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Abstract 19 

The growing number of disasters in recent years has become a significant threat to hospital 20 

buildings' resilience and preparedness. Besides, the stochastic nature of these disasters and the 21 

complexity of the hospital building systems exacerbate the difficulty of making appropriate 22 

decisions during and after disasters. To address the issue, this research proposes a novel model 23 

that utilizes the capabilities of Bayesian Networks (BNs) and Building Information Modeling 24 

(BIM). This model helps decision-makers in hospitals and medical centers measure various 25 

effects of disasters on utility systems and analyze the consequences of their decisions. The 26 

capabilities of the proposed model are tested in the case of a medical gas distribution system 27 

in a hospital building. The findings indicate that using this model brings new insights for 28 

decision-makers into the effects of an earthquake on the medical gas system of the hospital 29 

case. Applying the hybrid BIM and BN model improves the spatial understanding of the utility 30 

systems and expedites the hospital team members' response to critical situations. 31 

Keywords: Disaster Management, Hospital Utility Systems, Resilience, Bayesian Networks, Building 32 

Information Modeling  33 
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1 . Introduction 34 

Taking appropriate and timely responses during and after disasters plays a crucial role in 35 

preventing human and financial losses (Choi et al., 2018). In recent years, a large amount of 36 

capital has been lost in critical infrastructures due to the lack of such timely control measures 37 

(Gencer, 2013). Health infrastructures are of particular importance in the socio-economic and 38 

psychological recovery of injured people (Mulyasari et al., 2013) and should efficiently provide 39 

medical services to its patients in a safe environment for their personnel and equipment (Djalali 40 

et al., 2014). Increasing the resilience of a hospital depends on expanding its adaptive capacity 41 

by improving the decision-making process during crucial moments (WHO, 2015). Munasinghe 42 

& Matsui (2019) have shown that despite the WHO's emphasis on enhancing hospital 43 

preparedness for disasters, many are still unprepared. Weaknesses in disaster management in 44 

hospitals may include ambiguities in personnel's roles and responsibilities, poor 45 

communication, lack of optimal planning, and low-quality training (Paganini et al., 2016). 46 

Decision-makers in this discipline often face a shortage of relevant knowledge and experience 47 

to deal with unexpected events (Zhou et al., 2018), which can seriously affect the functionality 48 

of the whole healthcare system (Fallah-Aliabadi et al., 2020). 49 

Disasters occur at uncertain times and places, with unknown impacts (Lin et al., 2018). 50 

Furthermore, the decision-makers usually confront different types of disasters simultaneously 51 

with a series of effects requiring proportionate responses (Choi et al., 2018). Uncertainty, 52 

diversity, interrelated processes, and a large number of interdependent elements complicate the 53 

decision-making process in the healthcare systems during and after disasters (Wachs et al., 54 

2016). Past research has investigated the application of Bayesian Networks (BNs) in disaster 55 

management to address the mentioned issues. BNs are powerful tools with probabilistic 56 
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graphical models based on causal relationships for the decision-making process in high 57 

uncertainty situations (Constantinou et al., 2015). 58 

Another controversial aspect of disaster response management is the large amount of data 59 

originated from various sources used in the decision-making process. People who are 60 

responsible for crisis management are generally under considerable stress to make immediate 61 

and effective decisions (Dusse et al., 2016). Concentrating on trivial data and ignoring the 62 

proper flow of information due to the extensive data produced can lead to inaccurate 63 

conclusions in the disaster (Sarvari et al., 2019). Based on the definition of the National 64 

Institute of Building Sciences (NIBS, 2019), "Building Information Modeling (BIM) is a digital 65 

representation of physical and functional characteristics of a facility. A BIM is a shared 66 

knowledge resource for information about a facility forming a reliable basis for decisions 67 

during its lifecycle, defined as existing from earliest conception to demolition". In this 68 

perspective, BIM can help decision-makers in critical junctures identify and locate problems 69 

and determine the hazards through its visual interface (Becerik-Gerber et al., 2012).  70 

This research aims to respond to the current need for expedited decision-making during and 71 

after the disasters in the hospital buildings. The proposed model in this research combines the 72 

probabilistic inference engine of the BNs with the BIM models to develop a disaster decision 73 

support tool for the hospital's utility systems. This work provides new insights for decision-74 

makers in health infrastructures to analyze the probabilistic consequences of disasters and 75 

measure the effects of their decisions through a visualized and probabilistic environment. The 76 

main focus of this study is the hospitals that remain functional during and after the disaster, but 77 

their utility systems might suffer damages, compromising their functionality. First, the 78 

literature related to the research topic was studied. Then different parts of the proposed model 79 

were identified, and essential information about its implementation procedure was discussed. 80 
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To evaluate the applicability of the proposed model, the researchers implemented it on a 81 

hospital case in the city of Tabriz in Iran and discussed the results under a simulated earthquake 82 

scenario. Finally, the research was concluded by summarizing the contributions, limitations, 83 

and future directions. 84 

The remaining part of the paper proceeds in Section 2 by reviewing the related literature. 85 

Section 3 explains the proposed emergency disaster management model. In Section 4, a pilot 86 

implementation is demonstrated, and the findings are discussed. Finally, Section 5 concludes 87 

the research and suggests future study directions. 88 

2 . Literature review 89 

2.1 Hospitals in disasters 90 

Achour et al. (2011) surveyed 34 hospital facilities in seven countries following nine 91 

earthquakes between 1994 and 2004. Since the regulations have neglected hospital equipment 92 

and utility supplies' resilience, they concluded that the utility damage showed a steady trend 93 

among all hospitals. Disruptions in the operation of utility systems cause medical supply 94 

outages or even evacuation of the building. Kirsch et al. (2010) conducted interviews and field 95 

surveys to study the damage to some hospitals following the 2010 Maule earthquake in Chile. 96 

