Construction Operation Simulation

Lecture #5

Introduction to VB.NET

Microsoft® w

Visual Basic

Amin Alvanchi, PhD

Construction Engineering and Management
LinkedIn Instagram €8 WebPage

Department of Civil Engineering, Sharif University of Technology | ‘

https://www.linkedin.com/in/amin-alvanchi-6379334b/
https://www.instagram.com/alvanch9/
http://sharif.edu/~alvanchi/

Outline

Introduction

VB.NET Controls Basics
VB.NET Codding Environment
VB.NET Basic Features
Object Oriented Programming

Collections

Introduction

Main steps in simulation studies

Develop the Collect data
logical —» required for model
simulation model development

\ 4
Develop the

simulation model

Is model
verified?

Is mode
valid?

Design simulation
experiments

l

Run construction Analyze output data and adjust Execute the
operation —» operation parameters to come —» construction operation
simulation up with the proper design according to the design!

Introduction

Ancestor of Visual Basic .NET is BASIC
(Beginner's All-purpose Symbolic Instruction

Code) programing language returning back
to 1964

In 1991, Microsoft added visual components
to BASIC and created Visual Basic

After the development of .NET, VB was N

added with more set of controls and Microsofte

components and thus evolved a new
language VB .NET . N ET

Introduction

Visual feature of the VB helps faster

development of programs
It has rich set of controls

t Is object orientated programming (OOP)

anguage which enhances modularity,

readability and maintainability

Programming working environment

. Microsoft Silverlight
| Microsoft Silverlight 3 DK
. Microsoft Silverlight 4 SDE alvanchi?
) Microsoft QL Server 2008
. Microsoft Sync Framework Documents
. Microsoft Visual Studic 2010
% Microsoft Test Manager 2010 Pictures
'@ Microsoft Visual Studico 2010 Docum
=2 Microsoft Visual Studio 2010
L. Microsoft Windows SDK Teols
. Team Foundation Server Tools
L. Visual Studie Teols
, OpenOfficed 11
. Oracle YM VirtualBox
. SharePoint
 SimphonyMET 4.0
| Skype
. Startup Default Programs
. Vensim

. WCF RIA Services V1.0 5P1 Help and Support

Music

Games

Computer

Control Panel

Devices and Printers

R s R e — —

FY

Back

| |Search programs and files Shut down | »

Programming working environment

, Micrysoft' .
O Visual Studio 2010 Utimate

Programming working environment
_9]

oo Start Page - Microsoft Visual Studio (Administrat
File Edit View Debug Team Data Tools Architecture Test Analyze Window Help

[- SHd s 2|9 -0-2-5]» | [rersn 5B Ex eE -
LAl Start Page X ~ Solution Explorer
g P
X g Y
g \ficpsot . : New Project (L2
i OO Visual Studio 2010 Utimate
o Recent Templates [.NET Framework 4 -] Sort by: [Default ! Search Installed Templates L 1
Installed Template
Guidance e . - -)) Type: Visual Basic
e : ! " . V8| Windows Forms Application Visual Basic
] Connect To Team Foundatio and Visual Basic A project for creating an application with a
3 o Wind EorneAprlicati Windows user interface
@ New Project... Resource «@: | WPF Application Windows Forms Application Lsic
S
Open Project...
[(}] Open Projec Cloud ~§ Console Application Visual Basic
Latest Reporting
Recent Projects News SharePoint 525"3 Class Library Visual Basic
Silverlight
. WindowsApplicationl Test 'oa Vg| WPF Browser Application Visual Basic
od StructuralSteel Get WCF = : o s g
ClassLibraryl e | VB mpty Project isual Basic
g S Started Visual C#
SimTest 5
: stual Cra: @ Windows Service Visual Basic
; SimpleQueue W Visual F# i
‘elcome .
Other Project Types
o asphaltPlant Windows DatabaseJ P V8 WPF Custom Control Library Visual Basic
Simpl
2 impleQeene Web Modeling Projects v,
; SimpleQ Cloud Test Projects ¢_~B‘ WPF User Control Library Visual Basic
=3 si Office
mpieQuicue SharePoi Online Templates
arePoi Ve 0 i i i
] Close page after project load i Ir: Windows Forms Control Library Visual Basic
[¥] Show page on startup LA
Anas M I Name: WindowsApplication2
& OErrors ‘ I\ 0 Warnings | (i) 0 Messages I . ’ : o >
Location: D:\Users\Amir\Job\JobHeld\6_SharifU\Courses\1393-52-ComputerApplication\6_VBSim\1 v Browse...
Descripti.. F Line Column Project _ . sz = 2
Solution name: WindowsApplication2 || Create directory for solution
[”] Add to source control

_'a. SIAREd B Output R Toolbox 93 ML SIS W% Team Explorer B® Class View

Programming working environment

eo WindowsApplication4 - Microsoft Vi

File Edit View Project Build Debug Team Data Tools Architecture Test Analyze Window Help

i@ S| a9 - -85 b Dby

Forrml.vb [Design] >

5! Forml

EE]E=]

'| |x86 '| |) |refre;h

Programing
area

@ 0 Errors | 1\ 0 Warnings | (i) 0 Messages

Description F Line Column Project

Selution Explorer
r
|,:a Solution 'WindowsApplicationd' (1 project)
4 (28 WindowsApplicationd
[=d My Project
=] Formlvb

Exploring and
toolbox area

3’3 SNSRI I Team Explorer B2 Cla

Properties
WindowsApplicationd Sclution Properties

‘ Command and
prompt area

_"a Error List f§ =

g2l |E
(Mame) WindowsApplicationd
Active config Debug|x86
Description
Path D:AUsers\Amir\Job\lobHeld\
Startup project WindowsApplicationd
Property area |

(Name)
The name of the solution file.

