
A Context-Aware Access Control Model for Pervasive Computing
Environments

Sareh Sadat Emami Morteza Amini Saadan Zokaei

Electrical Engineering
Department, Khaje Nasiredin

Tusi University of Technology,
Tehran, Iran

Network Security Center,
Sharif University of

Technology, Tehran, Iran

Electrical Engineering
Department, Khaje Nasiredin

Tusi University of Technology,
Tehran, Iran

emami@ee.kntu.ac.ir m_amini@ce.sharif.edu szokaei@eetd.kntu.ac.ir

Abstract
In pervasive computing environments, a user can

access resources and services from any where and at
any time; thus a key security challenge in these
environments is the design of an effective access
control model which is aware of context modifications.
Changes in context may trigger changes in
authorizations. In this paper, we propose a new
context-aware access control model based on role-
based access control model for pervasive computing
environments. We assign roles to users dynamically
based on the long-term context information and tune
active role’s permissions according to the short-term
context information of the users and environment.

1. Introduction

Vision of Ubiquitous Computing was described by
Mark Weiser in 1991 [1]. He said, “The most profound
technologies are those that disappear. They weave
themselves into the fabric of everyday life until they
are indistinguishable from it”. In pervasive computing
environments, users may access resources and services
remotely. There are different sorts of users and services
and all of them are not predefined [2]. Furthermore,
context plays a crucial role in these environments and
affects decision making processes significantly.

Because of the users being mobile and numerous,
context is a considerable factor in access control. Dey
and Abowd [5] defined context as any information that
can be used to characterize the situation of an entity.
An entity would be a person, place, or object that is
considered relevant to the interaction between a user
and an application, including the user and application
themselves. Context may include date, time, location,
system capabilities and other information about entities
and environment. Context information may be variable
over time, thereby traditional access control models
cannot comply all the requirements in these
environments [4]. Context sensitive authorizations are

more applicable in pervasive computing environments
than traditional access controls, because:

• They are very flexible through using context
information for access control.

• Different security levels are possible for an
access in these systems. Users’ intents and
behaviors also affect their access to services
in addition to context information.

Role-Based Access Control (RBAC) [6] model is
proposed by NIST in 1996. The definitions are
explicit; hence implementation of this model is trivial.
The comprehensive framework for RBAC models is
characterized as follows:

• RBAC0: the basic model in which users are
associated with roles (U-A) and roles with
permissions (P-A).

• RBAC1: RBAC0 with role hierarchy.
• RBAC2: RBAC0 with constraints on role and

permission assignments.
• RBAC3: combination of RBAC1 and

RBAC2.
Figure1. shows the relational diagram of RBAC31.

Figure 1. RBAC relational diagram

In our approach, the RBAC model is modified in
order to be compatible with these environments. As
described in section 2, all access control approaches in
pervasive computing use context for controlling
authorization. Some of them use rules for access
control; but considering lots of objects and subjects in
pervasive computing environments, rule based access
control is not an effective solution. Most of proposed
models for such environments are based on RBAC;

1 From now on RBAC

Permissions
User-
Session

U-A

RH

Users Roles

Sessions

P-A

Session-Role

Constraints

2007 International Conference on Intelligent Pervasive Computing

0-7695-3006-0/07 $25.00 © 2007 IEEE
DOI 10.1109/IPC.2007.28

51

they limit role-permission assignment using context,
but they do not use context for static role assignment to
users. So in these models, there are lots of roles being
hard or almost impossible to manage.

We define prerequisite context for role assignments
and enable dynamic role-assignment in this model. In
the beginning of a session, roles are assigned to a user
according to the context information. For making
dynamic authorization possible, active role’s
permissions are overridden for each user in his/her
session by changing the context information. For
assigning permissions to a role, we need some context
information about the user and the environment as a
precondition and if all preconditions are confirmed,
these permissions are granted to the user playing that
role.

The rest of this paper is organized as follows.
Section 2 describes related work and other approaches
to access control in pervasive computing environments.
Our proposed context-aware access control model is
presented in section 3. Section 4 discusses evaluation
of the model and section 5 concludes the paper while
stating some future works.