Despite negligible structural damage, most of these hospitals could not provide adequate 97 

service for up to 7 days after the event due to non-structural damage and utility failures. Despite 98 

having redundant systems, many hospitals did not have an effective disaster management plan 99 

and faced serious decision-making challenges. Using fault-tree analysis, Jacques et al. (2014) 100 

examined the relationship between structural, staff, and stuff failures in stricken hospitals in 101 

the 2011 Christchurch earthquake in New Zealand. According to their findings, Christchurch 102 

Hospital lost more than 30% of its functionality immediately after the earthquake. This loss of 103 
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functionality occurred mainly due to damage to non-structural building components and 104 

equipment, loss of public services, and breakdowns of transportation and re-supply.  105 

Hospitals are also at risk of losing their functionality in flood-prone areas. In the 2011 Thailand 106 

flood disaster, the infrastructures of 561 hospitals were severely damaged. The incident led to 107 

severe shortages of resources and hospital staff (Rattanakanlaya et al., 2016). After floods 108 

caused by 2012 Hurricane Sandy in New Jersey and New York, some local hospitals lost their 109 

functionality for a long time after the accident due to severe damage to electrical systems, 110 

emergency and exam rooms, and elevators (Evans, 2012). 111 

2.2 Disaster management efforts in hospitals 112 

Simulating the hospitals for disaster management has been an ongoing and studied topic in 113 

recent literature. Simulation can handle high uncertainty and various factors affecting hospitals' 114 

performance (Gul & Guneri, 2015). To evaluate different resource allocation plans in the 115 

recovery process, Khanmohammadi et al. (2018) used system dynamics simulation to analyze 116 

hospitals' performance in the aftermath of an earthquake. Considering the building, staff, 117 

medicine, technical systems, and medical equipment in their simulation, they quantified 118 

hospitals' resilience to earthquakes. Yi et al. (2010) simulated the hospitals' static and dynamic 119 

characteristics in times of crisis, estimating their capacity to respond to the surge in the number 120 

of patients. The findings of this study facilitate the disaster management planning of healthcare 121 

facilities. Shahverdi et al. (2020) used a discrete event simulation model to investigate the 122 

effects of disasters on hospital staff and their physical spaces. This model considers the hospital 123 

coalitions after the disasters to assess the joint capacity enhancement in resilience 124 

improvement. 125 

Some of the disaster management efforts in hospitals have also focused on improving hospital 126 

resilience via mathematical modeling. Using existing data of California hospitals' functionality 127 

in previous earthquakes, Yavari et al. (2010) developed a model for predicting hospitals' 128 
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performance in post-earthquake conditions. In their model, in addition to the hospital's central 129 

systems, including structural and non-structural systems, lifelines, and personnel, the impact 130 

of external factors such as water and power outages is also considered. With a similar approach, 131 

Vugrin et al. (2015) presented a mathematical optimization model to improve hospitals' 132 

adaptive capacity in the case of a disruption of infrastructure services. Aghapour et al. (2019) 133 

provided a mathematical optimization model for allocating human resources and reconfiguring 134 

spaces and physical facilities. This model helps hospital administrators and decision-makers to 135 

improve their capacity management programs over time.  136 

Some studies have begun to evaluate the hospital's preparedness for disasters. One attempt in 137 

this field was the introduction of the hospital safety index, providing a comprehensive checklist 138 

of indices for hospital safety and resilience assessment (WHO, 2019). Implementing this 139 

checklist as a diagnostic tool yields useful information on the hospital's strengths and 140 

weaknesses, which will lead to the actions to improve their resilience. Lim et al. (2020) used 141 

questionnaire-based research among four hospitals in China to conclude that management 142 

preparedness has a significant impact on hospital staff's readiness to respond to disasters. They 143 

pointed out that two factors of contingency leadership and group integration can play a role in 144 

facilitating this relationship. 145 

Analyzing the disaster management efforts in hospitals reveals that most studies in this field 146 

have focused on hospital disaster management planning in pre-disaster phases. However, such 147 

approaches have failed to address the immediate response management during and after the 148 

disasters in the hospitals. Most of these studies have also used simulation and mathematical 149 

optimization methods that require a large amount of data collection and often take a time-150 

consuming process to get results. The resilience of the hospital's internal systems has also been 151 

the focus of a few researchers. Nonetheless, most studies in this area have been related to 152 
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predicting hospitals' capacity to respond to increased patients and measuring the resource 153 

allocation strategies to increase this capacity. 154 

2.3 Bayesian Networks 155 

A great deal of previous research into disaster management has focused on utilizing 156 

probabilistic inference of the BNs. Qiu et al. (2014) built a BN-based model for early warning 157 

of crises, facilitating the alleviation process of the crises impacts. In this model, the cascading 158 

impacts of disasters were modeled by combining single crisis events. Hu et al. (2015) used 159 

dynamic BN's capabilities to analyze disasters' cascading effects among complex and 160 

interconnected systems. BNs helped equipment operators to gain a full understanding of the 161 

relationships between risk factors, identify the causes of abnormal conditions, and adopt 162 

effective corrective measures to deal with them. Wu et al. (2017) used BNs to model 163 

probabilistic relationships between the cause and effect of natural gas pipeline network 164 

accidents. This model provided a realistic analysis of the consequences and was helpful for 165 

decision-makers due to the existing conditional interconnections. Plomaritis et al. (2018) used 166 

the BN to probabilistically model the disaster risk reduction actions in coastal areas as an 167 

alternative to expensive numerical simulations. Here, the use of BNs reduced the effects of 168 

overwash and erosion caused by marine storms. Wu et al. (2020) presented a BN-based model 169 

for predicting and assessing damages caused by floods. They modeled the potential connections 170 

between different effective parameters through the ontology and quantified the uncertainties 171 

through BN. 172 

Incorporating expert knowledge into BNs as a solution to overcome the data paucity has been 173 

recently receiving more attention. The BN applications in the literature are mainly mentioned 174 

where historical data is available to estimate the conditional probabilities (Uusitalo, 2007). 175 