Programming working environment
B

o0 WindowsApplication2 - Microsoft Visu

e

File Edit View Project Build Debug Team Data Format Tools Architecture Test Analyze Window Help pr—
P S 4 B9 - - E-E b [peby -| |86 -\ | [# | refresh A G B - -

P12 & S| T o o

SRl B |ooe 3 e D | & 212y a| | 2| &2 Toolbox (Cirl+Alt+X)

Forml.wvb [Design] >
o0 WindowsApplication2 - Microsoft Visual i

o Forml File Edit View Project Build Debug Team Data Tools Architecture Test Analyze Window Help

E@"@'Egﬂ|*%ﬂ|q'ﬁ"|§|Debug '||:|Bﬁ Im|refresh
P & | T k|| e S| S S [DS s
Forml.wb [Design] Toolbox
4 All Windows Forms
f O | k Pointer
= romt EI@ @ BackgroundWorker
@ BindingMavigator
'EE,T BindingSource
Button
..................................... CheckBos I
CheckedListBox
[#] ColerDialog
E8 ComboBox —
fg| ContextMenuStrip
h] DataGridView
[2F] DataSet
ﬂ DateTirmePicker
Q 0Errors DirectoryEntry
Descript o 5 —

Toolbox

Codding environment
N .,

o0 WindowsApplication2 - Microsoft Visual Studio (Administrator) M|

File Edit View Project Build Debug Team Data Tools Archit
- E-Sdd | aB(o-0-2-5 b Debuc ™ chitecture Test Analyze Window Help
e > [fE|EE | = 2 £l 5 _

P b A I _,|__|D@QEJE@5¥Q-P|DEM -|-e6 - | [| refresh

wh [Desic -
[T TTEECIEE e
= rathomns,
HPublic Class Forml S Solution Explorer
| (=] 2}

G Solution 'Windows&pplication2' (1 project)
4 % WindowsApplication2

=]
=i

-

End Class

A
T
2
T
=
jual
S
]
B
T
=
al
|
u
-
u
o
o
=
&
i
A

|EZ] Formlab

ight Click!N ©F="
Open With...
View Code |

View Designer

g0 @h

View Class Diagram

Exclude From Project

% Cut Crl+X
53 Copy Ctrl+C
X Delete Del
Rename
R Toolbox [CRELIY =) Properties Alt+Enter
Properties
= Forml.wb File Properties

100% -~ ¢ n k

Steps In Creating a Visual Basic Program

1. Create the interface; that is, generate, position,

and size the controls.

2. Set control properties; that Is, configure the

appearance of the controls.

3. Write programming codes that are executed

when different events happen in the program.

VB.NET Controls Basics

Controls

o Visual basic controls are set of elements (or objects)

used for creating user interface in VB.NET programs
0 Form is the first control we need to create in VB.NET.

o Other (predefined) controls can be selected and placed

on Form(s) by using the Toolbox.

Control Toolbox
16 |

0 Form iIs the main
control used in VB
programs and embeds

all other controls!

1

Toolbox

= All Windows Forms

4 Common Controls

S rEEEEE

Bl © [Bl & L B 7]

Pointer

Button
CheckBox
CheckedListBox
ComboBox
DateTimePicker
Label

LinkLabel
ListBox

ListView
MaskedTextBox
MenthCalendar
Motifylcon
MumericUpDown
PictureBox
ProgressBar
RadicButton
RichTextBox
TextBox

m

4 Ways to Place a Control from the Toolbox

on the Form Designer
o -

0 Double-click
o Drag and Drop
0 Click, Point, and Click

o Click, Point, and Drag

4 commonly used controls

o~ Forml | = || [=] ||£i'-|

text boxX o) List Boo 1

I Button 1 l

Label1

To select a control, click on it. Sizing handles
will appear when a control Is selected.

Text Box Control

o Used for input and output

o When used for output, ReadOnly
property Is set to True
YfTasks button

el

s T T erctBox Tacke
{ __ —

Properties Window

Properties @ Properties @
TextBox1 Systern Windows.Forms. TextBox - TextBox1 Systern.Windows.Forms. TextBox -
g2} |@] 7 | S eE(2d|E] ¥ | =

AccessibleDescription & Minimum&ize 0,0 &
AccessibleMame r Moedifiers Friend
AccessibleRole Default ‘E‘ Multiline False
= B PasswordChar
BackColor |:| Window ReadOnly Falze
BorderStyle Fixed3D RightTolLeft Mo
Cursor [Bearn ScrollBars Mone
Font Microsoft Sans Serif, 8.25 ShortcutsEnabled True
ForeColor - WindowText Size 100, 20 A
Lines String[] Array Tablndex 0
RightToLeft Mo TabStop True =
ScrollBars Mone Tag R
=
TextAlign Left - Textilign Left -

Text Text

The text associated with the control, The text associated with the control.

categorized view

alphabetical view

Press F4 to
display the
Properties
window for
the selected
control.

