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a b s t r a c t

In this paper we present a technique for the design of decentralized controllers for mean square stability
of a large scale systemwith cascaded clusters of subsystems. Each subsystem is linear and time-invariant
and both system and measurement are subject to Gaussian noise. For stability analysis of this system we
consider the effects of AdditiveWhite Gaussian Noise (AWGN) channels used for exchanging information
between subsystems.
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1. Introduction

In recent years, the development of Micro-Electro Mechanical
Systems (MEMS) has made it possible to deploy these small sized
embedded devices in distributed parameter systems for efficient
control. Some examples are: smart mechanical structures and
distributed flow control [1]. Eachmicro-electromechanical system
consists of sensors, a data processor, a communication unit, and
an actuator. MEMS collaborate with each other towards a common
goal by exchanging observation and control signals. Due to limited
power supply of MEMS, transmission in systems equipped with
these devices is limited by communication constraints over short
distances. This necessitates the creation of a co-design framework
to integrate the control and communication requirements in
systems controlled by networks of MEMS. The objective of this
paper is to develop such a framework for a large scale systemwith
cascaded clusters of subsystems which is controlled by a network
of MEMS. In this system, subsystems are linear time-invariant
and each subsystem is controlled by a micro-electro mechanical
device attached to it. Subsystems are subject to Gaussian process
noise and Gaussian measurement noise and interconnected via
Additive White Gaussian Noise (AWGN) channels. For this large
scale system we present a decentralized technique for design of
controllers, encoders and decoders for mean square stability and
reliable data reconstruction. These policies are executed byMEMS.

∗ Corresponding author. Tel.: +33 6 58 43 68 36.
E-mail addresses: farhadialireza@yahoo.com (A. Farhadi),

ahmed@site.uottawa.ca (N.U. Ahmed).
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In contrastwith similarworks, in Refs. [2–5], optimal stabilizing
controllers of Linear Quadratic Gaussian (LQG) team decision
problems were presented without considering the effects of
communication constraints. In the presence of limited capacity
finite alphabet channels, stabilizing controllers were also given
in [6–11]. These results are mostly concerned with deterministic
systems (e.g., [6–8,10]). In this paper we generalize the results of
[2–5] by considering the effects of communication imperfections.
We also generalize the results of [6–11] by addressing the stability
problem of stochastic dynamic systems over AWGN channels.

The paper is organized as follows: In Section 2, the problem for-
mulation is given. In Section 3, design techniques for decentralized
controllers, encoders, and decoders are presented. In Section 4,
we compare the rate requirement for stability using the proposed
decentralized technique with the minimum rate requirement for
stability using the centralized technique of [12]. The paper is
concluded in Section 5 with a summary of proposed techniques as
developed here.

2. Problem formulation

Throughout, certain conventions are used: Sequences of
Random Vectors (R.V.’s) are denoted by y(T ) ≡ (y0, y1, . . . , yT )
or Y (T ) ≡ (Y0, Y1, . . . , YT ) for T ∈ N+ ≡ {0, 1, 2, . . .}. A
logarithm of base 2 is denoted by log(·) and the Euclidean norm
with weight R on any finite dimensional space is denoted by ‖ · ‖R.
The space of all matrices A ∈ ℜ

q×o is denoted by M(q × o) and
the transpose of A, where A can be either a matrix or a vector, is
denoted by A′. The identity matrix with dimension M(q × q) is
denoted by Iq, the inverse of a square matrix A ∈ M(q × q) is
denoted by A−1, and diag(·) denotes a block diagonal matrix. The
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Fig. 1. A cascade system.

covariance of a R.V. X , its expected value and its density function
are denoted by Cov(X), E[X], and fX , respectively. The joint density
function of two R.V.’s X and Y , the conditional density function
and the cross covariance function are denoted by fX,Y , fY |X and
Cov(X, Y ), respectively. The Gaussian density function with mean
x̄ and covariance V̄ is denoted by N(x̄, V̄ ). Gaussian R.V. X , which
is described by the density function N(x̄, V̄ ), is denoted by X ∼