However, BNs are proven to be a suitable tool to incorporate expert knowledge where there is 176 

a lack of data for the conditional probability estimations (Kuhnert et al., 2010). Constantinou 177 
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et al. (2016) incorporated expert knowledge and unstructured data collected from 178 

questionnaires in BN development for medical decision-making. This method can structure 179 

BNs in cases where historical data is limited or difficult to access. Hossain et al. (2019) 180 

developed a BN-based model to quantify the resilience of port infrastructure. Using historical 181 

data and interviews with experts, the authors identified potential threats to port infrastructure 182 

and defined these infrastructures' capacity to absorb, adapt, and restore from these threats. The 183 

expert knowledge and historical data are synthesized into a BN to quantify the mentioned 184 

capacities and their interdependencies and estimate the port infrastructure's resilience. 185 

2.4 BIM applications in disaster risk reduction 186 

Research efforts on investigating potential BIM applications in disaster management such as 187 

emergency evacuation path planning/finding, indoor localization, fire emergency simulation 188 

and analysis, and facility safety management have been carried out in recent years (Gao & 189 

Pishdad-Bozorgi, 2019). Wang et al. (2014) proposed a framework that creates two-way 190 

communication between the BIM and the users in the evacuation process during a fire and is 191 

useful for increasing the users' awareness about the evacuation process. Chen & Chu (2016) 192 

automatically determined the best route for rescue operations in a disaster by extracting the 193 

building's geometric information from BIM models. 194 

BIM visualization has received particular attention in this research area. Charalambos et al. 195 

(2014) estimated the seismic damage to non-structural building systems and displayed it on the 196 

BIM model. Visualization of failure modes provided useful insight for non-specialist building 197 

owners. Cheng et al. (2017) developed a platform to help decision-makers find fire spots and 198 

safe evacuation routes by combining the BIM models' geometry information with the 199 

information received from Bluetooth sensors. This study showed that the 3-Dimensional (3D) 200 

visualization of BIM could help reduce wrong decisions and the confusion created during the 201 
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crisis. Providakis et al. (2019) used BIM visualization to build a decision-making tool to assess 202 

ground settlement damage to buildings adjacent to underground tunnel workshops. 203 

3 . The proposed model 204 

Figure 1 represents the schematic view of the hybrid BIM and BN-based emergency disaster 205 

management model for the hospital utility systems. The model architecture is developed in 206 

three layers, including user, front-end, and back-end. The user inputs its observations from the 207 

crises through the front-end layer, representing the model's interactive interface. An 208 

Application Programming Interface (API) is linking the front-end layer to the back-end layer. 209 

The back-end layer maintains the stored knowledge and data. In this layer, the observations are 210 

translated and transferred into the BN's probabilistic inference engine. Then the system state is 211 

predicted using the inference engine. Finally, the probabilistic information turns into the color-212 

coded 3D BIM objects and is presented to the user in the form of a color-coded BIM model.  213 
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 214 

Figure 1. The architecture of the proposed hybrid BIM and BN-based emergency disaster 215 
management model 216 

A four-step method is proposed to configure the back-end layer, including 1) System 217 

fragmentation, 2) Risk assessment, 3) BN development, and 4) Integration and visualization. 218 

Figure 2 represents the configuration steps and their interactions. A detailed explanation 219 

regarding the proposed steps is discussed in the following subsections. 220 
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  221 

Figure 2. The proposed method to configure the back-end layer of the proposed model 222 

3.1 System fragmentation 223 

The BIM represents the building's components as 3D objects with specified materials and 224 

functionality. Therefore, BIM models can provide the risk assessment's requirements by 225 

identifying different components' dependencies (Malekitabar et al., 2016). Due to the 226 

emergence of the information exchange standards for BIM, engineers can manipulate the 227 

collected data in the project's lifecycle. Construction Operations Building Information 228 

Exchange (COBie) (East, 2007) and Industry Foundation Classes (IFC) (ISO, 2018) are two 229 

standard information exchange formats in the BIM platform. The COBie, represented as a 230 

spreadsheet data format, is built based on the IFC to capture and deliver facility management 231 

information in a structured manner from an early stage of the construction projects (East, 2007).  232 
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In this step, the hospital BIM model is captured as an input. Firstly, the BIM model of the 233 

hospital is prepared to incorporate an adequate level of detail, sufficient to contain the target 234 

system's functional information. Then, the COBie spreadsheets of the BIM model is utilized to 235 

break the target system. For the hospital utility fragmentation, the three sheets of "System," 236 

"Component," and "Connection" in the COBie is exploited. COBie.Component contains the 237 

information of every equipment components installed in the building. COBie.System describes 238 

how groups of components are organized into relevant categories that deliver specific services 239 

to the facility. COBie.Connection contains information about the logical relationship between 240 

components, which can help the facility managers determine the propagation pattern of any 241 

system anomalies (East & Carrasquillo-Mangual, 2012). Here, COBie.System helps users 242 

recognize the utility systems of the hospital. Then, COBie.Component is utilized to fragmentize 243 

the target system into components. Finally, COBie.Connection is used for recognizing the 244 

connections of the components in the target system. The identified components and 245 

connections in the target system are used in the following steps as a basis for BN development. 246 

