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 Terminating

 We simulate the model for a limited time or working hours after which 

simulation is terminated

 Example, asphalt plant works from 7 am to 7 pm and we simulate it for 720 

minutes to represent daily working hours

 Transient

 We simulate the model for a long period of time where model reaches a 

steady condition

 Example, steel fabrication shop with daily work of two shifts; every shift 

exactly continues previous shift’s uncompleted jobs, we may want to 

simulate 20 continuous shifts to be able to asses fabrication shop’s 

condition after passing initial condition of the work!

Two types of simulation for output analysis
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 What are typical output parameters we need out of our simulation models?

Output parameters and point estimation
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 Average queue length, maximum queue length, average waiting time, daily 

production rate and cycle time are some typical output parameters!

 Many of which are standard outputs reported in simulation programs and some 

are not and we need to calculate them through directly calculating them.

 How can we point estimate “average queue length”?

Output parameters and point estimation
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 Average queue length, maximum queue length, average waiting time, daily 

production rate and cycle time are some typical output parameters!

 Many of which are standard outputs reported in simulation programs and some 

are not and we need to calculate them through directly calculating them.

 How can we point estimate “average queue length”?

Where Y(t) is length of queue at each point of time and TE is the simulation 

duration.

 How can we point estimate “average waiting time”? 

Where Yi is ith entity's waiting time and n is number of entities served.

 How can we estimate “cycle time”? 

Output parameters and point estimation
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 Example 1: Calculating entity’s waiting time, earth moving example

Output parameters and point estimation
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 Confidence interval corresponds to the confidence level (= 1 - error level) when 

point estimating an output result!

Confidence level (= 1- error level) is the chance that the actual value of the point 

estimator of the output parameter (θ) belongs to the confidence interval.

 Prediction interval corresponds to the prediction level (= 1 - risk level) when 

receiving output results!

Prediction level (= 1- risk level) represents the chance that observed output 

parameter results happen within the prediction interval in different model runs!

Confidence interval Vs Prediction interval
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Confidence interval Vs Prediction interval
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 For an output parameter of Y with R runs of our simulation model we have:

Where        is estimated average of parameter in each run and         is the total 

estimated average. Let suppose: 

The confidence interval of          estimator is: 

As  it  is  expected our  confidence  interval will  be  decreased  (the error value of ϵ

or is reduced and converged to zero) by increasing number of 

observations (R).

Confidence interval Vs Prediction interval
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Note: With large enough number of simulation runs (R) we will have our 

confidence interval converged to zero and value of our point estimator equal to 

exact value of the parameter:                        =0  =>        = θ

= σ2

According to the central limit theorem, with a large number of R (or our simulation 

runs) we can suppose       has a normal distribution. In such case our prediction 

interval is:

The prediction interval can be then calculated as: 

Confidence interval Vs Prediction interval
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 Example 2: Cycle time of our truck in 8 different simulation runs are presented in 

below: 

Confidence interval Vs Prediction interval

R Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13

1 22.03 29.70 38.80 30.28 25.13 21.61 28.42 33.53 33.98 34.31 28.04 28.08 24.83

2 28.48 28.37 27.12 29.50 31.26 34.72 33.16 31.17 30.65 32.23 33.71 34.13 29.80

3 29.15 29.96 32.67 35.52 30.17 29.50 28.31 31.97 32.46 31.54 33.88

4 32.55 28.25 23.63 29.66 29.57 37.79 29.10 32.48 27.47 28.72 31.84 31.76 35.17

5 32.62 30.38 31.38 28.98 30.84 31.01 27.38 31.03 27.24 34.13 31.58 36.91

6 31.88 29.45 35.71 22.53 31.66 38.73 30.17 28.60 30.48 37.01 33.57 34.17 28.21

7 32.17 31.69 36.32 36.37 32.78 26.80 24.76 27.31 30.17 29.69 30.99 30.83

8 35.35 35.77 33.72 27.53 25.91 27.01 33.66 33.10 33.03 32.15 34.05 29.07 27.86
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 Example 2(cont’d): Unbiased estimator for the average cycle time can be 

calculated as:

 The confidence interval of       by accepting 5% error is: 

± t(2.5%, 7) * S / √R = 30.91 ± 2.36 * 0.79 / 2.82 = 30.91 ± 0.664 minute

 Prediction interval of observed results (   b ) by accepting 5% risk is:

± t(2.5%, 7) * S * √(1+1/R) = 30.91 ± 2.36 * 0.79 * 1.14 = 30.91 ± 2.14 minute

Confidence interval Vs Prediction interval

R Ýi. Ý.. S

1 29.13 30.91 0.79

2 31.10

3 31.37

4 30.61

5 31.12

6 31.71

7 30.82

8 31.40
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 Empirical prediction interval: When you have K number of output results:

 Sort output results in an ascending manner

 Determine risk level you can accept (e.g., α=5%)

 For two-tail interval, our prediction interval forms by removing first and last 

(α/2 * K) results  

 For one-tail interval, our prediction result forms by removing last (α * K) 

results

Example: With 500 number of results observed in our 500 simulation runs, by 

accepting two-tail risk level of 10%, when we have all results sorted, our prediction 

interval forms by removing first and last 25 results (interval includes sorted result 

number 26 to 475). For one tail risk, our prediction result includes results 1 to 450. 

Confidence interval Vs Prediction interval
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 As a part of our output analysis, before start running our simulation model, we 

need to determine how many simulation runs fulfill our confidence level 

requirement!

