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 In many construction operation simulation studies simulation model element 

specifications (e.g., activity durations, capacity of resources and entity attributes) 

are described in stochastic fashions; so called stochastic variables or random 

variables.

 We usually capture behaviour of stochastic variables in statistical distributions!

 We are going to have a quick review on different types of stochastic variables and 

statistical distributions.
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1. Discrete versus Continuous random variables:

 Discrete random variable: If the number of possible values of a random variable (X) 

is finite, or countably infinite, X is called a discrete random variable. (Banks et al. 

2004, p132)

Example: We are receiving asphalt for our project from an asphalt plant whihc has 

10 asphalt trucks with capacity of 8 tonnes, 30 trucks with capacity of 10 tonnes 

and 10 with the capacity of 12 tonnes. Plant concurrently serves several projects 

and loads and sends asphalt trucks to the projects based on their arrival time to the 

plant. Capacity of asphalt trucks arrive to our project site is a discrete variable with 

the following capacity:

P(Truck capacity: 8 tonnes)= 10 / 50 = 0.2

P(Truck capacity: 10 tonnes)= 30 / 50 = 0.6

P(Truck capacity: 12 tonnes)= 10 / 50 = 0.2
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1. Discrete versus Continuous random variables:

 Continuous random variable: If the range (or definition) space (Rx) of a random 

variable (X) is an interval or a collection of intervals, X is called a continuous 

random variable. (Banks et al. 2004, p132)

 Unlike discrete variables which have probability values of P(x) assigned to them at 

every variable point defined for the variable, probability value of every single point 

of a random continuous variable within the range space of the variable is 0. 

Though, probability density of f(x) is defined for random continuous variables.

 Example: In our earthmoving example the fastest time a truck can finish its 

dumping trip (from leaving the loading site until in returns for another loading) is 10 

minutes and maximum time that it might take is 15 minutes.

f(Truck trip duration=x)~ [10 minute, 15 minute]= 1/(15-10)= 1/5=0.2; for x between 10 &15     

f(x)=0; otherwise
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2. Cumulative distribution:

 The cumulative distribution function (CDF), denoted by F(x), measures the 

probability that the random variable X assumes a value less than or equal to x, that 

is, F(x) = P(X≤x). (Banks et al. 2004, p132)

 CDF value is between 0 and 1.

Example 1: The cumulative distribution function for the asphalt truck capacity in our 

last paving project example is:

Example 2: In our last earthmoving example, cumulative distribution function for 

trip duration is:

0; if x<8

0.2; if x>=8 and <10

0.8;  if x>=10 and <12

1;  if x≥12

F(x)=

0; if x<10

(x-10)/(15-10); xЄ[10,15]

1;  if x>15
F(x)=
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3. Several useful discrete distributions:

 Bernoulli trial and the Bernoulli distribution (Banks et al. 2004, p141)

 Consider an activity (or trial), we call this activity a Bernoulli trial if it has a chance of 

success (x=1) of p and a chance of failure (x=0) of 1-p = q on each time of trial.

 Bernoulli trial has a Bernoulli distribution as follows:

 Example: Inspection results in construction operation usually follow Bernoulli trial: 

p; if x=1

1-p=q; if x=0

0;  otherwise
P(x)=
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Inspection completion happens at time: t 

Start

Sample the Bernoulli distribution of 

inspection result

Is inspection result 

successful (x=1)? 

Finish

Advance time to the next event in FEL

Y N

Continue to the next step Schedule a new rework activity in FEL
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3. Several useful discrete distributions :

 Binomial distribution (Banks et al. 2004, p142)

 The random variable X that denotes the number of successes in n Bernoulli trials 

has a Binomial distribution given by p(x), where:

 Example: Client accepts quality of fabricated structural steels, if third party inspection 

of 20 samples of welded points does not result in more than 2 reworks. In case of 

more than 2 reworks caught third party inspector will run a 100% inspection (e.g., on 

200 welding pints) and the extra cost is upon the contractor. If there is a chance of  

1% error (failure) on each welded point, what is the chance that contractor faces 

100% inspection in each third party inspection activity? (x= number of success)

Chance of 100% inspection = P(x<18)= 1-[P(x=20)+P(x=19)+P(x=18)]