N(x̄, V̄ ).
Now, consider the cascade system of Fig. 1. This system consists

of a set of disjoint clusters (of subsystems) Sr , r = 1, 2, . . . , l, in
which no subsystem is contained inmore than one cluster. For this
system letX (r)

t denote the vector of state variables of all subsystems
in cluster Sr at time t . Similarly, let U (r)

t denote the vector of
control signals and W (r)

t denote the vector of process noises. As
shown in Fig. 1, cluster Sr+1 affects the dynamics of cluster Sr via
state variables; while cluster Sr does not affect the dynamics of
cluster Sr+1, and this is true for all r . Cascade systems have been
considered by many authors (e.g., [13–15]). This type of system
is very common in process control, control of servo-mechanical
systems, and assembly lines.

Cluster Sr is described by the following dynamic model

(Sr) :


X (r)
t+1 = A(r)X (r)

t + B(r)U (r)
t + C (r)W (r)

t + D(r+1)X (r+1)
t ,

r = 1, 2, . . . , l,
(1)

where the matrices A(r), B(r) and C (r) are the system matrices of
cluster Sr , and the coupling matrix D(r+1) represents the effect of
the state variables of cluster Sr+1 on the subsystems of cluster
Sr . Note that the R.V.’s X (r)

0 and X (ŕ)
0 (ŕ ≠ r) are statistically

independent, D(l+1)
= 0, and B(r) is full column rank.

Thus, the entire system is described by the following system of
equations:

(S) :

Xt+1 = AXt + BUt + CWt , (2)

where Xt =


X (1)′
t · · · X (l)′

t

′

is the state of the full (large scale)

system, Ut =


U (1)′
t · · · U (l)′

t

′

is the control vector, Wt =
W (1)′

t · · · W (l)′
t

′

is the process noise, and the matrices A, B,
and C are given by the following blocks:

A =


A(1) D(2) 0 0 · · · 0
0 A(2) D(3) 0 · · · 0
...

0 0 0 · · · 0 A(l)

 , (3)

B = diag(B(1), B(2), . . . , B(l)),

C = diag(C (1), C (2), . . . , C (l)).
(4)

Often the coupling between clusters is relatively small. We
refer to this case as the weakly cascaded case which is defined as
follows:

Definition 2.1 (Weakly Cascaded System). The large scale system
described by (2)–(4) is said to be weakly cascaded if for every
cluster Sr given by (1) the largest singular value of the coupling
matrix D(r+1) is much smaller (e.g., at least thirteen times smaller)
than the smallest singular value of the corresponding system
matrix A(r).

The large scale system of Fig. 1 consists ofM subsystems which
are distributed in l clusters: S1, . . . , Sl, as described above. Let
subsystem si be in cluster Sr (si ∈ Sr). Also, let x

(i)
t ∈ ℜ

ni be the
state, u(i)

t ∈ ℜ
di be the control, w(i)

t ∈ ℜ
gi be the process noise,

y(i)
t ∈ ℜ

mi be the observation, and v
(i)
t ∈ ℜ

hi be the measurement
noise of subsystem si. Moreover, let Oi contain all subsystems,
except subsystem si, which are either in cluster Sr or in cluster
Sr+1. Similarly, let Õi be the set of all subsystems, except subsystem
si, which are in cluster Sr only (Õi ⊆ Oi). Subsystem si is linear
time-invariant and both the system and measurement are subject
to Gaussian noise as described below:

(si) :

x(i)
t+1 = Aix

(i)
t + Biu

(i)
t + Ciw

(i)
t +

−
k∈Oi

Dikx
(k)
t +

−
j∈Õi

Eiju
(j)
t

y(i)
t = Fix

(i)
t + Giv

(i)
t , x(i)

