
Construction Operation Simulation

Lecture #5

Introduction to VB.NET

Department of Civil Engineering, Sharif University of Technology

Amin Alvanchi, PhD

Construction Engineering and Management

LinkedIn Instagram WebPage

https://www.linkedin.com/in/amin-alvanchi-6379334b/
https://www.instagram.com/alvanch9/
http://sharif.edu/~alvanchi/

Outline

 Introduction

 VB.NET Controls Basics

 VB.NET Codding Environment

 VB.NET Basic Features

 Object Oriented Programming

 Collections

2

3

Introduction

Main steps in simulation studies
4

Define the

problem of

the study

Choose another method

for solving the problem

Is simulation

a proper tool?

Y

N

Develop the

logical

simulation model

Collect data

required for model

development

Develop the

simulation model

Is model

verified?
Is model

valid?
Design simulation

experiments

Run construction

operation

simulation

Analyze output data and adjust

operation parameters to come

up with the proper design

Execute the

construction operation

according to the design!

YY

NN

Introduction

 Ancestor of Visual Basic .NET is BASIC

(Beginner's All-purpose Symbolic Instruction

Code) programing language returning back

to 1964

 In 1991, Microsoft added visual components

to BASIC and created Visual Basic

 After the development of .NET, VB was

added with more set of controls and

components and thus evolved a new

language VB .NET

5

 Visual feature of the VB helps faster

development of programs

 It has rich set of controls

 It is object orientated programming (OOP)

language which enhances modularity,

readability and maintainability

Introduction
6

Programming working environment
7

Programming working environment
8

Programming working environment
9

Programming working environment
10

Programing

area

Exploring and

toolbox area

Property areaCommand and

prompt area

Programming working environment
11

Codding environment
12

Right Click!

13

Steps in Creating a Visual Basic Program

1. Create the interface; that is, generate, position,

and size the controls.

2. Set control properties; that is, configure the

appearance of the controls.

3. Write programming codes that are executed

when different events happen in the program.

14

VB.NET Controls Basics

15

Controls

 Visual basic controls are set of elements (or objects)

used for creating user interface in VB.NET programs

 Form is the first control we need to create in VB.NET.

 Other (predefined) controls can be selected and placed

on Form(s) by using the Toolbox.

16

Control Toolbox

 Form is the main

control used in VB

programs and embeds

all other controls!

17

4 Ways to Place a Control from the Toolbox

on the Form Designer

 Double-click

 Drag and Drop

 Click, Point, and Click

 Click, Point, and Drag

4 commonly used controls

text box

To select a control, click on it. Sizing handles

will appear when a control is selected.

18

Text Box Control

 Used for input and output

 When used for output, ReadOnly

property is set to True

sizing handles

Tasks button

19

20

Properties Window

categorized view alphabetical view

Press F4 to

display the

Properties

window for

the selected

control.

20

21

Properties Window (continued)

properties settings

selected

control

Description

pane

22

Some Often Used Properties

 Text

 Autosize

 Font.Name

 Font.Size

 ForeColor

 BackColor

 ReadOnly

23

Setting the ForeColor Property

1. Click on ForeColor.

2. Click on button at

right of settings box.

3. Click on Custom tab

to obtain display

shown.

4. Click on a color.

24

Font Property

1. Click on Font

in left column.

2. Click on

ellipsis (…) at

the right of the

font property

to show Font

settings.

3. Make

selections.

Button Control

 Used to execute a defined procedure.

 The caption on the button should represent the
function of executed button and its effect.

25

Text

property

26

Add an Access Key

 Write “&” before a character to make the

control accessible by pushing this character!

27

Label Control

 Used to identify the contents of a text box.

 Text property specifies caption.

 By default, label automatically resizes to

accommodate caption on one line.

 When the AutoSize property is set to False,

label can be resized manually. AutoSize is used

primarily to obtain a multi-rowed label.

28

List Box Control

 It is used to display several pieces of output

and/ or acting based on items selected on the

list.