2. Related Works

Context sensitive access control based on RBAC is
proposed in [4]. The proposed model has predefined
roles for context management. There are four roles
defined in their framework: Context Owner (CO),
Context Provider (CP), Context Broker (CB) and
Context-Aware Service Provider (CASP). They
focused on context information assurance and secure
transmission of context between the pervasive nodes.
Zhang and Parashar [8] proposed a dynamic RBAC
model that extends the RBAC and dynamically adjusts
static role and permission assignments based on
context information. Central authorizer assigns a role
state machine to each user’s agent and changes the
active role in the state machine according to the
changes in user context. Each object has a permission
state machine that is modified when the context
changes for system roles.

Cerberus, a context-aware security scheme for smart
spaces, is proposed in [3]. The Cerberus core service of
Gaia (a generic computational environment that
integrates physical spaces and their ubiquitous
computing devices into a programmable computing
and communication system [9]) aims at capturing
context information as much as possible by deploying
different devices and sensors, identifying entities and
reasoning automatically in order to provide an
unobtrusive computer environment. Cerberus consists
of four major components: 1) the security service, 2)
the context infrastructure, 3) a knowledge base that

stores various security policies, and 4) an inference
engine, which performs automated reasoning and
enforces the security policies.

3. Context-Aware Access Control Model

In this section, we present our proposed model,
named CAP for controlling accesses to resources in
pervasive computing environments. In CAP, context
predicate is represented as a 4-tuple <entity, context
type, context relater, value> following the Gaia
project’s proposition [9]. This representation
determines the value of an entity’s context according to
the relater. Entity is a user or an environmental entity
that its context is important for authorization. For
example, context information predicate <Bob,
Location, “=”, library> with triple context <Location,
“=”, library> describes that Bob is in library or
<env,Temperature, “=”, 23> explains that the
environment temperature is 23 degrees of Celsius. We
can present the entity context set as a formal
expression as is presented in (1). Some context types
appertain to users such as location and finger print
while some other ones appertain to environment, such
as temperature and time. In (1), CtxValSet is a set of
context values. For each context type, its possible
values are a subset of allowable context values.
EntCtxSet= EntSet × CtxSet (1).
EntSet = Users U EnvEntity
 Users = set of users
 EnvEntity = {env}
CtxSet ⊆ CtxTypeSet × CtxRelaterSet × CtxValSet
 CtxTypeSet = set of context types
 CtxRelaterSet = {“=”,” ≠ “, “>”,“<”,“≤ ”,“ ≥ ”}
 CtxValSet = possible values of all context types

We divide context information into Long-Term
context (LTC) and Short-Term context (STC), as
follows:
CtxSet = LTC-Set U STC-Set (2).
 LTC-Set = E-LTC-Set U U-LTC-Set
 STC-Set = E-STC-Set U U-STC-Set

Long-Term Context (LTC) is the one that its value
does not change in a time period, named µ times of
average session lifetime, such as age, weight and
system capabilities. The µ value must be selected
carefully to ensure that the probability of changing the
Long-Term context information during a session is
trivial. Selection of LTCs depends on the environment
and session lifetime. Assume average session duration
is less than 1 or 2 hours and µ is 3, so we can select
date as a LTC. LTC-Set contains two sets of LTCs:
Environmental LTC (E-LTC-Set) and User LTC (U-
LTC-Set). Another set contains Short-Term Contexts
(STC) that maybe changed during a session, such as
time, location and CPU load. STC-Set also includes

52

Environmental STCs (E-STC-Set) and User STCs (U-
STC-Set).

Figure 2. CAP relational diagram

We apply constraints to model in two levels. In the
first level, we apply constraints to role-hierarchy and
session-role assignment with LTCs. In the second
level, the role-permission assignment is limited with
STCs. CAP relational model is depicted in figure 2.

3.1. Model Definition

We categorize current context information into the
following groups: LTCI as in (3), which is current
Long-Term Context Information, and STCI as in (4),
that is current Short-Term Context Information.
LTCI ∈ P(EntSet × LTC-Set) (3).
STCI ∈ P(EntSet × STC-Set) (4).

We have RBAC formal definitions [6] as U: users
set, R: roles set, Prm: permissions set and S: sessions.
Permission is a 2-tuple of object and access right such
as <book, read>.

CAP assigns roles to users according to LTCI; so
assigning each role needs prerequisite LTCs. Role
Assignment Condition (RAC) maps a subset of
Environmental LTC-Set and User LTC-Set to each role
as in (5):
RAC: R → P(U-LTC-Set)×P(E-LTC-Set) (5).

Henceforth, for every (r, (USet, ESet))∈RAC, we
use RAC(r).U-LTC-Set to refer to USet and RAC(r).E-
LTC-Set to refer to the ESet.