0 = ξ
(i)
0 ,

(5)

where x(k)
t ∈ ℜ

nk (k ∈ Oi, k ≠ i) is the state of the kth
subsystem and u(j)

t ∈ ℜ
dj (j ∈ Õi, j ≠ i) is the control signal

of the jth subsystem, which affect the ith subsystem dynamic.
In (5), Ai ∈ M(ni × ni), Bi ∈ M(ni × di), Ci ∈ M(ni ×

gi), Fi ∈ M(mi × ni) and Gi ∈ M(mi × hi) are system matrices
of subsystem si. The matrices Dik ∈ M(ni × nk) and Eij ∈ M(ni ×

dj) are coupling matrices. Furthermore, ξ
(i)
0 ∼ N(x̄(i)

0 , V̄ (i)
0 ), w

(i)
t

i.i.d. ∼ N(0, Σ (i)
w ) and v

(i)
t i.i.d. ∼ N(0, Σ (i)

v ). The sequences
{w(i)(t), v(i)(t), w(b)(t), v(b)(t)}t∈N+

, b(≠i) ∈ {1, 2, . . . ,M}, are
mutually independent. They are also independent of the initial
state ξ

(i)
0 . But the R.V.’s ξ

(i)
0 and ξ

(j)
0 may be statistically dependent

with known cross covariance function Cov(ξ (i)
0 , ξ

(j)
0 ). Note that the

system and coupling matrices, the vector x̄(i)
0 and the matrices

V̄ (i)
0 , Σ (i)

w , Σ (i)
v and Cov(ξ (i)

0 , ξ
(j)
0 ) are fixed and known to all

subsystems of cluster Sr . Also, note that u(i)
t is the control signal

produced by the micro-electro mechanical device responsible for
controlling subsystem si and y(i)

t is the observation made by the
sensors of this device.

Now, consider subsystems si and sj, j (≠i) in cluster Sr .
Subsystem si broadcasts an encoded observation signal to subsys-
tem sj. The communication link between these two subsystems is
modeled by a multi-input, multi-output AWGN channel with the
channel input denoted by T (i)

t and the channel output by R(ji)
t . This

channel is subject to path loss and input power constraint and is
described by

R(ji)
t = h(ji)T (i)

t + ζ
(ji)
t , T (i)

t ≡ E
(ji)
t (y(i)

t ) ∈ ℜ
pi ,

R(ji)
t ∈ ℜ

qi , E[‖T (i)
t ‖

2
] ≤ P (i)

t < ∞,
(6)

where ζ
(ji)
t ∈ ℜ

qi i.i.d. ∼ N(0, Γ (ji)) is the channel noise
(which is independent of all initial states, process noises and
measurement noises), h(ji)

≡ 1/(dji)aji is the channel gain
described by the line of sight distance dji and the path loss factor
aji ∈ {0, 1, 2, . . .}, E

(ji)
t (·) is the encoding function, and P (i)

t is the
channel input power constraint. Throughout, it is assumed that
the parameters describing the channel, i.e., P (i)

t , Γ (ji), dji, aji, and
h(ji)

≠ 0 are known to subsystems si and sj. Also, the channel noises
of different communication links are independent. For simplicity
of presentation, it is also assumed that the control signals are
exchanged without communication constraints. Fig. 2 illustrates
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Fig. 2. Flow of information between subsystems si and sj in cluster Sr at time t .

the flow of information between subsystems si and sj in cluster
Sr . Note that in Fig. 2, ȳ(ji)

t ≡ D
(ji)
t (R(ji)

t ) denote the reconstructed
version of the observation signal y(i)

t at subsystem sj for a suitable
decoding function D

(ji)
t (·) to be constructed later in the following

section. According to Fig. 2, the information available at subsystem
sj at time t is

F
(r,j)
t ≡ σ {U (r+1)(t),U (r)(t), y(j)(t), ȳ(ji)(t), ∀si ∈ Sr (i ≠ j)},

∀sj ∈ Sr , r = 1, . . . , l, (7)

where σ {·} denotes the sigma-algebra generated by the sequences
as indicated above. As defined earlier, sequences of R.V.’s are
denoted by y(t) ≡ (y0, y1, . . . , yt) and Y (t) ≡ (Y0, Y1, . . . , Yt).
Therefore, the information pattern (7) includes the present as
well as past information. The information structure (7) is a non-
classical information pattern in the sense that the action of the
controller of subsystem sj ∈ Sr affects the information structure
of subsystem se ∈ Sr̃ , r̃ ∈ {1, 2, . . . , r − 2}, and, in general, there
is no way for this subsystem to infer the information available at
subsystem sj. Under this information structure, linear controllers
are not generally optimal as shown in [16].