P(x=20)=20!/20! * 0.99^20 * 0.01^0 = 0.818; P(x=19)= 0.165; P(X=18)=0.016

Chance of 100% inspection = 1- 0.818 - 0.165 – 0.016 = 0.001 = 0.1%
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 A tile installation contractor has a contract for procurement and installation of 

premium grade tiles. In the contract, it is determined that after installation of 

every 100 tiles client’s inspector inspects installed tiles quality. If there are 

less than 2 lower quality tiles found, client will approve the installation and 

accept the installation.  Otherwise, all lower quality tiles are removed and 

replaced with premium grade tiles. If there is chance of 0.5% that tiles arrive 

from tile factory have a different quality than premium, what is the chance of 

tile installation rework?
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3. Several useful discrete distributions:

 Poisson distribution (Banks et al. 2004, p144)

 Poisson probability mass function (pmf) represents probability of x number of  random 

events happening within determined period of time. :

 An interesting property of Poisson distribution is that λ (the only parameter of the 

distribution) represents the average and variance of the distribution.

 Example: Suppose that you are going to simulate maintenance operation of a construction 

company in which the maintenance department sends its crew to different construction sites 

on weekly basis to collect broken tools to be fixed on the central maintenance shop (i.e., 

new jobs for the maintenance department). Number of broken tools collected from each 

construction site varies in each week. It is possible that there is no broken tool on a site. 

However, number of broken tools can go up to more than 10. 

This can be a good example for modeling number of weekly broken tools with Poisson 

distribution function.

λ = E(x) = Var(x)
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3. Several useful discrete distributions :

 Poisson distribution (Banks et al. 2004, p144)

 Example (cont’d):

According to the past data from last 30 weeks, average number of weekly broken tools 

collected from a construction site is 2.3. Chance of collecting 3 broken tools for a week 

can be calculated as in below:

Distribution function for number of broken tools collected on weekly basis for the site will 

be:

Chance of collecting 3 tools= P(X=3) = e-2.3 2.33 / 3! = 0.203

 Poisson process: Number of events within specific period of time follows a Poisson 

distribution if it pursues Poisson process properties:

1.Events happen one at a time

2.Distribution of number of events within an interval (e.g., rage of t to t+s) just 

depends on the interval length (i.e., s) not the starting point .

3.Distribution of number of events during non-overlapping time intervals are 

independent random variables. Thus, a large or small number of arrivals in one time 

interval has no effect on the number of arrivals in subsequent time intervals.

e-2.3 2.3x / x!;  x=0,1, 2,…

0;  otherwiseP(x)=
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4. Several useful continuous distributions :

 Uniform distribution (Banks et al. 2004, p146)

Uniform distribution is used for a random variable X uniformly distributed on the 

interval (a, b): 

Use uniform distribution for estimating duration of activities when activity experts 

just can estimate a duration range (with a minimum of a and a maximum of b) with 

no priority determined within the interval.

mean (μ):

Variance (σ2):

1

b-a

a b
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4. Several useful continuous distributions :

 Triangular distribution (Banks et al. 2004, p167)

Triangular distribution is used for a random variable X distributed on the interval (a, b) 

while it is more dense at the value of c (within the interval): 

Use triangular distribution  duration for estimating duration of activities when activity experts 

give a duration range (with a minimum of a and a maximum of b) for the activity duration 

and a most likely value within the range (distribution mode of c).

F(x| a, b,  c) = Mean(μ):

Variance(σ2):

1

b-a

a bc
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4. Several useful continuous distributions :

 Normal (or Gaussian) distribution (Banks et al. 2004, p152)

A random variable X with mean -∞<µ<+∞ and variance σ2 >0 has a normal

distribution if it has the pdf: 

Physical quantities which are expected to be the sum of many independent processes/ 

elements (such as engineering tolerances and measurement errors) often have a 

distribution very close to the normal. In construction operations when an activity duration 

is equipment driven, usually we can estimate normal distribution for activity duration. 

Normal distribution is also known as natural distribution. In the natural and social 

sciences normal distribution is used for real-valued random variables whose distributions 

are not known. (Casella and Berger 2001)
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4. Several useful continuous distributions :

 Exponential distribution (Banks et al. 2004, p152)

Exponential distribution is the probability distribution that describes the duration time 

between events in a Poisson process. The distribution formula is:

In simulation models exponential distribution usually is used for modeling time between 

(entity) arrival events specially when these events are randomly distributed and 

externally originated. Examples for exponentially distributed time between events can be 

time between new projects introduced to the market or time between equipment breaks.