20

Properties Window (continued)
S

Properties
selected - =
> TextBox1 System.Windows.Forms. TextBox
control NEIEAE
(" ||E Minimumsize 0,0 -1
Modifiers Friend
Multiline Falze
PasswordChar
ReadOnly False
RightToleft Mo
. < ScrollBars Mone .
propertles ShortcutsEnabled True > Settlngs
Size 100, 20
Tablndex 0
TabStop True
Tag
=
\ TextAlign Left -/
1 1 Text
Descrl ptl O n = The text associated with the control,
pane

Some Often Used Properties
T

o Text

o Autosize

o Font.Name
o Font.Size
o ForeColor
o BackColor

0 ReadOnly

Setting the ForeColor Property

Custom |web | System

1. Click on ForeColor. e

2. Click on button at iy [|
right of settingsbox. |[T Il B W N

3. Click on Customtab | N[N~ NN
to obtain display EEREEEEN
shown. EEEEEENE

4. Click on a color.

Font Property

E
1. Click on Font

_ —)
In Ieft COIumn' Faort: Font style: Size:
2. Click on T | | -
- . Minya Nouvelle Obligue 10 |E|
elllpS|S () at Miadaal B Bold H b
the right of the || meememe <00l -
font property e
to show Font | Undarie aBYiz:
settings. =
3. Make

selections.

Button Control

o Used to execute a defined procedure.

o The caption on the button should represent the
function of executed button and its effect.

Text
property

Properties

=

=
[#="

it

=

Text
The text associated with the control.

Tab5top
Tag
% =
TextAlign

MiddleCenter

Buttonl System.Windows.Forms.Butten -

1

I Calculate Balance

Add an Access Key

o Write “&” before a character to make the
control accessible by pushing this character!

Properties E

Buttonl System.Windows.Forms.Button -

—_—

o= 248 #

Tab5top True -

I Calculate Balance

Tag

&Calculate Balance |~ | |

TextAlign MiddleCenter

1|

Text
The text associated with the control.

26

Label Control

o Used to identify the contents of a text box.
o Text property specifies caption.

o By default, label automatically resizes to

accommodate caption on one line.

o When the AutoSize property Is set to False,
abel can be resized manually. AutoSize is used

orimarily to obtain a multi-rowed label.

List Box Control

o It Is used to display several pieces of output
and/ or acting based on items selected on the

lIst.

The Name Property

o Used by the programmer to refer to a control in
code

0 Set the Name property near top of the Properties

window
o Use appropriate 3-character naming prefix

o Use descriptive names each started by a capital

letter

Control Name Prefixes

30 |
Control Prefix Example
button otn btnCompute
label bl IblAddress
text box txt txtAddress
list box st IstOutput

Renaming the Form

o Initial name i1s Form1

o The Solution Explorer window lists a file named

Forml.vb.

o To rename the form, change the name of this

file to fr,mName.vb

o frmName begins with the prefix of frm.

Fonts

o Proportional width fonts, such as Microsoft

Sans Serif, use less space for "I" than for "W"

o Fixed-width fonts take up the same amount of

space for each character — like Courier New

o Fixed-width fonts are used for tables.

Positioning Controls
33

proximity
line

Aligning Bottoms of Controls

Button1

ButtonZ

nap line

Aligning Middles of Controls

nap line

Tab Order

Properties * O X

The tab |nd|CeS TextBox1 System.Windows.Forms.Te: =
determine the order in |+ 2+ & ~
which controls receive ShortcutsEnabled | True

_ _ : Size 100, 20
the focus during tabbing} = 0
Tab5top True
The control whose 139
. ext
Tablndex property is set} ... L

to 0 has the focus when | Tablndex

Determines the index in the TAEB order

the program begInS that this control will cccupy,

Control Events
37 |

Properties * O X

L SeleCt the Contr0| txtFirst SystemWindows.Forms. TextBox -

o Click on the Events -2 = k=
KeyPress
button (#) In the KeyUp events button
Layout
Properties window

LocationChanged
MarginChanged
ModifiedChanged

Leave

Occurs when the control is ne longer the
actrve control of the form.

Control Events

o An event is a signal that informs an application that
something important has occurred. Events are raised
by start or finish of actions, such as the user clicking

on a button

o Usually, nothing happens in a Visual Basic program

until the user does something and raises an event.

o What happens is determined by statements inside the

event procedure.

Control Events-Examples

Click: It is triggered by clicking a control
DoubleClick: It is triggered by double-clicking on a control

KeyPress: It is triggered when any key is pressed while cursor is on the
control

Load (for a Form control): It is triggered when a form is loaded when the
program is run

Enter (Focus): It is triggered when a control gets focus (either by clicking on a
control or through tab cursor change or ...) and the cursor appears in the
control.

Leave (Focus): It is triggered when a control loses the focus.

TextChanged (e.q., for text box): It is triggered after text property of a textbox
control is changed.

Other controls

Form Is a container for other controls

We can place the following in a form
Label
Text Box
Check Box
Radio Button
Button
Date Picker

And more...