The objective of this paper is to find a control sequence {u(i)
t ; i =

1, 2, . . . ,M, t ∈ N+} that stabilizes system (2) in a mean square
sense in the presence of AWGN channels and the information
pattern (7). That is, supt∈N+

E[‖x(i)
t ‖

2
] < ∞, ∀i ∈ {1, 2, . . . ,M}.

In this paper stabilizing controllers, subject to the above infor-
mation pattern, are obtained from a solution to the optimization
problem associated to the following quadratic payoff functional

J =

l−
r=1

J (r),

J (r) ≡ lim
T→∞

1
T + 1

T−
t=0

E[‖X (r)
t ‖

2
Qr

+ ‖U (r)
t ‖

2
Rr ], r = 1, . . . , l,

(8)

where the weighting matrices Qr = Q ′
r and Rr = R′

r are positive
definite. Later we show that the limit in (8) exists for the solution
that we find in the next section, in which this solution results in
mean square stability.

Optimal controls of linear quadratic Gaussian team decision
problems have been presented in several references. In [3] Ho and
Chu addressed the case of partially nested information pattern
and in [4] Sandell and Athans addressed the case of one step
delayed information structure. Also, in [17,18] Bansal and Basar
addressed the case of non-classical information pattern when the
quadratic cost functional does not include cross product terms
between control variables. In all these references, the optimal

controller is linear. In the presence of AWGN channels, Yuksel and
Tatikonda [19] presented a nonlinear policy (a nonlinear coding
scheme and a certainly equivalent controller) for a distributed
multi-sensor, single control system. As shown in [19] in distributed
multi-sensor systems, for minimizing quadratic payoff functional
over Gaussian channels, linear policy (linear coding and controller)
is not optimal. It was also illustrated that the upper bound on
the cost functional with the proposed nonlinear policy is slightly
smaller than the upper bound with the best linear policy. In large
scale systems controlled byMEMSwhich involve componentswith
limited processing capacity, it is important to find simple policies
(e.g., linear policies) for exchanging information and control.
Therefore, in this paper we use linear policies. Consequently, in
view of the above discussion, here controllers are not necessarily
optimal.

3. Control through communication channels

In this section we present decentralized controllers, encoders
and decoders for mean square stability and reliable communica-
tion when the communication links are AWGN channels.

Throughout this section it is assumed that subsystems si and
sj in cluster Sr have overlapped communication range so that they
can exchange information. Each subsystem in cluster Sr broadcasts
encoded observation signal to other subsystems. Hence, there is a
possibility of collision in the broadcast information. In large scale
systems controlled by MEMS, which involve components with
limited power supply, it is known that the Time Division Multiple
Access (TDMA) scheme [20] is more energy efficient than other
protocols for exchanging information without collision. In this
paper it is assumed that there exists a suitable TDMA scheme [20]
under which information is exchanged.

For simplicity of presentation, without loss of generality,
from now on we assume that the AWGN channel (6) is single-
input, single-output, and the observation signals y(i)

t ’s are scalars.
Furthermore, system (2) consists of three clusters (l = 3), in
which each cluster includes two subsystems (the general case can
be treated similarly). Cluster S1 includes subsystems s1, s2, cluster
S2 includes subsystems s3, s4, and cluster S3 includes subsystems
s5, s6. It is assumed that subsystem s3 is the closest subsystem of
cluster S2 to the subsystems of cluster S1. Similarly, subsystem
s5 is the closest subsystem of cluster S3 to the subsystems of
cluster S2. Note that there is no role played by the order in which
subsystems are considered in the process of obtaining stabilizing
controllers which is summarized as follows: (1) For cluster Sr we
choose the control vector U (r)

t such that the coupling effects from
other clusters are compensated. Then, (2) stabilizing controllers
for cluster Sr are obtained (independently of other clusters) from
a suboptimal control solution for the payoff functional J (r). In
obtaining this solution we use linear encoders and decoders.
Stabilizing controllers, encoders, and decoders are given next.