Question: What is the relation between λ as the parameter in Poisson distribution and in 

Exponential distribution?
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4. Several useful continuous distributions :

 Beta distribution (Banks et al. 2004, p164)

A random variable y is beta-distributed with parameters α>0 and β> 0 if its pdf

is given by:

With special values of α and β Beta distribution behaves similar to other distributions:

- If X ~ Beta(α, 1) then −ln(X) ~ Exponential(α)

- Beta(1, 1) ~ Uniform(0, 1)

- For large number of α and β Beta distribution approximates Normal distribution

Beta distribution is a very flexible distribution in terms of fitting data with different trends: 
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4. Several useful continuous distributions :

 Beta distribution (cont’d)

Use Beta randomly distributed 

variable to fit historical data with 

strange shape/ behavior!
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 Question: Why do we need to generate random variables?

Random variable generation
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 Question: Why do we need to generate random variables?

Random variable generation

 Remember the way that we 

update FEL using event 

occurrence procedure.

 Using activity duration and 

scheduling activity completion 

events in FEL is our main tool for 

adding new events into FEL and 

keep our simulation engine going!

 Example: Truck arrival procedure:

Truck arrival happens at time: t 

Start

NoOfTrucksToLoading - -

Loader=idle

Loader = busy

Schedule New Loading 

completion event in FEL

NoInLoadingQ ++

Collect info

Finish

Advance time to the next event in FEL

Y N
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 For deterministic activities with fixed durations scheduling new activity completion  is 

quite straight forward: add the activity duration to the current time and schedule new 

activity completion in FEL. This is exactly what we did in our hand simulation!

 But for stochastic aspects of our system like stochastic activities, results and other 

system specification with randomly distributed distributions what are we going to do? 

How can we make sure that values we create in our simulation program follow specific 

distribution functions they are distributed in accordance with.

 Before start generating random variables distributed under different statistical 

distributions lets start with generation of the simplest and most prevalent random 

variable generation; generation of random numbers or uniform random variables 

between 0 and 1.

Random variable generation



24

 Random Number Generation (Banks et al. 2004, chapter 7):

 In general, random numbers generation is generation of random variables uniformly 

distributed between 0 and 1:

x ~ U[0,1]

 This is what you are going to receive when you refer to random number generating 

functions available in computer programming, calculator and widely used general 

applications like M.S. Excel.

 Random numbers Vs Pseudo random numbers:

 What these programs create are not real random numbers, but Pseudo random 

numbers. These Pseudo random numbers are generated through algorithms which 

try to generate numbers following random number behaviour. So when we talk 

about random number generation in simulation, we actually mean Pseudo random 

number generation!

 Question: How can we really generate real random numbers?

Random variable generation



25

 Random Number Generation:

 Properties of random numbers:

Density function:

Expected value:

Variance:

So any pseudo random number generating algorithm is expected to generate numbers 

with real random number properties!

There are some other properties of random variables which are tested for commercial 

and highly loaded pseudo random number generating programs. You are encouraged 

to study them (Banks et al. 2004, Section 7.4), but we avoid more discussion here!

Random variable generation
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 Random Number Generation:

 Linear congruential generation (LCG) technique (Banks et al. 2004, Section 7.3.1):

 This method initially proposed by Lehmer [1951]. 

 It is one of the most efficient methods and is the base for many current methods 

for random number generation.

The generator produces a sequence of integers, X1, X2, ... between zero and m-1 

by following a recursive relationship:

Xi+1 = (aXi + c) mod m  

Where:

i = 0, 1, 2, 3, …

m > 0 (modulus)

0 < a < m (multiplier)

0 ≤ c < m (increment)

0 < X0<m (seed or start value)

At ith recursion, pseudo random number Ri is created through: Ri= Xi / m

Random variable generation
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 Random Number Generation:

 Linear congruential generation (LCG) technique:

Example: With :X0 = 27, a = 17, c = 43 and m = 100 following LCG method we 

have:

X1 = (17 * 27 + 43) mod 100 = 2  => R1 = 2 / 100 = 0.02

X2 = (17* 2 + 43) mod 100 = 77 => R2 = 77/ 100 = 0.77

X3 = (17 * 77 + 43) mod 100 = 52  => R3 = 52 / 100 = 0.52

X4 = (17 * 52 + 43) mod 100 = 27 => R4 = 27 / 100 = 0.27

From now on these numbers are repeated, no new number will be generated and 

therefore numbers generated will be dependent and not valid to be used as 

random variables!