VB.NET Coding Environment

Main Coding Environment

o In parallel to the form interface its coding

environment if built

o Coding environment is accessible by right
clicking on the form icon in the solution explorer

and selecting “View Code”

o Following shape presents how you can access

the main coding environment:

Default Coding Environment

[
o0 WindowsApplication2 - Microsoft Visual Studio (Administrator) M|

File Edit View Project Build Debug Team Data Tools Archit

@'J'Hlﬂﬂlﬁ |5'l‘a|j&|-q -~ "| P |Debuc

-
o
-~
=]
u
=
u
o
ju
-
~
b
A

PO b e |

Architecture Test Analyze Window Help

=

g|[11;1l33353d%5¥@=p|nebug '||“’35

v| | [|refresh

Forml.vb [Design]

- | £ (Declarations)

b

ElPublic Class Forml

End Class

. S e | [HE| Q| E

=]
=i

-

G Solution 'Windows&pplication2' (1 project)
4 % WindowsApplication2

S Solution Explorer
| (=] 2}
|EZ] Formlab
ht Click!

Open
Open With...

View Code |

g0 @h

==
\‘ ‘-"' T|:||:|||::||:|:-:: @ SD-|U %

#
e
X
Properties
= Forml.wb File Properties

100% -~ ¢ n k

View Designer

View Class Diagram
Exclude From Project
Cut

Copy
Delete

Rename

Properties

Ctrl+ X
Ctrl+C
Del

Alt+Enter

Access an Event’'s Coding Area

o Basically all codes written in a Visual Basic program are

stored under and called through different control Events

0 To access a control event:
o Double-click on a control to access its default Event’s

coding environment

or

o Select a control, click on the Events button (| #) in the

Properties window, and double-click on an event

Access an Event’'s Coding Area

o Following codes are created through accessing different Events coding

area.
Public Class Form1l

Private Sub Buttonl Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Buttonl.Click

End Sub

Private Sub Form1_ Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load
End Sub

Private Sub TextBox1 Enter(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles TextBox1.Enter

End Sub
End Class

Access Control Properties Through Codes

General Form:

controlName.property = setting

Examples:
0 txtBox.ForeColor = Color.Red
0 txtBox.Visible = True

0 txtBox.Text = "Hello World"

ea

Sample Form

| |==l=
txtFirst
txtSecond
Change Color to Red btnChangeColor

Sample Form

- 5 |

oS Demonstration | = || B ||sE5%]

<« ItxtFirst

<+<— txtSecond

Change Colorto Red <— btnChangeColor

Double-click on txtFirst to create the outline
for the Code Editor

Code for Walkthrough
I

Public Class frmDemo
Private Sub txtFirst_TextChanged(...) Handles txtFirst. TextChanged
txtFirst.ForeColor = Color.Blue
End Sub

End Class

IntelliSense
50 |

Automatically pops up to help the programmer.

txtFirst.

" AcceptsReturn - W Focus >

) AcceptsTab |:| % Focused

= AccessibleDescription ' Font

&' Anchor) ForeColor [

W AppendText W GetCharFromPosition i

7 AutoCompleteCustomSource % GetCharlndexFromPosition

' AutoCompleteMode ¥ GetChildAtPoint

ey AuteCompleteSource W GetContainerControl

“ BackColor * W GetFirstCharlndexFremLine b
Common All Common All

"- A e

Sample Form

oZ Demonstration | = || =B |[=£5%]

Change Colorto Red

—

—

—

-tXtFIrst
- txtSecond

- btnChangeColor

Double-click on btnChangeColor to return to
Code Editor and add the outline of an event

procedure

Code for Walkthrough

Public Class frmDemo
Private Sub txtFirst_TextChanged (...) Handles txtFirst. TextChanged
txtFirst.ForeColor = Color.Blue
End Sub
Private Sub btnChangeColor_ Click (...) Handles btnChangeColor.Click
txtFirst.ForeColor = Color.Red
End Sub
End Class

Sample Form

o Run the program by clicking on run button (») on
the standard toolbar, or select Run or Start
Debugging option on the Debug Menu or Push F5 to

go to the run mode and play with the form, and see

how form reacts!

0 Push the Close button (&) on the up-right side of
the form or push stop button (@) on the Toolbar to

return to the from design view.

Home Assignment 5

Change the sample form discussed in the class in a way

that:

Changes color of textFirst to red while typing

Current button changes both texts to pink

Add a new button which changes color of
textSecond to brown

- Add a proper code to the form by which exact text
IS written on textFirst after a text is written on

textSecond! (Due two days)

VB.NET Basic Features

Data types and variables in VB .NE

Data types and variables

Integer, string, single, double, boolean, char,
Example:

Dim | As Integer

Dim s As String

Dim j, k As Single

Dim d As Double

Dim reason, result, test As Boolean

Dim c As Char

Operators in VB .NE

Operators
Arithmetic (+,-,*,/,\,Mod)
Logical (Or, And)

Relational (=,<>,<,<=,>,>=)

Examples:
d=i/]
k=1mod |

test = reason And result

If Else

If (Conditionl) Then
Statements executed If Conditionl Is true
Else If (Condition2) Then

Statements executed if Conditionl is false and
Condition2 is true

Else

Statements executed If Conditionl and Condition2 are
false

EndIf

If Else

Example:

Dim conditionl, condition2, elseCondition as Boolean
If numberl = number2 Then
conditionl = True
Else If numberl = number3 Then
condition2 = True
Else
elseCondition = True
End If

Select Case

Select Case var

Case 1l

stmtl// executed if var = 1
Case 2

stmt2// executed If var = 2
Case Else

stmt3// executed If var I1s other than 1 and 2
End Select

For Loop

For <<var>> = start To end Step <<val>>
Statements
Next

Example:
Public Class frmDemo
Private Sub btnRunForNext_Click (...) Handles btnRunForNext.Click
Dim | As Integer
Forl=1To 10 Step 2
MsgBox(l)
Next
End Sub
End Class

1,3,5,7,9 are popped up in the message box consecutively!