3.2 Risk assessment 247 

The risk assessment starts with "what and how can go wrong?" questions to address the risk 248 

factors' identification and evaluate their consequences (Zou et al., 2017). Failure Modes and 249 

Effects Analysis (FMEA) has been proven to be a reliable tool to incorporate the identification 250 

of the components' potential deviations and evaluate their failure consequences (Wan et al., 251 

2019). Inspired by this tool, two procedures are considered for risk assessment in the disaster 252 

management model: 253 

(1) Deviation identification: The deviation of the components is a general term used for 254 

any deflection of the components or process from an acceptable range of operation (Hu 255 

et al., 2015). The target system's fragmented components, identified in Step 1, are 256 
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chosen to be analyzed to identify the deviations. Once a component is chosen, the 257 

deviations are derived by analyzing its possible deflections from the design intentions.  258 

(2) Consequence evaluation: Each deviation should be analyzed considering the identified 259 

connections in Step 1 to detect the causes, the probable consequences, and the 260 

propagation of the components' deviation in the system.  261 

The two procedures of the risk assessment process are generally conducted based on historical 262 

data of the components' failure and the propagation pattern of the failure in the systems during 263 

the disaster. However, in the case of data shortage, other sources such as the knowledge of the 264 

components' functional criteria available in the scientific literature, design codes, standards, 265 

and technical manuals, the post-disaster reconnaissance reports that are focused on the disaster-266 

induced failures and propagation patterns, and the tacit knowledge of the domain experts could 267 

be considered as alternative data sources. Utilizing the knowledge of qualified experts can 268 

validate and supplement the information obtained from literature or reconnaissance reports for 269 

the case under study. 270 

3.3 BN development 271 

In this step, the results of Step 2 are mapped into a BN. Instantiation of the BN is followed in 272 

two stages: 273 

(1) Coupling risk assessments with BN objects: The BN object refers to the small block of 274 

BN structure representing a very generic type of uncertain reasoning (Fenton & Neil, 275 

2018). In this study, the cause-consequence BN object is utilized to model the single 276 

component's behavior during and after the disaster. In Figure 3, a schematic view of a 277 

typical cause-consequence object is represented. In this type of object, the causal process 278 

is represented by the "causes," "events," and "consequences" nodes. Measures for 279 

alleviating the effects of "events" and "consequences" are also demonstrated by "controls" 280 
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and "mitigations" nodes. Instantiation of cause-consequence objects is performed by 281 

mapping each component's deviations, consequences, and mitigation measures to the 282 

objects' corresponding nodes. For achieving this goal, the developed technique of 283 

mapping FMEA to BN is utilized (Brahim et al., 2019). 284 

(2) Integrating objects into a complete BN: The integration of the fully structured BN 285 

requires the assembly of the objects. This process is performed by using the identified 286 

system fragments in step 1. Figure 3 illustrates the assembly scheme of the BN objects 287 

into a fully structured BN. The developed objects reflect the components' behavior in the 288 

system; therefore, it is possible to match them with the COBie.Component attributes. As 289 

represented in Figure 3, the objects' dependencies are derived from the 290 

COBie.Connection. By linking the objects, the COBie.System and the overall BN of the 291 

desired system are developed.  292 

 293 

Figure 3. COBie-enabled BN objects assembly 294 

In this step, the overall BN of the target system is structured by assembling the BN objects. 295 

Developing the BN from the objects brings the advantages of (i) speeding up the process of 296 
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BN development, (ii) increasing the quality of the developed network, and (iii) developing the 297 

libraries of objects which could be used for future studies (Fenton & Neil, 2018).  298 

3.4 Integration and Visualization 299 

This step integrates the power of BN probabilistic inference and the visualization capability of 300 

BIM. The BN probabilistic inference (also known as belief updating) is referred to as the 301 

calculation of the probabilities of BN nodes given some observed value of nodes (i.e., evidence) 302 

(Pearl, 2014). The probabilistic inference is used for predicting the state of the target utility 303 

system given any observations of the disaster events. On the other hand, the visualization 304 

capability of the BIM helps decision-makers develop heuristic solutions for managing crises 305 

considering the probabilistic outcomes of the BN inference engine. To this aim, an API is 306 

developed between the BIM platform and BN software. Here, the identified components of the 307 

target system in step 1 are leveraged to map the results of the BN probabilistic inference engine 308 

into their respected 3D BIM component. Then, the "3D component" color-coded visualization 309 

technique (Motamedi et al., 2014) is implemented by assigning a color to every component to 310 

represent their predicted state.  311 

4 . Model implementation for the medical oxygen system 312 

The proposed hybrid BIM and BN-based emergency disaster management model was 313 

implemented in a general hospital's medical oxygen system to illustrate its applications in the 314 

decision-making process during a crisis. The hospital case was located in Tabriz city, in the 315 

north-west of Iran. This region had experienced severe earthquakes during the last decade. The 316 

area's high seismicity encouraged the research team to develop the proposed model by focusing 317 

on earthquake-induced disasters. The medical oxygen delivery system plays a vital role in 318 

hospitals' functionality (Achour et al., 2014), and it is identified as one of the most vulnerable 319 

systems in the past earthquakes (Dixit et al., 2014). Therefore, the oxygen delivery system of 320 
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the intensive care unit of the case hospital, as a representative part of the whole system, is 321 

selected as the target utility system of this case study. In the proposed model for the oxygen 322 

delivery system, the user enters the disaster observations and the mitigation measures into the 323 

model and receives the system state's prediction as an output. A detailed explanation of the 324 

model implementation is discussed in the following sections. 325 

4.1 Medical oxygen system fragmentation 326 

The BIM model of the hospital is captured as input. Then, the selected oxygen system of the 327 

hospital case and its specifications (Figure 4-b) were added to the available architectural 3D 328 