29

The Name Property

 Used by the programmer to refer to a control in

code

 Set the Name property near top of the Properties

window

 Use appropriate 3-character naming prefix

 Use descriptive names each started by a capital

letter

Control Name Prefixes

Control Prefix Example

button btn btnCompute

label lbl lblAddress

text box txt txtAddress

list box lst lstOutput

30

31

Renaming the Form

 Initial name is Form1

 The Solution Explorer window lists a file named

Form1.vb.

 To rename the form, change the name of this

file to frmName.vb

 frmName begins with the prefix of frm.

32

Fonts

 Proportional width fonts, such as Microsoft

Sans Serif, use less space for "I" than for "W"

 Fixed-width fonts take up the same amount of

space for each character – like Courier New

 Fixed-width fonts are used for tables.

33

Positioning Controls

proximity

line

34

Aligning Bottoms of Controls

snap line

35

Aligning Middles of Controls

snap line

36

The tab indices

determine the order in

which controls receive

the focus during tabbing.

The control whose

TabIndex property is set

to 0 has the focus when

the program begins.

Tab Order

Control Events

 Select the control

 Click on the Events

button () in the

Properties window

37

events button

38

Control Events

 An event is a signal that informs an application that

something important has occurred. Events are raised

by start or finish of actions, such as the user clicking

on a button

 Usually, nothing happens in a Visual Basic program

until the user does something and raises an event.

 What happens is determined by statements inside the

event procedure.

39

Control Events-Examples

 Click: It is triggered by clicking a control

 DoubleClick: It is triggered by double-clicking on a control

 KeyPress: It is triggered when any key is pressed while cursor is on the

control

 Load (for a Form control): It is triggered when a form is loaded when the

program is run

 Enter (Focus): It is triggered when a control gets focus (either by clicking on a

control or through tab cursor change or …) and the cursor appears in the

control.

 Leave (Focus): It is triggered when a control loses the focus.

 TextChanged (e.g., for text box): It is triggered after text property of a textbox

control is changed.

Other controls

 Form is a container for other controls

 We can place the following in a form

 Label

 Text Box

 Check Box

 Radio Button

 Button

 Date Picker

 And more…

40

41

VB.NET Coding Environment

42

Main Coding Environment

 In parallel to the form interface its coding

environment if built

 Coding environment is accessible by right

clicking on the form icon in the solution explorer

and selecting “View Code”

 Following shape presents how you can access

the main coding environment:

Default Coding Environment
43

Right Click!

44

Access an Event’s Coding Area

 Basically all codes written in a Visual Basic program are

stored under and called through different control Events

 To access a control event:

 Double-click on a control to access its default Event’s

coding environment

or

 Select a control, click on the Events button () in the

Properties window, and double-click on an event

45

Access an Event’s Coding Area

 Following codes are created through accessing different Events coding

area:

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button1.Click

End Sub

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub TextBox1_Enter(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles TextBox1.Enter

End Sub

End Class

46

Access Control Properties Through Codes

Examples:

 txtBox.ForeColor = Color.Red

 txtBox.Visible = True

 txtBox.Text = "Hello World"

General Form:

controlName.property = setting

47

Sample Form

txtFirst

txtSecond

btnChangeColor

48

Sample Form

txtFirst

txtSecond

btnChangeColor

Double-click on txtFirst to create the outline

for the Code Editor

49

Code for Walkthrough

Public Class frmDemo

Private Sub txtFirst_TextChanged(...) Handles txtFirst.TextChanged

txtFirst.ForeColor = Color.Blue

End Sub

End Class

50

IntelliSense

Automatically pops up to help the programmer.

txtFirst.

51

Sample Form

txtFirst

txtSecond

btnChangeColor

Double-click on btnChangeColor to return to

Code Editor and add the outline of an event

procedure

52

Code for Walkthrough

Public Class frmDemo

Private Sub txtFirst_TextChanged (…) Handles txtFirst.TextChanged

txtFirst.ForeColor = Color.Blue

End Sub

Private Sub btnChangeColor_Click (…) Handles btnChangeColor.Click

txtFirst.ForeColor = Color.Red

End Sub

End Class

53

Sample Form

 Run the program by clicking on run button () on

the standard toolbar, or select Run or Start

Debugging option on the Debug Menu or Push F5 to

go to the run mode and play with the form, and see

how form reacts!