Do While Loop

1. Do While(a<>0)
MsgBox(a)
a=-a-—1
Loop

2. Do
MsgBox(a)
a=-a-—-1
Loop While(a<>0)

Do Until Loop

1. Do Until(a=0)
MsgBox(a)
a=-a-—-1
Loop

2. Do
MsgBox(a)
a=-a-—1

Loop Until(a=0)

Subroutines and Functions

Subroutines or Procedures
Does not return any value
Can have zero or more parameters
Are meant to follow set of steps

Functions
Always Returns some value
Can have zero or more parameters

In addition to returning value, similar to subroutines, can also
follow set of steps

In VB.NET there are varieties of predefined procedures and
functions which are used through programing, however VB
user can also define Procedures and Functions of their
owWns

Subroutines and Functions

Subroutines or Procedures - Declaration Syntax:
[accessModifiers] Sub subNamel[(parameter1, parameter2, ...)]
' Statements of the Sub procedure.
End Sub

Represents optional terms

accessModifiers: Specify access level, usually by using Private
(accessible inside this coding environment) or public (also accessible
from outside of the current coding environment) keywords which are
mainly used in object oriented programming

Parameter: [ByVal | ByRef] parametername As datatype

Use ByVal if you do not want to update parameter value based on
updates made inside the procedure

Use ByRef if you want value of parameter gets updated based on
updates made inside the procedure

Subroutines and Functions

Subroutines or Procedures - Declaration Syntax:

Example:

Private Sub initializeSim (ByVal Truck1Shift as integer, ByVal Truck2Shift
as integer, ByRef simTime as double, ByRef Qlength as integer, ByRef
TrucklFirstArrival as double, ByRef Truck2FirstArrival as double)

simTime =0
Qlength =0
TrucklFirstArrival = Truck1Shift * 8 *60 + Rnd() *10
Truck2FirstArrival = Truck2Shift * 8 *60 + Rnd() *10

End Sub

Subroutines and Functions
o Subroutines or Procedures — Calling Syntax:

subName([Valuel, Value2, ...])

Example:

initializeSim (Truck1Shift, Truck2Shift, simTime, QLength,
Truck1FirstArrival, Truck2FirstArrival)

Subroutines and Functions

Functions - Declaration Syntax:

[accessModifiers] Function functionName[(parameter1, parameter2, ...)] as
returnValueType

' Statements of the function including setting value for functionName
End Sub

Represents optional terms

accessModifiers: Specify access level, usually by using Private (accessible
inside this coding environment) or public (also accessible from outside of the
current coding environment) keywords which are mainly used in object oriented
programming

Parameter: [ByVal | ByRef] parametername As datatype

Use ByVal if you do not want to update parameter value based on updates made
inside the procedure

Use ByRef if you want value of parameter gets updated based on updates made
inside the procedure

Subroutines and Functions
69 |

o Functions - Declaration Syntax:

Example:

Private function loadingTime (ByVal TruckCapacity as double) as
double

loadingTime = TruckCapacity * (1+ Rnd())

End function

Subroutines and Functions

Functions — Calling Syntax:

functionName([Valuel, Value2, ...])
Or
VariableOfTheSameType = functionName([Valuel, Value2, ...])
Example:
Dim truckLoadingTime as double
Dim truckCapacity as double = 10

TruckLoadingTime = loadingTime(truckCapacity)

Arrays

An array Is a set of logically related values, such as the

name of students in a class or time of events in FEL.

By using an array, you can refer to these related values
by the same name, and use a number that's called an
Index or subscript to tell them apart. The individual

values are called the elements or items of the array.

Index number begins from index 0 through the highest

iIndex value.

Arrays

Array — declaration:

Dim arrayName(dimention1HighestValue],

otherDimentionsHighestValues]) as arrayElementType
Example:

Dim simClassStudents(8) as string

Dim numberOfEntities as integer = 10
Dim numberOfEventTypes as integer =5
Dim FEL(numberOfEntities, 3) as double

‘Set values of 2" dimension to 1 for event time, 2 for event
type and 3 for entity number

Arrays

Array — call:

arrayName(dimention1lHighestValue],

otherDimentionsHighestValues]) = Value
Or

variableOfTheSameType =
arrayName(dimention1HighestValue],

otherDimentionsHighestValues])

Arrays

Array — call:
Example:

simClassStudents(1) = “Ali”
simClassStudents(1l) = “Mohammad”

FEL(3, 1) = loadingTime(truckCapacity) + currentSimTime
FEL(3, 2) = 1 ‘represent loading event
FEL(3, 3) = 3 ‘represents entity number

Object Oriented Programming (OOP)

Programming progression

Programming has progressed through:
0000 1001 1100 0110 1010 1111 0101 1000

machine code 1010 1111 0101 1000 0000 1001 1100 0110
GCD: TST B
assembly language BEQ
MOV
MOV R5, B

CALL GCD
SIMPLE: RETURN

machine-independent programming languages
(Fortran, Basic, etc.)

procedures & functions

objects

Object Oriented Programming
B

- Concepts
o Classes
o Objects
o Abstraction
o Encapsulation

= Inheritance

Classes and Objects

A class is a model or prototype or instruction for creating objects
A class documents structure and specifications of an object

We can create or instantiate multiple separate objects based on one

class. In this perspective we can say objects are instances of classes

Relation between a class and an object is similar to a drawing and a

building
We build a house based on drawings

A building is a physical representation of a what is specified in

drawings

We can use drawing to build several, and separate, buildings

Classes and Objects

n We already have used classes and objects in our programming

lesson.