BIM model of the hospital (Figure 4-a) to prepare the model for system fragmentation.   329 

 330 

Figure 4. Illustration of the developed BIM model of the case hospital  331 

The system fragmentation was conducted for the selected medical oxygen delivery system 332 

based on the COBie dataset. For the target system of the case hospital, five principal 333 

components were identified with their dependencies. Figure 5 illustrates the identified 334 

components and their dependencies. The "PSA Unit" was identified as the primary, and the 335 

"Cryogenic Tank" was recognized as the secondary source of the medical oxygen. The oxygen 336 

flows from the primary or secondary supply to the "Piping System," which delivers the oxygen 337 

to the "Patient Floors." The "Portable Supply" is also added to reflect the portable reserve 338 

oxygen cylinders in the hospital wards.  339 

(b)(a)(a) Architectural model 
(b) Medical oxygen system of the 

intensive care unit model 



18 

 

 340 

Figure 5. Medical oxygen system fragmentation  341 

4.2 A thorough risk assessment of the oxygen system 342 

In this case study, due to the lack of systematic data collection in the case hospital, the historical 343 

data was not reliable to perform the conditional probability estimation algorithms. Therefore, 344 

a literature-based risk assessment along with the expert knowledge elicitation was carried out 345 

to recognize the components' deviations and their corresponding consequences. The risk 346 

assessment procedures of this case study are inspired mainly by the FMEA method. The 347 

adopted method covers all the potential deviations and their corresponding possible causes and 348 

consequences of the system components. A total of 18 scientific papers, standards, regulations, 349 

and guidelines were reviewed for identifying the risks of the target system. Table 1 reflects the 350 

achieved results of the literature-based risk assessment. 351 
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Table 1. The identified risks for the oxygen delivery system of the hospital 352 

Component 
Failure 

Modes 
Causes of Failure 

Consequences of 

Failure 
Mitigation Measures References 

PSA Unit 

Outage of 

power 

Failure of the power 

supply infrastructure Oxygen gas system 

outage 

Using the backup 

power supply 

(Li et al., 2013), (Wang et 
al., 2015); (Adachi & 

Ellingwood, 2008); (Cao 
Wang et al., 2019); 

(FEMA, 2012) 
Cyberattacks 

Leakage 

Under-maintained 

system 
Fire 

Regulated maintenance 

and checking (Retamales, 2008); (Blasi 

et al., 2018); (BCGA, 
2006b); (Salah et al., 

2018); Experts 
Excessive ground 

acceleration 

Reduced gas 

pressure 

Monitoring the system 

state via the master 

panel 

Fire Faulty wirings 
The overall outage 

of the PSA system 

Shutting the main 

valve off in case of fire 

(Manes & Rush, 2020); 

(BCGA, 2006a); (BCGA, 
2006b); (NFPA, 2005) 

Cryogenic 

Tank 

Lack of 

available 

volume 

Misestimation of the 

oxygen need 

Lack of oxygen in 

the hospital 

Estimating the average 

need (BCGA,2006a); (BCGA, 
2006b); (NFPA, 2005); 

Controlling the oxygen 

level 

Leakage 

from tank 

Cracks at the outer 

and inner surface of 

the tank 

Lack of pressure 
Considering the 

seismic design codes 
(Retamales, 2008); (Blasi 

et al., 2018); (BCGA, 

2006b); (Salah et al., 
2018); Experts Under-maintained 

system 
Fire 

Regulated maintenance 

and checking 

Fire 
Heating and 

smoking 

The overall outage 

of the Cryogenic 

tank 

Shutting the main 

valve off in case of fire 

(Manes & Rush, 2020); 

(BCGA, 2006a); (BCGA, 

2006b); (NFPA, 2005) 

Piping 

system 
Leakage 

Improper pipe 

connections 
Fire 

Controlling the gas 

flow and detecting the 

leak points (Retamales, 2008); (Blasi 

et al., 2018); Experts 
Excessive sway of 

the structure 

Lack of gas 

pressure on the 

wards 

Using a portable 

supply 

Portable 

supply 

Lack of 

available 

supply 

Misestimation of the 

oxygen need 

Lack of oxygen in 

wards 

Estimating the average 

need (BCGA,2006a); (BCGA, 
2006b); Experts 

Controlling the oxygen 

level 

Misuse of 

the supply 
Lack of trained staff Hypoxia in patients 

Training staff to 

manage the crisis 

(Charney et al., 2015); 

(Burke et al., 2014); (Yang 
et al., 2010); (Johnson & 

Travis, 2006); (Salevaty et 

al., 2015) 

Patient 

Floor 

Fire 
Failures of 

equipment 

Exacerbation of fire 

due to the presence 

of oxygen 

Shutting the oxygen 

flow in case of fire 

(Manes & Rush, 2020); 

(BCGA, 2006a); (BCGA, 
2006b); (NFPA, 2005) 

Medical gas 

flow outage 

Power supply outage 

Emergency medical 

situation 

Active area alarm 

panel (BCGA,2006a); (BCGA, 
2006b); (NFPA, 2005); 