 Push the Close button () on the up-right side of

the form or push stop button () on the Toolbar to

return to the from design view.

54

Home Assignment 5

Change the sample form discussed in the class in a way

that:

- Changes color of textFirst to red while typing

- Current button changes both texts to pink

- Add a new button which changes color of

textSecond to brown

- Add a proper code to the form by which exact text

is written on textFirst after a text is written on

textSecond! (Due two days)

55

VB.NET Basic Features

Data types and variables in VB .NET

 Data types and variables

 Integer, string, single, double, boolean, char;

Example:

 Dim i As Integer

 Dim s As String

 Dim j, k As Single

 Dim d As Double

 Dim reason, result, test As Boolean

 Dim c As Char

56

Operators in VB .NET

 Operators

 Arithmetic (+,-,*,/,\,Mod)

 Logical (Or, And)

 Relational (=,<>,<,<=,>,>=)

 Examples:

 d = i / j

 k = I mod j

 test = reason And result

57

If Else

If (Condition1) Then

Statements executed if Condition1 is true

Else If (Condition2) Then

Statements executed if Condition1 is false and

Condition2 is true

Else

Statements executed if Condition1 and Condition2 are

false

EndIf

58

If Else

Example:

Dim condition1, condition2, elseCondition as Boolean

If number1 = number2 Then

condition1 = True

Else If number1 = number3 Then

condition2 = True

Else

elseCondition = True

End If

59

Select Case

Select Case var

Case 1

stmt1 // executed if var = 1

Case 2

stmt2 // executed if var = 2

Case Else

stmt3 // executed if var is other than 1 and 2

End Select

60

For Loop

For <<var>> = start To end Step <<val>>

Statements

Next

Example:

Public Class frmDemo

Private Sub btnRunForNext_Click (…) Handles btnRunForNext.Click

Dim I As Integer

For I = 1 To 10 Step 2

MsgBox(I)

Next

End Sub

End Class

1,3,5,7,9 are popped up in the message box consecutively!

61

Do While Loop

1. Do While(a<>0)

MsgBox(a)

a = a – 1

Loop

2. Do

MsgBox(a)

a = a – 1

Loop While(a<>0)

62

Do Until Loop

1. Do Until(a=0)

MsgBox(a)

a = a – 1

Loop

2. Do

MsgBox(a)

a = a – 1

Loop Until(a=0)

63

Subroutines and Functions

 Subroutines or Procedures
 Does not return any value

 Can have zero or more parameters

 Are meant to follow set of steps

 Functions
 Always Returns some value

 Can have zero or more parameters

 In addition to returning value, similar to subroutines, can also
follow set of steps

 In VB.NET there are varieties of predefined procedures and
functions which are used through programing, however VB
user can also define Procedures and Functions of their
owns

64

Subroutines and Functions

 Subroutines or Procedures - Declaration Syntax:

[accessModifiers] Sub subName[(parameter1, parameter2, …)]

' Statements of the Sub procedure.

End Sub

 Represents optional terms

 accessModifiers: Specify access level, usually by using Private

(accessible inside this coding environment) or public (also accessible

from outside of the current coding environment) keywords which are

mainly used in object oriented programming

 Parameter: [ByVal | ByRef] parametername As datatype

Use ByVal if you do not want to update parameter value based on

updates made inside the procedure

Use ByRef if you want value of parameter gets updated based on

updates made inside the procedure

65

Subroutines and Functions

 Subroutines or Procedures - Declaration Syntax:

Example:

Private Sub initializeSim (ByVal Truck1Shift as integer, ByVal Truck2Shift

as integer, ByRef simTime as double, ByRef Qlength as integer, ByRef

Truck1FirstArrival as double, ByRef Truck2FirstArrival as double)

simTime = 0

Qlength = 0

Truck1FirstArrival = Truck1Shift * 8 *60 + Rnd() *10

Truck2FirstArrival = Truck2Shift * 8 *60 + Rnd() *10

End Sub

66

Subroutines and Functions

 Subroutines or Procedures – Calling Syntax:

subName([Value1, Value2, …])

Example:

initializeSim (Truck1Shift, Truck2Shift, simTime, QLength,

Truck1FirstArrival, Truck2FirstArrival)

67

Subroutines and Functions

 Functions - Declaration Syntax:

[accessModifiers] Function functionName[(parameter1, parameter2, …)] as

returnValueType

' Statements of the function including setting value for functionName

End Sub

 Represents optional terms

 accessModifiers: Specify access level, usually by using Private (accessible

inside this coding environment) or public (also accessible from outside of the

current coding environment) keywords which are mainly used in object oriented

programming

 Parameter: [ByVal | ByRef] parametername As datatype

Use ByVal if you do not want to update parameter value based on updates made

inside the procedure

Use ByRef if you want value of parameter gets updated based on updates made

inside the procedure

68

Subroutines and Functions

 Functions - Declaration Syntax:

Example:

Private function loadingTime (ByVal TruckCapacity as double) as

double

loadingTime = TruckCapacity * (1+ Rnd())

End function

69

Subroutines and Functions

 Functions – Calling Syntax:

functionName([Value1, Value2, …])

Or

VariableOfTheSameType = functionName([Value1, Value2, …])

Example:

Dim truckLoadingTime as double

Dim truckCapacity as double = 10

TruckLoadingTime = loadingTime(truckCapacity)

70

Arrays

 An array is a set of logically related values, such as the

name of students in a class or time of events in FEL.

 By using an array, you can refer to these related values

by the same name, and use a number that’s called an

index or subscript to tell them apart. The individual

values are called the elements or items of the array.

 Index number begins from index 0 through the highest

index value.

71

Arrays

 Array – declaration:

Dim arrayName(dimention1HighestValue[,

otherDimentionsHighestValues]) as arrayElementType

Example:

Dim simClassStudents(8) as string

Dim numberOfEntities as integer = 10

Dim numberOfEventTypes as integer = 5

Dim FEL(numberOfEntities, 3) as double

‘Set values of 2nd dimension to 1 for event time, 2 for event

type and 3 for entity number

72

Arrays

 Array – call:

arrayName(dimention1HighestValue[,

otherDimentionsHighestValues]) = Value

Or

variableOfTheSameType =

arrayName(dimention1HighestValue[,

otherDimentionsHighestValues])

73

Arrays

 Array – call:

Example:

simClassStudents(1) = “Ali”

simClassStudents(1) = “Mohammad”

FEL(3 , 1) = loadingTime(truckCapacity) + currentSimTime

FEL(3 , 2) = 1 ‘represent loading event

FEL(3 , 3) = 3 ‘represents entity number

74

75

Object Oriented Programming (OOP)

76

Programming progression

 Programming has progressed through:

 machine code

 assembly language

 machine-independent programming languages

(Fortran, Basic, etc.)

 procedures & functions

 objects

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

GCD: TST B

BEQ

MOV

MOV R5, B

CALL GCD

SIMPLE: RETURN

Object Oriented Programming

 Concepts

 Classes

 Objects

 Abstraction

 Encapsulation

 Inheritance

77

78

Classes and Objects

 A class is a model or prototype or instruction for creating objects

 A class documents structure and specifications of an object

 We can create or instantiate multiple separate objects based on one

class. In this perspective we can say objects are instances of classes

 Relation between a class and an object is similar to a drawing and a

building

 We build a house based on drawings

 A building is a physical representation of a what is specified in

drawings

 We can use drawing to build several, and separate, buildings

79

Classes and Objects

 We already have used classes and objects in our programming

lesson.

 Guess which programming capabilities we discussed are using

classes and objects?

80

Classes and Objects

 Controls listed on the control Toolbox are classes and controls placed

on forms, which are instances of those classes, are objects!