@ Guess which programming capabilities we discussed are using

classes and objects?

Classes and Objects

Controls listed on the control Toolbox are classes and controls placed

on forms, which are instances of those classes, are objects!
For every control there is only one item on the Toolbox
We can instantiate multiple controls on a form!

VB.NET users can define classes and use objects of their owns!

2= Forml == Eon > Toolbex
> All Windows Forms
List Booc] 4 Commeon Controls
Pointer
Button
Button | | CheckBox
: CheckedListBox
Label1 =% ComboBox
DateTimePicker

Label

Components of an Object
R

@ Based on what we have learned from controls, guess what are the

main components of objects?

Components of an Object

An object consists of three main components:

Attribute or Property: Specifies the information associated
with an object. Color of a textbox object, capacity of a
truck object, and bucket size of a loader object are

examples for attribute.

Method: Are actions performed by an object. Methods
come in two forms of functions and procedures. For
example loading is a method for a loader object, travelling
IS a method of a truck object, compacting is method for a

roller.

Components of an Object

An object consists of three main components: (cont'd)

Event: An event is a signal that informs an application that
something important has occurred. An event is usually
triggered by start or finish of an action and is usually
handled through a supporting method underneath. For
example gaining focus is an event for a textbox, site arrival
IS an event for truck object and completion of asphalt

loading is an event for the asphalt plant.

Start Working with Objects

For working with objects:
|dentify classes required

Define (declare) classes (including definition of all

components) required

Instantiate objects from the classes at the beginning

of the main program body

Work with objects by calling their defined components

when required in the main program!

ldentify classes required

Independent entities in the program are usually coded

as classes and instantiated as objects.

@ In a simulation model what are candidates to be coded

as classes and objects?

ldentify classes required

For example in a DES model Entities, Resources and
simulation model Engine are candidates for the program

classes.

Declare Classes

In general there are a variety of parameters/identifiers to be
used for declaring a class, in this course we only introduce

basic parameters/identifiers:

[<attributelist>] [accessmodifier | [Shadows] [Mustinherit |
Notlinheritable] [Partial]

Class name [(Of typelist)]

| Inherits classname]

| Implements interfacenames |

| statements |

End Class

Declare Classes

Main form class is the default class created in a VB.NET
project, e.g.:

Public Class Forml
{default programming environment}
End Class

New classes can be declared right after the default
class within the same file, e.qg.:

Public Class Forml
{default programming environment}
End Class

Public Class Engine
{programming environment}
End Class

Declare Classes

- New classes (usually
supporting classes
which are used as
auxiliary parts of the
program) can be
declared in separate
files from the default

class file.

~ X Soclution Explorer - WindowsApplicati.., J;l X
[

‘ =

[#%] | Build
Rebuild
Publish...

Add vl] New item.

Add Referen
Add Service Refere

=24

=i | Existing ltem...
| Mew Folder
5]

Debug Windows Form...

Cut User Control...
Ly | Paste

Rename

= Properties t : =
T Pronerfies - 1 W

Declare Classes

o §
71 New classes, usually

Add Mew ltem - Windows&pplication 7 . |

Templates: | Ié:lj [£] |
Visual Studic installed termnplates (el WindowsApplication1
L@ Q g < B2 Class1vb
About Box ADO.MET DataSet Dialog Explorer LINGC to SOL b .
Entity Da... Form Classes L
@ U =] 4 L= == e
MDI Parent Module Service-ba... Splash Text File User Control User Control Windows XML Te
Form Database Screen WPF) Form Schema
My Templates
Search
Online Te...
An empty class definition |
Mame: | Class1.vb ﬁl
Add Cancel

Declaring Properties

Properties are usually declared at the beginning of a class.

Using Auto-implemented properties is the simplest way for

declaring a class property:

Public PropertyName As DataType

Auto-implemented properties are used when you just simply
want to get (read) values and set values for a property with no

control on the reading and setting value process! Examples:

Public Name As String
Public currentTime As Double =0

Declaring Properties

Extensive form of properties declaration is as following:

Private ClassVariable As DataType
[Public] Property PropertyName() As DataType
Get
Return ClassVariable [PropertyName = ClassVariable]
End Get

Set (ByVal Value As DataType)
[statements, such As validation]
ClassVariable = Value

End Set

End Property

This form of property declaration lets you to put verification

and validation statements when a property is read (get) or set

Declaring Properties

o Example:

Public Class Engine
Private _currentTime As Double=0
Property currentTime() As Double
Get
if _currentTime<O0 then
MsgBox(“Check your time, why is it minus?”)
End if
Return _currentTime
End Get
Set(ByVal value As Double)
if value <0 then
MsgBox(“Becareful! Your time should not be minus?”)
End if
_currentTime = value
End Set
End Property
End Class