Random variable generation
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 With a = 13, c = 0 and m = 64 follow LCG method for creating pseudo 

random numbers. First time with X0 = 4 and second time with X0 = 2.

In class practice 2
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 Random Number Generation:

 Linear congruential generation (LCG) technique:

Some points regarding random number generation:

 At the best case scenario period length of generated random number numbers is m.

 In simulation model programs we usually need to generate many random numbers, 

so m should be big enough and X0, a and c should be picked as reasonable values 

which can generate the length we require. There are many research efforts done to 

be able to find proper parameters which behave like random number and have long 

period!

 Some guidelines for picking parameters are: Select m as a big number of power of 2 

e.g., 2^64 (what will be the maximum period length?); X0 to be prime to m; c and m 

must be relatively prime; have (a – 1) divisible by all prime factors of m;  have (a – 1) 

a product of 4 if m is a product of 4.

Random variable generation
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Source m (multiplier) a    (increment) c

Numerical Recipes 2^32 1664525 1013904223

Borland C/C++ 2^32 22695477 1

glibc (used by GCC)[5] 2^31 1103515245 12345

ANSI C: Watcom, Digital Mars, CodeWarrior, IBM 

VisualAge C/C++ [6]
2^31 1103515245 12345

Borland Delphi, Virtual Pascal 2^32 134775813 1

Microsoft Visual/Quick C/C++ 2^32 214013 (343FD16) 2531011 (269EC316)

Microsoft Visual Basic (6 and earlier)[7] 2^24
1140671485 

(43FD43FD16)
12820163 (C39EC316)

RtlUniform from Native API[8] 2^31-1 2147483629 (7FFFFFED16)
2147483587 

(7FFFFFC316)

Apple CarbonLib, C++11's minstd_rand0[9] 2^31-1 16807 0

C++11's minstd_rand[9] 2^31-1 48271 0

MMIX by Donald Knuth 2^64 6.36414E+18 1.4427E+18

Newlib 2^64 6.36414E+18 1

VAX's MTH$RANDOM,[10] old versions of glibc 2^32 69069 1

Java's java.util.Random, glibc [ld]rand48[_r]() 2^48 25214903917 11

Parameters in some famouse random number genetors based on LCG
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 Random Number Generation:

 Linear congruential generation (LCG) technique :

 LCG random number generators usually come with supporting set of data 

containing different start values or seeds. Since period length of the random 

number generator is very large (or never ending), to make the generator create 

different number in every new run of random number generation, it just needs to 

move from one seed to the other for every new run.

 There are other methods for creating random numbers (e.g., MidSquare and 

Multiplicative Congruential Method), Almost all of them have recursive function 

technique to generate random numbers; though with different formulations. LCG 

is one of the most efficient and commonly used method.

 Our main purpose here was to introduce basic concept of random number 

generation. More deeply studies on random number generation methods might 

be the case with the computer science or mathematical departments!

Random variable generation
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 Random Variable Generation- basis (Banks et al. 2004, chapter 8)

 There are different methods for random variable generations. However, most of 

them require random numbers as their inputs.

 Main methods we briefly discuss in this lecture are:

 Inverse transform technique

 Acceptance-rejection Technique

 Direct Transformation for the Normal distribution

Random variable generation
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 Random Variable Generation- Inverse transform technique (Banks et al. 2004, 

chapter 8)

Generating random variables using inverse transform function is the most straight 

forward method for distribution functions with known inverse CDF.

 Exponential distribution:

 In a normal form of exponential distribution our input to the distribution functions 

is exponentially distributed values and the outputs are probability density (from 

pdf) and probability (from cdf):

λ means the rate of events happening over course of time and 1/λ is the average 

time between two consecutive events.

Random variable generation
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 Random Variable Generation- Inverse transform technique

 Exponential distribution (cont’d):

 However, the goal here is to develop a procedure for generating values X1, X2, X3, ... 

that have an: exponential distribution.

 One step-by step procedure for the inverse-transform technique, illustrated by the 

exponential distribution, consists of the following steps:

Step 1. Compute the cdf of the desired random variable X.

For the exponential distribution, the cdf is F(x) = 1 – e-λx; x≥0.

Step 2. Set F(X) = R on the range of X.

For the exponential distribution, it becomes 1 – e-λx =R on the range x≥0.