Each session belongs to a user that has some roles,
and the S-U is a mapping function that assigns a user
to a session as defined in (6):
S-U: S → U (6).

For assigning a role to a user session, CAP checks
prerequisite LTCs of this role. In (7), Session-Role (S-
R) is mapping function defined for this aim.
S-R: S → P(R) (7).
S-R (sj) = {rl∈R|∀ <t,r,v>∈RAC(rl).U-LTC-Set,
[<S-U(sj),t,r,v>∈LTCI] ∧ ∀ <t’,r’,v’>∈RAC(rl).E-
LTC-Set , [<env,t’,r’,v’>∈LTCI]}

Thus we assign roles to a user dynamically when
his/her session starts. For assigning permission to a
role, some STCs must be checked as preconditions. In
CAP, we have prerequisite conditions as STCs for
role-permission assignment that are defined statically
in the core of the model. It means CAP overrides role-
permission assignment according to the STCs defined
before. Role-Permission Condition (RPC) is a mapping

function that assigns a subset of E-STC-Set and U-
STC-Set to each role with a specific permission as in
(8).
RPC:R×Prm → P(U-STC-Set)×P(E-STC-Set) (8).

Henceforth, for every (r,p, (USet, ESet)) ∈ RPC,
we use RPC(r,p).U-STC-Set to refer to USet and
RPC(r,p).E-STC-Set to refer to ESet.

For each user, when the session starts and after
assigning roles to that session, CAP obtains
permissions of the session roles and their preconditions
for the session. Session-Permissions Assignment as
defined in (9) is a mapping function from session to the
permissions of user’s roles in the session and their
prerequisite STCs.
SPA:S → P(Prm×P(U-STC-Set)×P(E-STC-Set)) (9).
SPA (sj) = {(p, U-Set, E-Set)| ∃ rl∈S-R (sj)
∧ ∃ p∈Prm,[U-Set = RPC (rl,p).U-STC-Set ∧
 E-Set= RPC (rl,p).E-STC-Set]}

From now for every (s, (p, (USet, ESet))) ∈ SPA,
we use SPA(s).P-Set to refer to p, SPA(s)(p).U-STC-
Set to refer to USet and SPA(s)(p).E-STC-Set to refer
to ESet.

For every user’s access request in a session, CAP
checks conditions for requested permission, if all of
them are satisfied, permits user’s access. In (10)
Request-Authorization is a mapping function that
assigns “Grant” or “Deny” as a response to the session
and requested permission, according to permission
conditions and current Short-Term contexts (STCI).
Rq-Au: S × Prm → {Grant, Deny} (10).

Rq-Au (s, p) =

3.2. Architecture

There are two main parts in our proposed
architecture for the CAP access control model: Domain
Authority (DA) and Session Agent (SA). In figure 3,
the architecture is shown.

There is a DA in each system domain and when a
user enters the domain and starts a session, DA sets up
a SA for that user.
Domain Authority aggregates Long-Term contexts
and assigns roles to a user in the beginning of a session
depending on LTCs and prerequisite conditions for that
role, so DA appoints S-R in a session. According to
user’s session roles and RPCs, DA appoints SPA and
gives it to SA for controlling accesses.

Permissions

Session-Role User-
Session

RH

Users Roles

Sessions

P-A

Constraints
with LTCs

Constraints
with STCs

Grant, if p∈SPA(s).PSet ∧
 ∀ <t,r,v>∈SPA(s)(p).U-STC-Set,
 [<S-U(s),t,r,v>∈STCI] ∧
 ∀ <t’,r’,v’>∈SPA(s)(p).E-STC-Set

, [<env,t’,r’,v’>∈STCI]

Deny, otherwise

53

Figure 3. CAP Architecture

There are static databases in the model including:
Role-Permission Conditions and Role Assignment
Conditions and there is a dynamic database as Session-
Role, that maintains all users’ sessions roles.
Now, we explain the basic components of the Central
Authority:
• Long-Term Context Manager: Aggregates

LTCI from sensors of environment and users,
interprets them and stores them in a specific
format.

• Session Manager: Receives session request from
users, assigns a session and a SA to a user and
asks Dynamic User-Role Assigner to determine
user’s roles in this session and according to
assigned roles fills SPA for the Session Agent.

• Dynamic User-Role Assigner: Assigns roles to
a user’s session according to LTCI and RAC and
fills S-R database.