Experts 
Leakage in the pipes 

Monitoring the patients Shutting valves due 

to emergency 

 353 

After performing the literature-based risk assessment, the experts' domain knowledge was 354 

employed in two stages to tune the risk assessment results with the hospitals' existing 355 

arrangement. Two clinical engineering experts with more than ten years of experience were 356 

contacted to adjust the "PSA Unit," "Cryogenic Tank," and "Piping" components' risks. A 357 
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senior nurse was also selected to assess the risks of "Patient Floor." Furthermore, another expert 358 

was selected from the disaster management domain for validating the results of risk 359 

assessments. The expert assessments were conducted in the form of one to two hours of 360 

interactive interviews. In the first stage, the experts were asked about parameters that play a 361 

role in the system's behavior. By matching the experts' responses with the identified risks, the 362 

required adjustments were made in the risk assessment. In the second stage, the expert 363 

knowledge was used to justify the relations of different risk factors and their effects on the 364 

system's behavior. For simplifying the process of expert opinion extraction, the indirect 365 

elicitation technique of weighting introduced by Kuhnert et al. (2010) was utilized. In this 366 

technique, the experts were asked to make comments about the parameters' effects and rank 367 

the impacts of parameter variations. Then, the research team evaluated the experts' comments 368 

and made the required justifications. Table 2 represents the justifications made to the risk 369 

assessment results.  370 
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Table 2. Expert's justifications on the literature-based risk assessments 371 

Justification type 
Literature-based 

assessment results 

Changes made by 

Experts 
Description 

Adding a new risk 

factor 
- Staff Training 

Employees' performance depends on the training they receive. 

Proper training can help them to stay calm and to increase their 

productivity during a crisis. 

Adding a new risk 

factor 
- 

Trained Staff 

Availability 

During an earthquake, escape from the place occurs instinctively, 

and it is proportional to the intensity of the earthquake. Proper 

staff training can increase the efficiency of personnel during a 

crisis. 

Changing states of 

risk factor 

Productivity 

(Poor, Moderate, 

High) 

Productivity 

(Poor, Good) 

Considering the three different states of this risk factor, neither 

will bring any additional analytical benefits, nor will simplify the 

risk assessment process. 

Changing states of 

risk factor 

Backup Productivity 

(Poor, Moderate, 

High) 

Backup 

Productivity 

(Poor, Good) 

Considering the three different states of this risk factor, neither 

will bring any additional analytical benefits, nor will simplify the 

risk assessment process. 

Changing states of 

risk factor 

Gas Flow From 

Primary Supply 

(Poor, Moderate, 

High) 

Gas Flow From 

Primary Supply 

(Poor, Good) 

Considering the three different states of this risk factor, neither 

will bring any additional analytical benefits, nor will simplify the 

risk assessment process. 

Changing states of 

risk factor 

Gas Flow From 

Backup Supply 

(Poor, Moderate, 

High) 

Gas Flow From 

Backup Supply 

(Poor, Good) 

Considering the three different states of this risk factor, neither 

will bring any additional analytical benefits, nor will simplify the 

risk assessment process. 

Changing states of 

risk factor 

Gas Flow In Pipes 

(Emergency, 

SlightLack, Good) 

Gas Flow From 

Backup Supply 

(Lack, Normal) 

Considering the three different states of this risk factor, neither 

will bring any additional analytical benefits, nor will simplify the 

risk assessment process. 

Changing states of 

risk factor 

Gas Flow Inpatient 

floors 

(Emergency, 

SlightLack, Good) 

Gas Flow Inpatient 

floors 

(Lack, Normal) 

Considering the three different states of this risk factor, neither 

will bring any additional analytical benefits, nor will simplify the 

risk assessment process. 

Changing states of 

risk factor 

Medical Gas State 

Inpatient floor 

(Emergency, 

SlightLack, Good) 

Medical Gas State 

Inpatient floor 

(Emergency, 

Normal) 

Considering the three different states of this risk factor, neither 

will bring any additional analytical benefits, nor will simplify the 

risk assessment process. 

Changing states of 

risk factor 

Portable Supply 

Quality 

(Poor, Normal, 

VeryGood) 

Portable Supply 

Quality 

(Poor, Good) 

Considering the three different states of this risk factor, neither 

will bring any additional analytical benefits, nor will simplify the 

risk assessment process. 

Adding a new risk 

factor 
- 

Leakage In Pipes-

Gas Flow inpatient 

floors 

The leakage in the pipes will have a direct effect on the gas flow 

in the patient rooms 

Adding a new risk 

factor 
- UPS Units 

Critical wards are equipped with UPS units, and if the city power 

goes out, these UPS units can supply the need immediately. 

Adding a new risk 

factor 
- City Power Grid The PSA units mainly work with the city power grid. 

Changing a risk 

factor 

Power supply 

availability 
City Power Supply 

Power availability relies mainly on the city power supply, and in 

case of a power outage, UPS systems could fulfill the needs for a 

short time. 

4.3 The oxygen system's BN instantiation 372 

The collected information of the system risk factors was mapped into the cause-consequence 373 

BN objects. The objects were linked using the identified relationships between the components 374 

in Section 4.1. The BayesFusion's GeNIe Modeler (BayesFusion, 2020a) was used to develop 375 

the BN. Figure 6 represents the overall structure of the BN model.  376 
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 377 

Figure 6. Bayesian Network of the medical oxygen system 378 

The BN nodes were categorized into three groups, including chance nodes, system settings, 379 

and utility. The chance nodes express the model's uncertain variables like risk factors, which 380 

could be observed at any moment of the crisis. These nodes can also capture the decisions of 381 

the managers and working teams. The system setting nodes model the system settings and 382 

strategies before disaster hits. The utility nodes express the components' performance 383 

according to the disaster observations. 384 

4.4 Model validation 385 

The sensitivity analysis was carried out on all the possible cases to evaluate the effects of input 386 

changes on the target node of the "Medical Gas State In Patient Floor." The target node was 387 

selected due to its importance in the final result of the BN system. Figure 7 illustrates the 388 

impacts of the top ten variables on the target node in the form of a Tornado graph. In the 389 

Tornado graphs, different model variables are represented by bars, and the length of bars is 390 

interpreted as the magnitude of the variable's impact on the output of the target node (Hosseini 391 