3.1. Encoders, decoders, and controllers

In this sectionwepresent amethodology for design of encoders,
decoders and controllers. In view of the coupling matrix (3), it is
convenient to start from cluster Sl = S3, which is not affected by
other clusters, and then proceed to S2, and finally S1.

Design methodology for cluster S3: Consider cluster S3, as
described by (1), which is reproduced here for convenience of
reference.

X (3)
t+1 = A(3)X (3)

t + B(3)U (3)
t + C (3)W (3)

t . (9)

Recall that for each t ≥ 0 the information pattern of subsystem
si (i ∈ {5, 6}) of cluster S3 is F

(3,i)
t ≡ σ {U (3)(t), y(i)(t), ȳ(ij)(t)}
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where ȳ(ij)
t is the reconstructed version of the observation signal

y(j)
t , j (≠i) ∈ {6, 5} at subsystem si. For this cluster we use the

following encoders and decoders:
Encoders of cluster S3: Let β

(ji)
t ≥ 0 denote the encoding gain.

Subsystem si produces the mean square state estimate x̂(i)
t ≡

E[x(i)
t |F

(3,i)
t−1 ] using available information. This estimate is used to

produce the innovation process k(i)
t ≡ y(i)

t − Fix̂
(i)
t which is used in

the encoding function as described below:

E
(ji)
t (y(i)

t ) ≡ β
(ji)
t k(i)

t . (10)

The message T (i)
t = E

(ji)
t (y(i)

t ) is then broadcast to other subsystem
of cluster S3.

Decoders of cluster S3: Subsystem sj receivesR
(ji)
t = h(ji)T (i)

t +ζ
(ji)
t

through the AWGN channel (6). Let γ
(ji)
t ≥ 0 denote the decoding

gain and k̄(ji)
t ≡ (h(ji))−1γ

(ji)
t R(ji)

t be the reconstructed version of the
innovation sequence k(i)

t at subsystem sj. The decoding function for
subsystem sj is then given by

ȳ(ji)
t = D

(ji)
t (R(ji)

t ) ≡ k̄(ji)
t + Fix̂

(i)
t . (11)

Thus, the decoder output is the reconstructed version of the
observation signal y(i)

t which is denoted by ȳ(ji)
t . Note that the

decoding function (11) involves the state estimate x̂(i)
t . As justified

later, this estimate is made available at subsystem sj via the
control signal u(i)

t . Throughout, it is assumed that the encoding and
decoding gains are known to the subsystems of cluster S3.

Choice of encoding and decoding gains: In this section we choose
the encoding gain β

(ji)
t and the decoding gain γ

(ji)
t so that we have

reliable communication as defined below:

Definition 3.1 (Reliable Communication). Let

ρji ≡
1

T + 1

T−
t=0

E[‖y(i)
t − ȳ(ji)

t ‖
2
]

=
1

T + 1

T−
t=0

E[‖k(i)
t − k̄(ji)

t ‖
2
],

(k(i)
t = y(i)

t − FiE[x(i)
t |F

(r,i)
t−1 ]) (12)

denote the distortion measure describing the mismatch between
the message from subsystem si ∈ Sr and its reconstructed version
at subsystem sj ∈ Sr . For any given distortion level δ(ji) > 0,
communication from subsystem si to subsystem sj is said to be
reliable if ρji ≤ δ(ji).

Here, we determine the encoding and decoding gains β
(56)
t and

γ
(56)
t (respectively) for reliable transmission from subsystem s6 to

subsystem s5. Encoding and decoding gains for other transmissions
are obtained similarly.