Declaring Properties

s ReadOnly (can not be set out of the class), WriteOnly (can

not be read out of the class) examples:

Public Class Engine
Dim _currentTime as double =0
Dim _secreteName as String
Public ReadOnly Property currentTime() As Double
Get
return _currentTime
End Get
End Property

Public WriteOnly Property secreteName() As String
Set(ByVal value As String)
_secreteName = value
End Set
End Property
End Class

Using Properties

Example:

Public Class Form1l

Private Sub Buttonl_ Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Dim myEngine as New Engine()
‘myEngine Object with the type of Engine class is defined

..... " Statements involving myEngine object

txtFirst. Text = myEngine.currentTime.ToString
‘Shows current time on the txtFirst textbox
End Sub
End Class

Declaring Methods

Methods include functions and procedures

Declaring functions and procedures is similar to what we

discussed in prior parts
Methods are usually declared at the end of a class.

Use “Public” keyword at the beginning of a method
declaration if you are interested to access the method from

outside of the class!

Declaring Methods

o Example:

Public Class Loader
Public bucketSize As Double
Public Function loadingTime (ByVal TruckCapacity as double) as
double
loadingTime = TruckCapacity / bucketSize * (1+ Rnd())

End Function

End Class

Using Methods

Example:

Public Class Form1l

Private Sub Buttonl_ Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Dim myLoader as New Loader()
‘myLoader Object with the type of Loader class is defined
myLoader. bucketSize = 0.1 ‘m3

Dim myTruckCapacity as double
" Statements involving myLoader object and myTruckCapacity

txtSecond.Text = myLoader. loadingTime(myTruckCapacity).ToString
‘Shows current time on the txtFirst textbox
End Sub
End Class

Declaring Events

An Event’s declaration consists of three parts:

1. Declaring Events: Introducing event’'s name and its
parameters using “Event” keyword. Example:

Public Event TruckArrival(ByVal TruckNumber As Integer)

2. Raising (Triggering) Events: An event is like a message
announcing that something important has occurred. The act
of broadcasting the message is called raising the event.
Usually we need to set raise of an event of an object when a
threshold is reached within the object. Example:

RaiseEvent TruckArrival (TruckNumber)

Declaring Events

An Event’s declaration consists of three parts (cont’d):

3. Event Handlers: Event handlers are procedures that are
called when a corresponding event is raised. You can use
any valid subroutine with a matching signature as an event
handler. You cannot use a function as an event handler,
however, because it cannot return a value to the event
source. Example:

Private Sub engine_TruckArrival (TruckNumber) Handles Me.
TruckArrival

‘Statements for handling truck arrival
End Sub

Declaring Events-Example

Public Class Truck
Public Event loadingCompletion(byVal msg as string)
Public Event dumpingCompletion(byVal msg as string)
Dim _loaded As Boolean
Public Property loaded() As Boolean
Get
Return _loaded
End Get
Set(ByVal value As Boolean)
_loaded = value
If value = True Then
RaiseEvent loadingCompletion(“Write Loading Completion Event Handling Statements”)
Else
RaiseEvent loadingCompletion(“Write Dumping Completion Event Handling Statements”)
End If
End Set
End Property
Private Sub Truck_loadingCompletion(byVal msg as string) Handles Me.loadingCompletion
MsgBox(msg)
End Sub
Private Sub Truck _dumpingCompletion(byVal msg as string) Handles Me.dumpingCompletion
MsgBox(msg)
End Sub
End Class

Constructor

Used for initializing private members of a class
Name of the constructor should always be New()
Can have none or several parameters

Does not return any value. So theyare sub routines or
Procedures!

Need not to be invoked explicitly. They are invoked
automatically when an object is created

A class can have more than one constructor

Every constructor should differ from the other by means of
number of parameters or data types of parameters

Constructor

Example:

Public Class Form1
Private Sub Buttonl_ Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
Dim myTruck as New Truck(True)
‘Other statemenets
End Sub
End Class

Public Class Truck
Public loaded() As Boolean
Sub New(ByVal truckLoaded As Boolean)
loaded = truckLoaded
End Sub
End Class

Inheritance

Classes can inherit their components (properties, methods and

events) from other classes (called parent classes)

Inheritance is a powerful programming capability and

significantly saves repeated codes

Designing a proper inheritance structure is an important aspect
of object oriented programming, however, for the sake of

brevity we do not discuss it more!

Inheritance

Example:

Public Class form1l
Dim myTruck As New Truck
Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Buttonl.Click
myTruck.maxLoadingCapacity = 10 ' tonne
myTruck.maxSpeed = 80 'km/h
myTruck.weight = 6 'tonne
MsgBox("My truck capacity is: " & myTruck.maxLoadingCapacity. ToString)
End Sub
‘Other properties and methods ...
End Class
Public Class MobileMachines
Public maxSpeed As double ‘in km/h
Public weight as double ‘in tonne
‘Other properties and methods ...
End Class
Public Class Truck
inherits MobileMachines
Public maxLoadingCapacity As double ‘in tonne
‘Other properties and methods ...
End Class

Namespace

In addition to the embedded classes available to the users, VB.NET
provides sets of prepared classes or class libraries, so called
Namespaces, which facilitate different types of programing, e.g.,
database, graphic, program diagnostic, working with other windows
applications, etc.