& Sarder, 2019). 392 

Patient Floor

Portable Backup Supply

Cryogenic Tank

PSA Unit

Piping

Chance nodes Utility nodesSystem setting nodes
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 393 

Figure 7. The sensitivity Tornado graph for the normal state of the "Medical Gas State In Patient 394 
Floor" 395 

Each bar displayed in Figure 7 represents the impacts of a 30% variation in the value of its 396 

respective variable on the target node. The green bars indicate an increase, and the red bars 397 

demonstrate a decrease in the value of each variable. For example, the original probability of a 398 

normal medical gas state in patient floor is 0.90453, and an increase of 30% in the probability 399 

of the "More than 4 hours" state of the "Portable supply availability" variable (see bar 4 in 400 

Figure 7), would increase the probability of normal medical gas state in patient floor to 0.9102. 401 

On the other hand, a decrease of 30% in the probability of the same bar would decrease the 402 

probability of a normal medical gas state in patient floor to 0.8989. In other words, the 403 

probability of a normal medical gas state in patient floor ranges from 0.8989 to 0.9102 by 30% 404 

variation of the fourth variable plotted in Figure 7. It is concluded that the developed model 405 

responds to the slight variations in the input variables in a sensible manner. 406 

4.5 BIM-based visualization 407 

The BN and BIM were integrated by the development of an API in the .NET Framework. The 408 

API collects the observed evidence and assigns them to their corresponding nodes on the BN. 409 

0.895 0.9 0.905 0.91 0.915

1: FireInPatientFloors=Fire

2: PortableSupplyAvailablity=NotAtAll

3: GasFlow InPipes=Normal | GasFlow FromBackupSupply=Good, GasFlow FromPrimarySupply=Poor

4: PortableSupplyAvailablity=MoreThan4

5: PortableSupplyAvailablity=Betw een2To4

6: BackupVolume=For2days

7: EarthquakeIntesity=LessThan2

8: PortableSupplyAvailablity=LessThan2

9: RegulatedMaintenance=Good

10: PortableSupplyMaintenance=Good

Current value: 0.90453  Reachable range: [0.893997 .. 0.915063]

Sensitivity for MedicalGasStateInPatientFloor=Normal
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Then, it utilizes the SIMLE Engine (BayesFusion, 2020b) for updating the system state. Next, 410 

the updated state of each utility node on the BN is matched with its corresponding BIM object. 411 

The identified components of the medical oxygen gas system are leveraged to map the BN's 412 

probabilistic results on the BIM components. Finally, the results were visualized by reflecting 413 

the components' conditions as color-coded 3D objects in the BIM model. The hospital's 414 

decision-makers can control the crisis by allocating mitigation measures. The API captures the 415 

measures by assigning the values on the nodes that the decision is impacting. Then the model 416 

is recalculated to reflect the effects of the mitigation measures on the system. 417 

4.6 A simulated post-earthquake scenario 418 

A post-earthquake scenario of the medical gas system was developed based on available data 419 

from past earthquakes to clarify how the model assists the hospital managers in controlling the 420 

disaster. The observational data on hospitals' performance in past earthquakes collected by 421 

Yavari et al. (2010) and the risk assessment data of the oxygen supply system facing the 422 

earthquakes gathered by Deleris et al. (2006) was the source of inspiration for the development 423 

of the scenario. The developed scenario is summarized in Figure 8. 424 

 425 

Figure 8. The post-earthquake scenario for the medical oxygen system 426 

In the simulated scenario, an earthquake with a magnitude (MW) of 5 to 6 occurred (See E1 in 427 

Figure 8), ensuing with a power outage in the city (See E2 in Figure 8). In this situation, the 428 

PSA Unit will be down until backup power starts to operate, which will take 10 to 15 minutes 429 

according to the case hospital's current configurations. During these crucial moments, the 430 
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cryogenic tank is designed to provide the hospital's demand. To identify the system state, the 431 

hospital manager entered the first and second observations into the model by assigning the 432 

value on the "Earthquake Intensity" and "City Power Grid" nodes. Figure 9 represents a 433 

snapshot of a color-coded model before and immediately after an earthquake (after observing 434 

E1 and E2). Although the PSA unit was identified as the most critical component in the system, 435 

the backup supply seemed to be able to feed the hospital and fulfill the demand. The red 436 

rectangles in Figure 9 illustrate the system overview. 437 

  438 

 439 

Figure 9. Visualization of the system state before and after a simulated earthquake 440 

Simultaneously, the nurses reported the lack of pressure of the oxygen in the central pipelines 441 

(see E3 in Figure 8). The third evidence was entered into the system. The model captures this 442 

evidence by assigning the value on the "Gas Flow In Patient Floor" node in the network and 443 

runs the inference engine to update the system state considering the new observation. Figure 444 

10-a represents the system state after the new observation, and the red rectangle illustrates the 445 

system overview.  446 

By overviewing the system state, the manager identified the critical state of the patient floor 447 

(see C1 in Figure 8); therefore, two mitigation measures of calling for the extra portable oxygen 448 

supply from the supplier and recalling the trained staff were allocated to control the crisis. The 449 

model captures the allocated mitigation measures by assigning values on the "Trained Staff 450 

(a) Before earthquake (b) Immediately after earthquake
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Availability" and "Portable Supply Availability" nodes on the network. The manager evaluated 451 

the mitigations' effectiveness by running the model and observing the updated system state, 452 

considering the allocated measures. Figure 10-b represents the system state after performing 453 

the mitigation measures. The adopted measures lead to an increase in the "Patient Floor 454 

Performance" to 95.5% (see the red rectangle of the "System Overview" in Figure 10-b). 455 