Consider encoder (10) and decoder (11). It is easy to verify
that the innovation sequence k(6)

t given in (10) is orthogonal and
Gaussian with density function N(0, Ψ

(6)
t ), where the variance

is given by Ψ
(6)
t ≡ F6Θ

(6)
t F ′

6 + G6Σ
(6)
v G′

6. The matrix Θ
(6)
t ≡

Cov(x(6)
t −x̂(6)

t |F
(3,6)
t−1 ) ∈ M(n6×n6) is the second diagonal element

of the block matrix Ξ
(6)
t ≡ Cov(X (3)

t − E[X (3)
t |F

(3,6)
t−1 ]|F

(3,6)
t−1 ) =

Θ̂
(6)
t Θ̃

(6)
t

Θ̄
(6)
t Θ

(6)
t


∈ M


(n5 + n6) × (n5 + n6)


. As shown in the next

section Ξ
(6)
t is the solution of a filtered Riccati equation and is

finite. The finiteness is justified later.
As described in (11) the reconstructed version of the sequence

k(6)(T ) at subsystem s5 is denoted by k̄(56)(T ) ≡ {k̄(56)
t , t ∈ [0, T ]}.

Let I(k(6)(T ); k̄(56)(T )) denote the mutual information between
sequences k(6)(T ) and k̄(56)(T ) [21]. From the standard definition
of the rate distortion [22], the associated rate distortion function
subject to the distortionmeasure ρ56 and distortion level δ(56) > 0
is given by

Rk,k̄(T , δ(56)) ≡ inf
ρ56≤δ(56)

I(k(6)(T ); k̄(56)(T )), (13)

Rk,k̄(δ(56)) ≡ lim
T→∞

1
T + 1

Rk,k̄(T , δ(56)).

From [21, Theorem 13.3.3] it follows that when the distortion level
specified is less than the infimum of the variance of the innovation
process Ψ

(6)
t , that is inf{Ψ (6)

t , t ∈ N+}, we have Rk,k̄(T , δ(56)) =

1
2

∑T
t=0 log

Ψ
(6)
t

δ(56) and hence

Rk,k̄(δ(56)) ≡ lim
T→∞

1
T + 1

Rk,k̄(T , δ(56)) =
1
2
log

Ψ
(6)
∞

δ(56)
(14)

provided the limit, Ψ (6)
∞ = limt→∞ Ψ

(6)
t , exists. The existence is

justified later. Following [22, Theorem 4.3.2] one can justify that
the conditional density that minimizes the mutual information
(13) is given by f ∗

k̄(56)(T )|k(6)(T )
=
∏T

t=0 f
∗

k̄(56)t |k(6)t
where f ∗

k̄(56)t |k(6)t
=

N(η
(56)
t k(6)

t , η
(56)
t δ(56)), η

(56)
t ≡ 1 −

δ(56)

Ψ
(6)
t

. On the other hand, the

conditional density of the reconstructed message k̄(56)(T ), given
the transmitted message k(6)(T ), is given by fk̄(56)(T )|k(6)(T ) =∏T

t=0 fk̄(56)t |k(6)t
, where it follows from (10) and (11) that the

conditional density fk̄(56)t |k(6)t
(of the reconstructed message given

themessage) is given by fk̄(56)t |k(6)t
= N(β

(56)
t γ

(56)
t k(6)

t , (γ
(56)
t /h(56))2

Γ (56)). For reliable communication, we set f ∗

k̄(56)t |k(6)t
= fk̄(56)t |k(6)t

and

subsequently determine the encoding anddecoding gainsβ
(56)
t and

γ
(56)
t , as follows:

β
(56)
t =

1
|h(56)|


Γ (56)η

(56)
t

δ(56)
, γ

(56)
t = |h(56)

|


η

(56)
t δ(56)

Γ (56)
. (15)

In the following proposition we show that the encoding
and decoding gains, as presented above, guarantee reliable
communication, as specified in Definition 3.1.

Proposition 3.2. Consider encoder (10) for subsystem s6 and
decoder (11) for subsystem s5. (i) The encoding and decoding
gains (15), guarantee a reliable communication of the form ρ56 =

δ(56) by transmission with the capacity C(56)
= Rk,k̄(δ(56)) =

1
2 log

Ψ
(6)
∞

δ(56) < ∞ (bits/time step). (ii) By transmission with the capacity

C(56)
=

1
2 log Ψ

(6)
∞

δ̂(56) ≥
1
2 log Ψ

(6)
∞

δ(56) (where δ̂(56)
≤ δ(56)), which

is obtained by replacing δ(56) with δ̂(56) in (15), we have a reliable
communication of the form ρ56 = δ̂(56)

≤ δ(56).