Importing all prepared Namespaces in a program makes the program
heavy and slow, so VB.NET lets programmers select among them, based
on the capabilities they require.

Use “Imports™ keyword at the beginning, before class declaration for
adding required Namespaces to your program.

By typing “Imports”, list of selectable high level Namespaces occurs,
you may narrow down your specific Namespace to lower levels

Namespace

ﬁ (General)

Inports |
B Publi

4¥ <xmins =
{} ClassLibraryl
{} Microsoft

YRR [Namespace System

|~End C

i1 (General) - |E

Inports SysStem.c
E Pukbklic Cla=s

“ CLSCompliantAttribute A
|~End Cla=s t CndeDm
O EIEEEETY - [Namespace Collections|-
{} ComponentModel
{} Configuration
% iConsole
@ ConsoleKeylnfo
= ConsoleSpecialkey
“i% ContextStaticAttribute
% Convert W

Comman All

Namespace

108

o In VB.NET programmers can specify their own specific Namespaces

which can be used in their different programs.

o At the beginning of the program new projects should be set as “Class

Libra ry”. Mew Project 7 W

Templates: EHEAE

Visual Studic installed templates

EoE & &8

Windows Class Library WPF WPF Browser Conscle
Ferms Ap... Application Application Application

My Templates

Search
Online Te...

A project for creating a VB class library (.dIl) (MET Framework 3.5)

MNarne: ClassLibraryl |

Namespace

After completing classes required, classes should be built:

ClassLibraryl - Microsoft Visual Basic

File Edit View Project | Build |

| % Build ClassLibrary [_

A dll file is create at “\bin\Release” within the project’s main folder which
can be used as Namespace in other projects

A dll or dynamic-link library file are portable set of classes which can be
used in different programming languages, regardless of their original

programming languages.

Namespace

To be able to import a specified namespace(s), first its related dll file
should be added as References to the project. References are inside the
project’s properties. A project’s property is accessible through right-click on

the project’s name in the solution explorer.

Application
Unused References... Reference Paths...
L References:

Compile
Reference Mame Type \Versi.. Copylocal Path

Debug System MNET 2.0.0.0 False CAWindows\Microsoft. MNET\Frarmeworkiw2.0.30727\ System.dll

References System.Core MET 3.5.0.0 False Ci\Program Files (x86)\Reference Assemblies\Microsoft\Framework!v3.5\Systermn. Core.dll
Systern.Data MET 20,00 False CAWindows'\Micresoft. MET\Frarmework\v2.0.30727\System. Data.dil

Rescurces Sys a.[ataSetbBxtensions .MET 3.5.0.0 False C:\Program Files (x88)\Reference Assemblies\Microsoft' Framework!v3.54 Systern. Data.DataSetExtensic
System.xXml JNET 2,000 False ChWindows\Micresoft. NET\Framework\v2,0.30727\ System.Xml.dll

Services System.Xml.Ling ET 3.5.0.0 False C:\Program Files (x86)\Reference Assemblies\Micresoft\Framework'v3,5\System. Xml.Ling.dll

Settings

Signing

My Extensions = - A 5

Imported namespaces: Reference...

|Microsoft.‘-fisuaIBasic Service Reference...

Microsoft.VisualBasic ~
System

System.Collections

System.Collections.Generic

A Svstem.Data

Collections

Definition

Collections include several types of VB.NET objects used for

grouping and managing related objects.

For example, every Form has a collection of controls. (You can
access this collection through the form's Controls property.) This

collection is an object that represents all the controls on that form.

Collection allows you to retrieve an objects inside the collection by
its index, and to loop through the elements of the collection using:

For Each...Next Statement

To be able to work with collections you first need to import their

related namespace from: System.Collections

Arrays and Collections

113

Array
- Slze

0 Item(Index)

Collection

0 Size

o Iltem(Index)

0 Iltem(Key)

o Add(ltem)

o Remove(ltem)

o Contains(ltem)

Different Kinds of Collections

Collection
Array List
Sorted List
Hash Table
Stack
Queue

We only discuss the basic form of collections here, in fact, basic
form of collection is the parent of other kinds! So, many
properties and methods are the same between different kinds of
collections.

Collections-Example

Imports System.Collections
Public Class loaderQueue
Public Q As New Collection
Public Function QLength() As Integer
QLength = Q.Count
End Function

Public Sub addNewTruck(ByVal TruckName As String, ByVal Truckld As
Integer)

Q.Add(TruckName, Truckld.ToString)
End Sub
Public Sub removeTruck(ByVal Truckld As Integer)
Q.Remove(Truckld.ToString)
End Sub
End Class

Home Assignment 6

Write a class called simulationCourse. The class has following elements:

EJP Properties: Location, CourseWeeklyHours, CourseSemester StudentName,
StudentMark, Lecturer, CourseReference,
CourseStatus[ToCome/InProgress/Completed]

Methods: CourseAverageMark, CourseMaximumMark
Events: SemesterStart [CourseStatus is changed to InProgress], SemesterFinish

[CourseStatus is changed to Finished]

Instantiate the class in a button’s event-handler. Use your current simulation course info
to set the values of the created object (for the student info, information of at least 5
students should be added, for the other elements complete info should be entered), link
SemesterStart and SemesterFinish events to two different buttons! Report course
average, maximum and minimum marks using separate buttons!

(Due two days)

Reference

o https://msdn.microsoft.com

Thank you!