X is a random variable (with the exponential distribution in this case), so 1– e-λx is 

also a random variable, here called R. As it is proved, R has a uniform distribution 

over the interval of [0, 1].

Random variable generation
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 Random Variable Generation- Inverse transform technique

 Exponential distribution (cont’d):

Step 3. Solve the equation F(X) = R for X in terms of R.

For the exponential distribution, 

the solution proceeds as follows:

This equation is called a random-variate generator for the exponential distribution 

which is X=F-1(R).

Step 4. Generate (as needed) uniform random numbers R1, R2, R3, … and 

compute the desired random variates X1, X2, X3, … by using Xi=F-1(Ri). For the 

exponential case, F-1(R) = (-1/λ) ln(l - R) and equation will be: Xi= (-1/λ) ln(l - Ri) 

Since R is a random number with uniform[0,1] distribution, 1-R is also a random 

number of uniform[0,1] and the function can be simplified as: Xi= (-1/λ) ln(Ri) 

Random variable generation
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 Random Variable Generation- Inverse transform technique

 Exponential distribution (cont’d):

Example: Time between new projects introduced to the market has an exponential 

distribution with the average of 10 days. Random numbers generated for randomly 

generating time between intervals are: 0.921, 0.324, 0.489

Random-variate generator for this function is: : X= (-10) ln(R) 

X1 = (-10) ln(0.921) = 0.82 days

X1 = (-10) ln(0.324) = 11.27 days

X1 = (-10) ln(0.489) = 7.15 days

Random variable generation
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We are going to simulate a structural steel construction where in average 20 steel 

elements are randomly arrived to the site from fabrication shop on daily basis. There is 

also an average 2.1 crane breakdown in week (= 5 working days and 10 working hours 

each day). Both time between steel arrival and time between crane break downs have 

exponential distributions.

We are going to use a Linear congruential generation (LCG) method with m of 1024, a of 

64, c of 101 and X0 of 31. 

You are going to use your random number generator to randomly generate first time of 

steel arrival to the site and the first crane break down!

In class practice 3
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According to the data received from the welding foreman, welding duration for 

each cubic inch is a random variable with a triangular distribution with minimum 

duration (a) of 2 minutes and maximum duration (b) of 5 minutes and a most 

likely value (c) of 3 minutes. We know CDF of triangular distribution is: 

What would random-variant generator for welding one cubic inch look like?

In class practice 4

F(x| a, b,  c) =
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 Random Variable Generation- Inverse transform technique

With pursuing inverse transform technique we are going to have following random-

variant generator for the following distributions:

 Uniform distribution:

X= a + (b – a) U 

 Triangular distribution:

Random variable generation
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 Random Variable Generation- Inverse transform technique

 Discrete distributions: All discrete distributions can be generated via the inverse-

transform technique through a table-lookup procedure.

Example: A chance of number of client’s safety inspector visits our construction site is 

as in below:

For randomly generating number of safety visits during the day we can prepare its  

distribution table as:

Random variable generation
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 Random Variable Generation- Inverse transform technique

Example (cont’d): By generating a random number we are going to look up the 

cumulative values on the table, the discrete random value will be determined as follows:

Generated value = xi if F(xi-1) < Rj ≤ F(xi) for i>0

Generated value = x1 if Rj ≤ F(x1) 

For example for the received random numbers of 0.42, 0.75 and 0.87 we have:

R=0.42 ≤ F(x=0)=0.5 =>generated x = 0

F(x=0)=0.5 < R = 0.75 ≤ F(x=1)=0.8 => generated x = 1

Random variable generation
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 Random Variable Generation- Acceptance-rejection technique (Banks et al. 2004, 

chapter 8.2)

Acceptance-rejection technique is used for generating random variables of a distribution by 

using random variables generated from a related distribution; when generating random 

variables from second distribution is easier (computationally or analytically).

 Uniform distribution:

Random variables of a uniform distribution can be generated by using random numbers as 

input and following formula: X= a + (b – a) U 

This means after generation of a random number we need to do several mathematical 

operations. 

Suppose a random variable X ~U[0.25, 1]. A substitute method for generating random 

number is: 

- Generate a random number of u (between 0 and 1)

- If u≥0.25 accept u as a random variable of X ~U[0.25, 1]

-If U<0.25 reject this sample and generate a new random number!

This method is very similar or a kind of Monte-Carlo simulation technique!