Proof. (i) By substituting the encoding and decoding gains β
(56)
t

and γ
(56)
t , respectively, as given by (15), in the distortion measure

ρ56 as deduced from (12), it follows that, for the specified
distortion level δ(56), we have ρ56 = δ(56). Thus, according to
our Definition 3.1, we have reliable communication. Now we
must show that we can achieve this reliable communication by

transmission with the capacity C(56)
= Rk,k̄(δ(56)) =

1
2 log Ψ

(6)
∞

δ(56) <

∞. Towards this goal, let us choose the channel input power
equal to the power constraint P (6)

t itself, as defined by P (6)
t =

E[β
(56)
t k(6)

t ]
2 < ∞. By definition the channel capacity C(56) is
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given by C(56)
≡ limT→∞

1
2(T+1)

∑T
t=0 E


log


1 +

(h(56))2P(6)
t

Γ (56)


.

Substituting the values of P (6)
t from above and β

(56)
t from (15) and

taking the limit we obtain C(56)
=

1
2 log Ψ

(6)
∞

δ(56) . As shown in (14),
the rate distortion function of the innovation process is given by

Rk,k̄(δ(56)) =
1
2 log Ψ

(6)
∞

δ(56) . Therefore, we have C(56)
= Rk,k̄(δ(56)) =

1
2 log Ψ

(6)
∞

δ(56) . (ii) It follows similarly. �

In general, for any pair of systems {si, sj} in cluster Sr , following
the same procedure, the encoding and decoding gains for reliable

communication are given by: β
(ji)
t =

1
|h(ji)|


Γ (ji)η

(ji)
t

δ(ji) , γ
(ji)
t =

|h(ji)
|


η
(ji)
t δ(ji)

Γ (ji) , where η
(ji)
t ≡ 1 −

δ(ji)

Ψ
(i)
t

, Ψ
(i)
t ≡ Cov(k(i)

t ), δ(ji) <

mint∈N+
Ψ

(i)
t . Note that by finding solutions to the algebraic

Riccati equations associated to the filtered Riccati equations, the
channel capacities C(ji)’s are related to the unstable eigenvalues
of the system. For the single sensor, single controller system, this
relationship was shown in [12].

Control laws for cluster S3: Next, we find the control signals
u(5)
t and u(6)

t for subsystems s5 and s6, respectively, by solving
two separate centralized problems. Here, we first present the
design principle for the control signal u(5)

t . The control signal
u(6)
t for subsystem s6 is obtained similarly. Recall that for each

t ≥ 0, the information available at subsystem s5 is F
(3,5)
t ≡

σ {U (3)(t), y(5)(t), ȳ(56)(t)}. Therefore, the observation process

available at subsystem s5 is Y (5)
t ≡


y(5)t
ȳ(56)t


. This is used along

with (11), (15) and (9), as displayed by the dynamic model (16),
to construct the control signal u(5)

t which is one of the components
of the control U (3)

t .
X (3)
t+1 = A(3)X (3)

t + B(3)U (3)
t + C (3)W (3)

t

Y (5)
t = F (5)

t X (3)
t + G(5)

t V (5)
t + H(5)

t + Φ
(5)
t ,

(16)

F (5)
t = diag(F5, β

(56)
t γ

(56)
t F6),

G(5)
t = diag(G5, β

(56)
t γ

(56)
t G6), V (5)

t =


v

(5)
t

v
(6)
t


,

H(5)
t =


0

ζ̄
(56)
t


(ζ̄

(56)
t = (h(56))−1γ

(56)
t ζ

(56)
t ),

Φ
(5)
t =


0

(1 − β
(56)
t γ

(56)
t )F6x̂

(6)
t


(x̂(6)

t ≡ E[x(6)
t |F

(3,6)
t−1 ]).