Additionally, probabilistic information of the system overview indicated a significant reduction 456 

of performance in the "Cryogenic Tank" and "Piping System." The manager analyzed the 457 

detailed probabilistic information of the components' states (see the red rectangle of the 458 

"Detailed System State" in Figure 10-b) and distinguished the pipe or tank leakage as the two 459 

probable consequences (See C2 and C3 in Figure 8).  460 

Hence, the maintenance team was called to conduct diagnosis procedures. The maintenance 461 

team used the master alarm panel to check whether the backup supply was feeding the hospital, 462 

and a reduction in the gas flow in pipes was detected (See E4 in Figure 8). The fourth evidence 463 

was entered into the system. This evidence was assigned on the "Gas Flow in Pipes" node, and 464 

then the system states were updated. Figure 10-c represents the system state considering all the 465 

observed evidence. As shown in Figure 10-c, the backup supply leakage was more probable 466 

than the pipe leakage. Accordingly, the manager decided to request emergency maintenance 467 

for the cryogenic tank.  468 
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 469 

 470 

Figure 10. Visualization of the system state 471 

4.7 Results and discussion 472 

Based on Figure 7, the occurrence of the fire in the patient floors was recognized as the most 473 

disruptive earthquake-induced consequence for the system. Moreover, the portable reserve 474 

supply was identified as one of the most sensitive factors that influenced the medical gas state 475 

(a) After observing third evidence

(b) After allocating the measures

(c) After observing fourth evidence 
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on the patient floors. As it is represented, the bars associated with the reserve supplies are 476 

among the highest rank in the Tornado graph (see bars 2, 4, 5, 8, and 10 in Figure 7). This 477 

finding implies the importance of the redundancy of the resources in the resilience of the 478 

systems. By examining the effect of different variables with respect to their contribution to the 479 

medical gas state in patient floors, decision-makers can devise necessary strategies to optimize 480 

the resiliency of their systems. 481 

Implementation of the model in the case hospital revealed the model capabilities in emergency 482 

management and root cause analysis. Immediately after the earthquake, the performance of the 483 

PSA unit was significantly reduced, which was rooted in the city power outage. The PSA units 484 

are designed to work with the city power grid, and the outage of power reduced its performance 485 

from 87.4% to 7.1% in the simulated scenario. By considering the explicit (i.e., power outage) 486 

and implicit (i.e., increased chances of earthquake-induced failures such as pipe or tank 487 

leakage) disaster impacts, the proposed model reduced the performance of other components 488 

(see the red rectangle of Figure 9-b). The model reduced the patient floor state to 65% by 489 

observing the third evidence from the nurses. In this situation, some of the patients might be 490 

experiencing hypoxia. The proposed model helped the manager identify the emergency and 491 

allocate the measures to control the crisis. The model evaluated the allocated measures to be 492 

effective in increasing the patients' status to 95.5%. Moreover, the model's probabilistic 493 

information helped the manager conduct a root cause analysis of the performance reduction in 494 

the second stage of disaster management. Although the pipe leakage might seem more probable 495 

at first sight, the model predicted the same chance of leakage in the cryogenic tank and piping 496 

system (see Figure 10-b). By collecting the fourth evidence from the system behavior, the 497 

model predicted the tank leakage to be more probable than the pipe leakage (see Figure 10-c). 498 

Implementation of the model helped the manager consider the probability of tank leakage, 499 

which might be overlooked in the best practices of the case hospital in the same situations. 500 
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5 . Conclusions 501 

Disasters are threatening societies, and health infrastructures play a vital role in overcoming 502 

these threats. The development of a decision support system for facilitating the immediate 503 

responses after disasters is a surging demand. This research proposed a novel decision support 504 

model by synthesizing the BN and BIM capabilities to respond to the existing demand. The 505 

BN's probabilistic capabilities were utilized for analyzing the states of the hospital's utility 506 

systems during the disaster. Meanwhile, the object-oriented and 3D visualization capabilities 507 

of the BIM was employed to facilitate risk-informed decision making. The proposed model 508 

was implemented in a hospital case to investigate its capabilities and demonstrate how it can 509 

visually analyze the oxygen delivery system after an earthquake. The proposed model has 510 

several distinguishing features that can improve the process of making urgent decisions during 511 

a crisis. Integration of the BIM and BN in the model architecture endows the user to visually 512 

evaluate the utility system states. Besides the model's capability to simulate the system after 513 

disasters, a novel capability is introduced that enables decision-makers to model the system 514 

immediately after the disaster. This capability would help the decision-makers investigate 515 

different disaster response strategies, assess the effectiveness of viable measures, and allocate 516 

the planned strategies optimally. Moreover, the COBie standard is used for constructing BN 517 

objects, accelerating the BN structure development, and reducing the burden of the process. 518 

This study is subject to certain limitations. Due to the lack of data about the system behavior 519 

during the disaster and the lack of pragmatic solutions to collect such data, the case study limits 520 

its scope to the available knowledge in literature and experts' experience. In the case study, the 521 

interdependence of systems is neglected, and the scope is limited to a specific utility system. 522 

Moreover, the evidence observations in the case study are limited to the operational teams' 523 

perception of disaster events. Future research is required to combat the limitations of this study. 524 

Further case studies are necessary to develop BN for other utility systems and consider the 525 
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interdependent relationships of these systems. A systematic data collection method needs to be 526 

developed to provide the automated BN instantiation requirement for the hospital utility 527 

systems. Moreover, COBie datasets and facility management systems' databases can be 528 

leveraged to develop an automated BN instantiation method. Finally, the building facility 529 

management systems and equipment sensors' data can be utilized to investigate the disaster 530 

observations and update the system state automatically. 531 
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