Session Agent: Collects Short-Term contexts and
evaluates each user’s access request according to SPA.
If the requested permission is accepted by Request-
Authorization function, the access is permitted,
otherwise it is denied.

There is a dynamic database as SPA that DA fills it.
Main components of this part are as follows:
• Short-Term Context Manager: Works the same

as Long-Term Context Manager Component in
DA, but it collects STCI.

• Permission Authorizer: Makes a decision about
user’s access request according to its roles
permissions in the session and the required
context information for these permissions in SPA
database.

3.3. Case Study
In this section, a simple example is demonstrated

for making CAP model clearer. Although this example
is small, it provides enough insight into the process and
assists comprehending the model.

Figure 4 shows an online examination scenario,
depicted as an access sequence chart.
In this scenario, there are two roles: teacher and
student, and one object: exam documents. We assume
that Bob is a teacher and Alice is a student.

You can see the definition of prerequisite LTCs for
roles in figure 5; f1 is a teacher’s valid finger print,
“192.167.16.3” is a registered IP address for an online
student and “8423641” is a valid student ID.

Figure 4. A sample scenario
We have permission set in figure 6 and RPCs in

figure 7. RPC is a null set if the permission of the role
does not have prerequisite contexts.

Figure 5. Role-Assignments Conditions

Figure 6. Permission Set

Bob must design questions for the exam before the
exam date.

At the first session, Bob, using his client PC, fetches
the exam document with his matriculation number,
edits and then dispatches it to the exam document
server. At the second session, Alice fetches the exam
document by her matriculation number, answers to the
questions by editing the document and then dispatches
it to the exam document server. The third session has
occurred after the exam, when Bob fetches the
documents, evaluates the answers and then uploads the
grades to the exam server.

FetchDoc(Mat#)

 DispatchAns(Mat#)
DispatchMarks(Mat#)

Get
Marks
(Mat#)

DispatchQue(Mat#)
Edit
Ans

(Mat#)

Edit
Doc
(Mat#)

Exam Docs Teacher Student

FetchQue(Mat#)

FetchDoc(Mat#)

RAC (teacher) = {<Finger-Print,”=”, f1>}, {}
RAC (student) = {<IP-Address,”=”, 192.167.16.3>,
 <Student-ID,”=”, 8423641>}, {}

Session Agent

Domain Authority

Long-Term
Context Manager RAC RPC

Session
Manager

Dynamic User-Role
Assigner

Short-Term
Context Manager

 S-R

 SPA
Permission
Authorizer

Access
request

Access
response

Session Request

 Prm = { <ExamDoc, Fetch>, // as P-F
 <ExamDoc, EditQuestions>, // as P-EQ
 <ExamDoc, DispatchQuestions>, // as P-DQ
 <ExamDoc, EditAnswers>, // as P-EA
 <ExamDoc, DispatchAnswers>, // as P-DA
 <ExamDoc, GetMarks>, // as P-GM
 <ExamDoc, DispatchMarks>} // as P-DM

54

Figure 7. Role-Permission Conditions

At start, we have LTCI as in figure 8; we assume it
is the same in all three sessions.

Figure 8. Long-Term Context Information (LTCI) for all

sessions
At the first session, Bob wants to design exam

questions. He begins the session and according to the
LTCI, S-R(s1) = {teacher}, he gets the teacher role.
According to RPCs and Bob’s role, CAP assigns
permissions to his session, which is shown in figure 9.
When he wants to access the Exam Document, CAP
fetches permission P-F and its STC conditions from
SPA(s1); so if Bob’s matriculation number is ExamDoc
number and Rq-Au(s1,P-F)= “Grant” he can fetch
ExamDoc. Also, if the date is before the exam date, he
can edit the questions and dispatch ExamDoc. It means
Rq-Au(s1, P-EQ) =“Grant” in second request and Rq-
Au (s1, P-DQ) = “Grant” in third request.

At the second session, Alice wants to take an exam.
She gets the student role, i.e., S-R (s2) = {student},
according to LTCI. Figure 10 shows SPA (s2) for this
session. If her matriculation number is ExamDoc
number, today is the exam date and time of access
request is in exam duration then Rq-Au (s2, P-F)
=”Grant”; it means She can fetch ExamDoc. Also if
her location is the exam room, she can answer to the
questions, because Rq-Au (s2, P-EA) =”Grant”.