Suppose we require a confidence interval for point estimator of       with absolute 

error value of ϵ compared to actual parameter value (θ) and confidence level of   

1-α:

This gives: ≤ ϵ

Sample size estimation

(Where R is number of runs to be

estimated, S0 is an initial estimation of σ

calculated based on initial number of

runs of R0.)
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In general we have: t α/2,R-1≥ Zα/2

in addition with large number of R, t α/2,R-1 converges to Zα/2 ; so we have:

Example:

t(0.025,7) = 2.36462         t(0.025,1000) =  1.96234

Z(0.025) = 1.95996

Example: In our last example of truck cycle time, what is minimum acceptable 

number of simulation runs, if maximum error size of 0.1 minute for the average of 

truck cycle time is required:

R ≥ (t(0.025,7)*S0 / 0.1)^2 = (2.36 * 0.79 / 0.1)^2 = 347.6 

=> minimum number of 348 runs required 

Sample size estimation
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 In many simulation models initial system condition affects model outputs during 

initialization phase. Failure to properly considering effects of initial conditions of 

the system on the model outputs can cause bias calculations of point estimators!

 Example: in our pipeline construction example, first batches of pipe arrived to the 

construction site are welded with no delay since welding crew is idle. Pipe queue 

and waiting time may grow as welding crew get busy serving previously arrived 

pipes.  If simulation model does not continue long enough, pipe waiting time 

estimators will be calculated bias.

 For transient models, as they are run for a long duration, for point-estimating 

output parameters it is important to separate point estimation in initialization state 

and steady state. 

 For terminating models it is important to set initial values of the model close to the 

actual initial state of the system!

Initialization concerns
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 Initialization phase in transient models:

 One way for eliminating mal-effects of initial conditions in transient models is 

to continue simulation for long period of time

 Another way for removing mal-effects of initialization phase is to divide 

simulation runs into two parts; initialization phase and steady phase. Data 

collection and point-estimator calculation will be done during the steady 

phase.

Initialization concerns
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 Initialization phase in terminating models:

 Initial condition is a part of point estimator calculations, since in this type of models, 

system opens and closes (is terminated) repeatedly after specific period of time 

(e.g., 10 hours on daily basis). In many cases effects of initial condition last for a 

significant portion of system time in each period and contributes in actual value of 

the output parameters.

 Considering no one in line and idle resources for the initial condition of the system 

might not be the case for many systems!

 Study of historical data on possible initial conditions of the system is the best way 

for correctly capturing the initial conditions and their effects.

 Asking system experts is another way of capturing initial conditions.

 Another way for capturing initial conditions, usually in absence of other credible 

ways, is start running the model with an arbitrary initial condition and then continue 

running it to reach the steady phase, different model status during the steady phase 

can be used as initial conditions!

Initialization concerns
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 Example 3: Calculating entity’s cycle time, earth moving example

Remember our earthmoving example with 3 x 10-tonne trucks, 1 loader,  no 

limitation in number of dumping sites, working hours from 7 am to 7 pm and 

following activity durations estimated:  

Loading: Triang(8,10,13)(minutes)

Trip to dumping site: U(3, 7) (minutes)

Dumping 2 minutes

Trip from dumping: Uniform (3, 6) (minutes)

Morning arrival of each truck is from 6:50 to 7:20

Output analysis example
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 Example 3: Calculating entity’s cycle time, earth moving example

 We want to answer following questions:

- How many runs do we need for calculating cycle time with less than 0.01 

minute error while accepting confidence level of 95%?

- What is prediction interval with 90% of chance?

Output analysis example
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 I set an initial simulation run number of 10 to be able to calculate initial S! 

 Results are exported to a file. In this way I can easily read them from Excel and 

do the calculations! We need to run the model more than 6161 times!

Output analysis example
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Yi. Y.. S

1 31.12 31.37 0.347

2 30.90

3 31.19

4 32.07

5 31.56

6 31.15

7 31.37

8 31.78

9 31.29

10 31.24

t(2.5%,9) = T.INV.2T(5%,9)      = 2.26

R >= (2.26 * 0.347 /0.01)^2 = 6161
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Output analysis example
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Yi. Y.. S

1 31.23 31.36 0.435

2 31.30

3 31.06

4 31.16

5 30.81

6 31.57

7 31.77

8 31.72

9 31.88

10 31.24

11 31.47

12 32.01

13 31.05

14 31.94

15 31.44

16 31.15

17 31.02

18 30.92

19 31.18

20 30.88

21 31.52

22 31.72

23 30.69

24 31.66

25 31.06

26 31.91

27 31.60

28 30.89

29 30.80

30 31.52

31 31.16

32 31.54

33 32.64

34 31.50

35 32.06

36 31.10

37 31.28

38 31.42

39 30.98

40 31.81

 Montecarlo simulation experiment is used to run 6200 replications of the model. 

The resulst are presented in below:

t (.025, 6199) = 1.96

Confidence interval of 5% = 0.01

Prediction interval of 5% = 0.85
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 Remember our asphalt plant example. In this case we have:

 Working hours from 7 am to 7 pm

 Time between trucks arrival is distributed exponentially with mean of 12 min 

 There 3 different trucks of 8, 10 and 12 tonnes respectively with the chance of 

10%, 60% and 30% arriving to the plant

 Loading time has a triangular distribution with the average minimum of 8, 

maximum of 15 and most likely of 11 minutes

 How many runs do we need for calculating daily production tonnage with less 

than 1 tonne error while accepting confidence level of 99%?

 What is prediction interval with 95% of chance?

After class practice
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 Example 4: In our last earthmoving example, suppose that:

 1- There is a chance of 1% that loader breaks during a working day! When 

loader is broken, repairing it takes 1 to 2 hours! 

Breakdown model
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 Example 4:

 2- There is a chance of 2% 

for every truck to be broken 

during a working day! When 

a truck is broken, repairing it 

takes 1 to 2 hours! 

Breakdown model
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