 For every control there is only one item on the Toolbox

 We can instantiate multiple controls on a form!

 VB.NET users can define classes and use objects of their owns!

81

Components of an Object

 Based on what we have learned from controls, guess what are the

main components of objects?

82

Components of an Object

 An object consists of three main components:

 Attribute or Property: Specifies the information associated

with an object. Color of a textbox object, capacity of a

truck object, and bucket size of a loader object are

examples for attribute.

 Method: Are actions performed by an object. Methods

come in two forms of functions and procedures. For

example loading is a method for a loader object, travelling

is a method of a truck object, compacting is method for a

roller.

83

Components of an Object

 An object consists of three main components: (cont’d)

 Event: An event is a signal that informs an application that

something important has occurred. An event is usually

triggered by start or finish of an action and is usually

handled through a supporting method underneath. For

example gaining focus is an event for a textbox, site arrival

is an event for truck object and completion of asphalt

loading is an event for the asphalt plant.

84

Start Working with Objects

 For working with objects:

 Identify classes required

 Define (declare) classes (including definition of all

components) required

 Instantiate objects from the classes at the beginning

of the main program body

 Work with objects by calling their defined components

when required in the main program!

85

Identify classes required

 Independent entities in the program are usually coded

as classes and instantiated as objects.

 In a simulation model what are candidates to be coded

as classes and objects?

86

Identify classes required

 For example in a DES model Entities, Resources and

simulation model Engine are candidates for the program

classes.

87

Declare Classes

 In general there are a variety of parameters/identifiers to be

used for declaring a class, in this course we only introduce

basic parameters/identifiers:

[<attributelist>] [accessmodifier] [Shadows] [MustInherit |

NotInheritable] [Partial] _

Class name [(Of typelist)]

[Inherits classname]

[Implements interfacenames]

[statements]

End Class

88

Declare Classes

 Main form class is the default class created in a VB.NET

project, e.g.:

Public Class Form1

{default programming environment}

End Class

 New classes can be declared right after the default

class within the same file, e.g.:

Public Class Form1

{default programming environment}

End Class

Public Class Engine

{programming environment}

End Class

89

Declare Classes

 New classes (usually

supporting classes

which are used as

auxiliary parts of the

program) can be

declared in separate

files from the default

class file.

90

Declare Classes

 New classes, usually

support classes which

are used auxiliary

parts of the program,

can be added as

separate files to a

VB.NET project.

Declaring Properties

Public PropertyName As DataType

 Properties are usually declared at the beginning of a class.

 Using Auto-implemented properties is the simplest way for

declaring a class property:

91

 Auto-implemented properties are used when you just simply

want to get (read) values and set values for a property with no

control on the reading and setting value process! Examples:

Public Name As String

Public currentTime As Double = 0

Declaring Properties

Private ClassVariable As DataType

[Public] Property PropertyName() As DataType

Get

Return ClassVariable [PropertyName = ClassVariable]

End Get

Set (ByVal Value As DataType)

[statements, such As validation]

ClassVariable = Value

End Set

End Property

 Extensive form of properties declaration is as following:

92

 This form of property declaration lets you to put verification

and validation statements when a property is read (get) or set

Declaring Properties

Public Class Engine

Private _currentTime As Double= 0

Property currentTime() As Double

Get

if _currentTime<0 then

MsgBox(“Check your time, why is it minus?”)

End if

Return _currentTime

End Get

Set(ByVal value As Double)

if value <0 then

MsgBox(“Becareful! Your time should not be minus?”)

