortalo, “Using Deontic Logic for Security Policy
Specification”, report, Toulouse (FR) : LAAS, 1996.

[21] M. Sloman, “Policy Driven Management for Distributed
Systems”, Journal of Network and Systems Management,
Plenum Press, 1994, 2(4): 333-360.

[22] T.Y.C. Woo and S.S. Lam, “Authorization in
Distributed Systems: A New Approach”, Journal of
Computer Security, IOS Press, 1993, pp. 107-136.

[23] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park,
“Formal Model and Policy Specification of Usage Control”,
ACM Transactions on Information and System Security,
ACM, USA, 2005, 8(4): 351 – 387.