She can dispatch answers if her matriculation
number is ExamDoc number, date equals exam date,
her location is exam room and time is before the
submission deadline and after the end of the exam

duration; So the Rq-Au (s2, P-DA) =”Grant” is
approved.

Figure 9. Session-Permission Assignment for first session

and third session

Figure 10. Session-Permission Assignment for second

session
At the third session, Bob wants to evaluate the

exams. In this session, he gets the teacher role again;
thus S-R (s3) = {teacher} and SPA (s3) is acquired same
as first session (figure 9). In first request he wants to
fetch the ExamDoc, so If his matriculation number is
ExamDoc number, Rq-Au (s3,P-F)=“Grant” and he
accesses to ExamDoc. Also in second and third
requests if today is after the exam date and before the
marks declaring date, Rq-Au (s3,P-GM)=“Grant” and
Rq-Au(s3,P-DM)=“Grant”, thus he can evaluate the
exams and dispatch the marks.

4. Evaluation

RBAC is a static model; it defines user-permission
assignment and role-permission assignment statically.
Some extensions of RBAC such as DRBAC [8] tried to
create a dynamic model based on RBAC by adding
context awareness, but most of them use context as
conditions for role-permission assignment and they
don’t have dynamic user-role assignment. CAP not

SPA (s2) =
{
 (P-F, {<Mat#, “=”, ExamDoc#>},

 {<Date, “=”, ExamDate>,

 <Time, “ ≥ ”, StartExamTime>,

 <Time, “ ≤ ”, EndExamTime>}),
 (P-EA, {<Mat#, “=”, ExamDoc#>,

 <Location, “=”, ExamRoom>},
 {<Date, “=”, ExamDate>,

 <Time, “ ≥ ”, StartExamTime>,

 <Time, “ ≤ ”, EndExamTime>}),
 (P-DA, {<Mat#, “=”, ExamDoc#>,

 <Location, “=”, ExamRoom>},
 {<Date, “=”, ExamDate>,

 <Time, “ ≥ ”, EndExamTime >,

 <Time, “ ≤ ”, SubmissionDeadline>})
}

SPA (s1) = SPA (s3) =
{
 (P-F, {<Mat#, “=”, ExamDoc#>}, {}),
 (P-EQ, {<Mat#, “=”, ExamDoc#>},
 {<Date, “<”, ExamDate>}),
 (P-DQ, {<Mat#, “=”, ExamDoc#>},
 {<Date, “<”, ExamDate>}),
 (P-GM, {<Mat#, “=”, ExamDoc#>},
 {<Date, “>”, ExamDate>,
 <Date, “<”,MarksDeclaringDate >}),
 (P-DM, {<Mat#, “=”, ExamDoc#>},
 {<Date, “>”, ExamDate>,
 <Date, “<”,MarksDeclaringDate >})
}

LTCI = {<Bob, Finger-Print, “f1”>,
 <Alice, Student-ID, “=”, 8423641>,
 <Alice, IP-Address, “=”, 192.167.16.3>}

RPC (teacher,P-F) = {<Mat#, “=”, ExamDoc#>}, {}
RPC (teacher,P-EQ) = { <Mat#, “=”, ExamDoc#> },

 {<Date, “<”, ExamDate>}
RPC (teacher,P-DQ) = { <Mat#, “=”, ExamDoc#>},
 {<Date, “<”, ExamDate>}
RPC (teacher,P-GM) = {<Mat#, “=”, ExamDoc#>},
{<Date, “>”,ExamDate>,<Date,“<”, MarksDeclaringDate>}

RPC (teacher,P-DM) = { <Mat#, “=”, ExamDoc#>},
{<Date,“>”,ExamDate>, <Date,“<”,MarksDeclaringDate >}

RPC (student,P-F) = {<Mat#, “=”, ExamDoc#>},
{<Date, “=”, ExamDate>, <Time, “ ≥ ”, StartExamTime>,

<Time, “ ≤ ”, EndExamTime>}
RPC (student,P-EA) = {<Mat#, “=”, ExamDoc#> ,
 <Location, “=”, ExamRoom>}, {<Date, “=”, ExamDate>,
 <Time, “ ≥ ”, StartExamTime>, Time,“ ≤ ”,EndExamTime>}

RPC (student,P-DA) = {<Mat#, “=”, ExamDoc#>,

 <Location, “=”, ExamRoom>},
{<Date, “=”, ExamDate>, <Time, “ ≥ ”, EndExamTime>,

 <Time, “ ≤ ”, SubmissionDeadline>}

55

only controls accesses to the objects and assigns
permissions to the roles according to the context
information, but also assigns roles to users dynamically
depending on their context in each session.