End if

_currentTime = value

End Set

End Property

End Class

 Example:

93

Declaring Properties

Public Class Engine

Dim _currentTime as double = 0

Dim _secreteName as String

Public ReadOnly Property currentTime() As Double

Get

return _currentTime

End Get

End Property

Public WriteOnly Property secreteName() As String

Set(ByVal value As String)

_secreteName = value

End Set

End Property

End Class

 ReadOnly (can not be set out of the class), WriteOnly (can

not be read out of the class) examples:

94

Using Properties

 Example:

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Dim myEngine as New Engine()

‘myEngine Object with the type of Engine class is defined

….. ‘ Statements involving myEngine object

txtFirst.Text = myEngine.currentTime.ToString

‘Shows current time on the txtFirst textbox

End Sub

End Class

95

Declaring Methods

 Methods include functions and procedures

 Declaring functions and procedures is similar to what we

discussed in prior parts

 Methods are usually declared at the end of a class.

 Use “Public” keyword at the beginning of a method

declaration if you are interested to access the method from

outside of the class!

96

Declaring Methods

 Example:

97

Public Class Loader

Public bucketSize As Double

Public Function loadingTime (ByVal TruckCapacity as double) as

double

loadingTime = TruckCapacity / bucketSize * (1+ Rnd())

End Function

End Class

Using Methods

 Example:

98

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Dim myLoader as New Loader()

‘myLoader Object with the type of Loader class is defined

myLoader. bucketSize = 0.1 ‘m3

Dim myTruckCapacity as double

….. ‘ Statements involving myLoader object and myTruckCapacity

txtSecond.Text = myLoader. loadingTime(myTruckCapacity).ToString

‘Shows current time on the txtFirst textbox

End Sub

End Class

Declaring Events

 An Event’s declaration consists of three parts:

1. Declaring Events: Introducing event’s name and its

parameters using “Event” keyword. Example:

Public Event TruckArrival(ByVal TruckNumber As Integer)

2. Raising (Triggering) Events: An event is like a message

announcing that something important has occurred. The act

of broadcasting the message is called raising the event.

Usually we need to set raise of an event of an object when a

threshold is reached within the object. Example:

RaiseEvent TruckArrival (TruckNumber)

99

Declaring Events

 An Event’s declaration consists of three parts (cont’d):

3. Event Handlers: Event handlers are procedures that are

called when a corresponding event is raised. You can use

any valid subroutine with a matching signature as an event

handler. You cannot use a function as an event handler,

however, because it cannot return a value to the event

source. Example:

Private Sub engine_TruckArrival (TruckNumber) Handles Me.

TruckArrival

‘Statements for handling truck arrival

End Sub

100

Declaring Events-Example
101

Public Class Truck

Public Event loadingCompletion(byVal msg as string)

Public Event dumpingCompletion(byVal msg as string)

Dim _loaded As Boolean

Public Property loaded() As Boolean

Get

Return _loaded

End Get

Set(ByVal value As Boolean)

_loaded = value

If value = True Then

RaiseEvent loadingCompletion(“Write Loading Completion Event Handling Statements”)

Else

RaiseEvent loadingCompletion(“Write Dumping Completion Event Handling Statements”)

End If

End Set

End Property

Private Sub Truck_loadingCompletion(byVal msg as string) Handles Me.loadingCompletion

MsgBox(msg)

End Sub

Private Sub Truck_dumpingCompletion(byVal msg as string) Handles Me.dumpingCompletion

MsgBox(msg)

End Sub

End Class

Constructor

 Used for initializing private members of a class

 Name of the constructor should always be New()

 Can have none or several parameters

 Does not return any value. So theyare sub routines or

Procedures!

 Need not to be invoked explicitly. They are invoked

automatically when an object is created

 A class can have more than one constructor

 Every constructor should differ from the other by means of

number of parameters or data types of parameters

102

Constructor

 Example:

103

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Dim myTruck as New Truck(True)

‘Other statemenets

End Sub

End Class

Public Class Truck

Public loaded() As Boolean

Sub New(ByVal truckLoaded As Boolean)

loaded = truckLoaded

End Sub

End Class

Inheritance

 Classes can inherit their components (properties, methods and

events) from other classes (called parent classes)

 Inheritance is a powerful programming capability and

significantly saves repeated codes

 Designing a proper inheritance structure is an important aspect

of object oriented programming, however, for the sake of

brevity we do not discuss it more!