Random variable generation
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 Random Variable Generation- Acceptance-rejection technique

 Poisson distribution:

 Poisson distribution counts occurrence of events within the unite interval where time 

between two consecutive events are exponentially distributed.

 Creating exponentially distributed numbers are possible through inverse CDF.  

 For generating Poisson numbers in acceptance-rejection technique we are going to 

consecutively generate exponential values (with the same λ parameter value of 

Poisson distribution) and add exponential values received until summation of 

exponentially generated values exceeds the time interval for the first time. 

 Our Poisson number will be number of total sampled exponential values minus one!

Generated Poisson value = n if  A1+A2+ … +An≤ 1 <A1+A2+ … +An + A(n+1)  where 

Ai~ exponential distribution with the same λ parameter value as Poisson

As you might have noticed acceptance-rejection technique is not a very efficient method!

Random variable generation
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 Random Variable Generation- Acceptance-rejection technique

 Poisson distribution:

Example: Number of site broken down equipment per week follows a Poisson 

distribution with an average number of 5. Randomly generate number of broken down 

equipment for the first week. For random numbers presented in the table we have:

Exponential random-variant generator: Xi= (-1/5) ln(Ri) 

The random Poisson number is: 5

Random variable generation

i Ri Xi Cumulative Sum

1 0.905 0.020 0.020

2 0.131 0.407 0.427

3 0.756 0.056 0.483

4 0.718 0.066 0.549

5 0.318 0.229 0.778

6 0.155 0.373 1.150
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 Time between arrival of structural steel elements on site has an 

exponential distribution with the mean of 4 hours. Every day site 

opens from 7 am to 7 pm. Use following random numbers to 

randomly generate number of steel elements arrive on site on daily 

basis for 3 days.

In class practice 5

Ri

1 0.930

2 0.604

3 0.026

4 0.921

5 0.633

6 0.325

7 0.156

8 0.169

9 0.906

10 0.837

11 0.663

12 0.482

13 0.271

14 0.150

15 0.072

16 0.401

17 0.374

18 0.870

19 0.299
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 Random Variable Generation- Direct Transformation for the Normal distribution 

technique  (Banks et al. 2004, chapter 8.3.1)

CDF inverse of normal distribution is not known, so we can not create use CDF inverse 

method  for Normal distribution

 There is specific method developed in 1958 by Box and Muller for generating random 

numbers with normal standard distribution (refer to Banks et al. 2004, chapter 8.3.1 for 

the proof):

 In this method we are going to receive two normal standard variable by using 2 random

numbers!

 Then Normal standard variables Z~N(0, 1) can easily be transformed to Normal variables 

of X~N(μ, σ) through: X= μ+Z σ

Random variable generation
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 Random Variable Generation- Direct Transformation for the Normal distribution 

technique

 Example: Duration of loading activity has a normal distribution with the mean of 2 minutes 

and standard deviation of 20 seconds. Using randomly generated numbers of 0.901 and 

0.347 for sampling loading durations we have:

Z1 =(-2*LN(R1))^(1/2)* COS(2 * PI() *R2) = -0.261

Z2= =(-2*LN(R1))^(1/2)* SIN(2 * PI() * R2) = 0.374

X1= 2 + 0.261 x 20 / 60 = 2.12 minute

X2= 2 - 0.374 x 20 / 60 = 1.91 minute

Random variable generation
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 Assume an earthmoving example with 2 trucks (truck 1, and truck 2) and 2 loaders (loader 1 and 

loader 2) in the system where on a truck arrival to the loading site, if two loaders are idle, truck 

refers to the loader 1 for loading, if one loader is busy and the other one is idle, truck refers to 

the idle loader. In this operation only one dumping site is available. Job site works from 7am to 7 

pm. With the following assumption hand simulate the system for 1 hour; calculate the average 

length of the queue and the waiting time in the dumping site, average idle time of each loader 

and the productivity of the system.

 Time between first system arrivals (morning arrivals) has an exponential distribution with the 

average of 1 minute.

 Loading:  Normal (mean=12 minutes, SD=2 minutes)

 Trip to the dumping site: Normal (mean=2 minutes, SD=0.3 minute)

 Dumping 5 minutes

 Trip from dumping: Exponential distribution with the average of 1 minute.

 For generating random numbers use LCG method with m=2^20, a=511, C=1, X0=1000

(Due in 2 weeks)

Home assignment 4
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Thank you!