For better evaluation, we collected some proposed
factors from other publications and evaluated our
model using them.
• Reloading context is time consuming and

inefficient, so an effective model must decrease
the response time. By dividing context to Long-
Term and Short-Term context, we can improve
time complexity of operations, because LTCs are
checked at the beginning of a session and we do
not need to check it during a session. Also CAP
just checks the prerequisite STCs for requested
permissions in a session. Therefore, the average
response time of access requests have been
decreased in this model.

• In pervasive computing environments, security
service itself has to be ubiquitous [3]. CAP can
be ubiquitous by its architecture such as proposed
architecture. CAP by distributed DAs and SAs
can control access to services at any time and
from any where; so it has ubiquitous security
services.

• Access control model must be scalable [7]. We
can use CAP in large scale networks; its roles are
variable and we can add new roles to the model
with a little cost; also users are not fix in the
model. These flexibilities help CAP to be
scalable. In addition, CAP is used in distributed
networks, where we have a DA for each domain
that interferes at the start of the sessions and
during the sessions, SAs control accesses.

5. Conclusion and Future works

In this paper, we proposed a context aware access
control model based on RBAC. This model can assign
roles dynamically to users and limit their access with
context information. We described our model in a
formal manner and presented a simple case study to
demonstrate the applicability of the model. An
architecture was proposed according to the model to
help the implementation of an access control system
based on the CAP model.

We used context information for controlling
accesses but did not discuss about their management.
For managing context information, we need a secure
context infrastructure. Context information must be
updated quickly. Since the integrity of information
must be assured, quality of context information is very
important. An attacker must not be able to forge the
context information.

Intents and goals of the users are related to their
behaviors. Knowledge of past accesses may allow us to
infer present (or future) behavior of users. Therefore,
with aggregating the history of a user’s behaviors, we
can have an effective access control.
Another future work is developing a mechanism to
implement our model more realistically in large-scale
applications and evaluating the performance and
scalability of the designed context-aware access
control system.

6. Acknowledgment

We wish to thank Dr. Rasool Jalili for his
contribution. This work was partially supported by Iran
Telecommunication Research Center.

7. References
[1] M. Satyanarayanan, “Pervasive computing: vision and

challenges,” IEEE Personal Communication, Aug.
2001, pp. 10-17.

[2] T. Kagal, L. Finin, and A. Josh. “Trust-based security
in pervasive computing environments,” IEEE
Computer Society Press, December 2001, pp. 154-157.

[3] Jalal Al-Muhtadi, Anand Ranganathan, Roy Campbell
and M. Dennis Mickunas, "Cerberus: A Context-
Aware Security Scheme for Smart Spaces," in
Proceedings of the First IEEE Annual Conference on
Pervasive Computing and Communications (PerCom
2003), Fort Worth, Texas, March 2003, pp. 489-496.

[4] R. J. Hulsebosch, A. H. Salden, M. S. Bargh, P. W.
Ebben, and J. Reitsma, “Context sensitive access
control,” In Proceedings of the 10th ACM SACMAT,
Sweden, June 2005, pp. 111-119.

[5] A. K. Dey and G. D. Abowd, “Towards a better
understanding of context and context-awareness,”
Technical Report GIT-GVU-99-22, Georgia Institute
of Technology, College of Computing, June 1999.

[6] R.S. Sandhu, E.J. Coyne, H.L. Feinstein and C.E.
Youman, “Role-based access control models,” IEEE
Computer Society Press 29(2), pp. 38–47, 1996.

[7] Kazuhiro Minami and David Kotz, “Secure Context-
sensitive Authorization,” Journal of Pervasive and
Mobile Computing (PMC), March, 2005, pp. 123-156.

[8] G. Zhang, and M. Parashar, "Context-Aware Dynamic
Access Control for Pervasive Applications," In
Proceedings of the Communication Networks and
Distributed Systems Modeling and Simulation
Conference (CNDS 2004), San Diego CA, USA,
January 2004, pp. 219-225.

[9] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R.
H. Campbell, and K. Nahrstedt, “A middleware
infrastructure for active spaces,” IEEE Pervasive
Computing, Piscataway, NJ, USA, October 2002, pp.
74-83.

56