104

Inheritance

 Example:

105

Public Class form1

Dim myTruck As New Truck

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Button1.Click

myTruck.maxLoadingCapacity = 10 ' tonne

myTruck.maxSpeed = 80 'km/h

myTruck.weight = 6 'tonne

MsgBox("My truck capacity is: " & myTruck.maxLoadingCapacity.ToString)

End Sub

‘Other properties and methods …

End Class

Public Class MobileMachines

Public maxSpeed As double ‘in km/h

Public weight as double ‘in tonne

‘Other properties and methods …

End Class

Public Class Truck

inherits MobileMachines

Public maxLoadingCapacity As double ‘in tonne

‘Other properties and methods …

End Class

Namespace

 In addition to the embedded classes available to the users, VB.NET

provides sets of prepared classes or class libraries, so called

Namespaces, which facilitate different types of programing, e.g.,

database, graphic, program diagnostic, working with other windows

applications, etc.

 Importing all prepared Namespaces in a program makes the program

heavy and slow, so VB.NET lets programmers select among them, based

on the capabilities they require.

 Use “Imports” keyword at the beginning, before class declaration for

adding required Namespaces to your program.

 By typing “Imports”, list of selectable high level Namespaces occurs,

you may narrow down your specific Namespace to lower levels

106

Namespace
107

Namespace

 In VB.NET programmers can specify their own specific Namespaces

which can be used in their different programs.

 At the beginning of the program new projects should be set as “Class

Library”.

108

Namespace

 After completing classes required, classes should be built:

 A dll file is create at “\bin\Release” within the project’s main folder which

can be used as Namespace in other projects

 A dll or dynamic-link library file are portable set of classes which can be

used in different programming languages, regardless of their original

programming languages.

109

Namespace

 To be able to import a specified namespace(s), first its related dll file

should be added as References to the project. References are inside the

project’s properties. A project’s property is accessible through right-click on

the project’s name in the solution explorer.

110

111

Collections

Definition

 Collections include several types of VB.NET objects used for

grouping and managing related objects.

 For example, every Form has a collection of controls. (You can

access this collection through the form's Controls property.) This

collection is an object that represents all the controls on that form.

 Collection allows you to retrieve an objects inside the collection by

its index, and to loop through the elements of the collection using:

For Each...Next Statement

 To be able to work with collections you first need to import their

related namespace from: System.Collections

112

Arrays and Collections

Array

 Size

 Item(Index)

Collection

 Size

 Item(Index)

 Item(Key)

 Add(Item)

 Remove(Item)

 Contains(Item)

113

Different Kinds of Collections

 Collection

 Array List

 Sorted List

 Hash Table

 Stack

 Queue

We only discuss the basic form of collections here, in fact, basic

form of collection is the parent of other kinds! So, many

properties and methods are the same between different kinds of

collections.

114

Collections-Example

Imports System.Collections

Public Class loaderQueue

Public Q As New Collection

Public Function QLength() As Integer

QLength = Q.Count

End Function

Public Sub addNewTruck(ByVal TruckName As String, ByVal TruckId As

Integer)

Q.Add(TruckName, TruckId.ToString)

End Sub

Public Sub removeTruck(ByVal TruckId As Integer)

Q.Remove(TruckId.ToString)

End Sub

End Class

115

116

Home Assignment 6

Write a class called simulationCourse. The class has following elements:

Properties: Location, CourseWeeklyHours, CourseSemester StudentName,

StudentMark, Lecturer, CourseReference,

CourseStatus[ToCome/InProgress/Completed]

Methods: CourseAverageMark, CourseMaximumMark

Events: SemesterStart [CourseStatus is changed to InProgress], SemesterFinish

[CourseStatus is changed to Finished]

Instantiate the class in a button’s event-handler. Use your current simulation course info

to set the values of the created object (for the student info, information of at least 5

students should be added, for the other elements complete info should be entered), link

SemesterStart and SemesterFinish events to two different buttons! Report course

average, maximum and minimum marks using separate buttons!

(Due two days)

Reference

117

 https://msdn.microsoft.com

Thank you!