The dynamic model (16) has the following equivalent representa-
tion:
X (3)
t+1 = A(3)X (3)

t + B(3)U (3)
t + C (3)W (3)

t

Ỹ (5)
t = F (5)

t X (3)
t + G(5)

t V (5)
t + H(5)

t ,
(17)

where Ỹ (5)
t ≡ Y (5)

t − Φ
(5)
t . Note that the vector Φ

(5)
t is known

to subsystem s5. Therefore, this subsystem can treat the vector
Ỹ (5)
t = Y (5)

t − Φ
(5)
t as the observation signal. Also, note that in

the dynamic model (17), the noise terms W (3)
t , V (5)

t , and H(5)
t are

independent and uncorrelated. The noise term W (3)
t =


w

(5)
t

w
(6)
t


includes process noises and the noise term V (5)

t =


v
(5)
t

v
(6)
t


includes

the measurement noises of subsystems s5 and s6. Therefore,
following the assumptions made in Section 2, W (3)

t and V (5)
t are

independent and uncorrelated. Moreover, the noise term H(5)
t

represents the effect of channel noise on the dynamic model (17).
Again from the assumptionsmade in Section 2,H(5)

t is independent
and uncorrelated of the noise terms W (3)

t and V (5)
t . Now, we use

the dynamic model (17) to construct the control signal u(5)
t . For

the dynamic model (17) we follow the LQG methodology [23]
subject to linear policies and the payoff functional J (3); andwe find
the control vector U (3)

t , in which the control signal u(5)
t is one of

its components. The solution involves two Riccati equations: the
control Riccati equation and filtered Riccati equation. The control
Riccati equation is given by

Λ(3)
= A(3)′Λ(3)A(3)

− A(3)′Λ(3)B(3)(B(3)′Λ(3)B(3)

+ R3)
−1B(3)′Λ(3)A(3)

+ Q3. (18)

Under the following two assumptions:

(a1) The pair (A(3), B(3)) is stabilizable

(a2) The pair

Q

1
2
3 , A(3)


is detectable, the control Riccati equation

(18) has a unique positive semi-definite solution Λ(3). This
solution is used for constructing the controller gain 1(3)

which is given by:

1(3)
= (R3 + B(3)′Λ(3)B(3))−1B(3)′Λ(3)A(3). (19)

A stabilizing controller U (3)
t is then given by

U (3)
t =


u(5)
t

u(56)
t


= −1(3)X̂ (3,5)

t , (20)

where X̂ (3,5)
t ≡ E[X (3)

t |F
(3,5)
t−1 ] is the mean square state esti-

mate of the state variable X (3)
t at subsystem s5. This estimate

is given by the solution of the Kalman filter equations which
consist of the estimator equation and the error covariance
equation as presented below: The estimator equation is given

by X̂ (3,5)
t+1 = (A(3)

− L(5)
t F (5)

t )X̂ (3,5)
t + B(3)


u(5)
t

u(6)
t


+ L(5)

t Ỹ (5)
t ,

X̂ (3,5)
0 =


x̄(5)0
x̄(6)0


, where the filter gain L(5)

t is given by L(5)
t =

A(3)Ξ
(5)
t F (5)′

t


F (5)
t Ξ

(5)
t .F (5)′

t +G(5)
t Σ

(5)
V G(5)′

t +Υ
(5)
t

−1
, Σ

(5)
V ≡

Cov(V (5)
t ), Υ

(5)
t ≡ Cov(H(5)

t ). This filter involves the er-
ror covariance Ξ

(5)
t ≡ Cov(X (3)

t − X̂ (3,5)
t |F

(3,5)
t−1 ) which

satisfies the following (filter) Riccati equation Ξ
(5)
t+1 =

A(3)Ξ
(5)
t A(3)′

− A(3)Ξ
(5)
t F (5)′

t


F (5)
t Ξ

(5)
t F (5)′

t + F (5)
t Σ

(5)
V F (5)′

t +

Υ
(5)
t

−1
F (5)
t Ξ

(5)
t A(3)′

+ C (3)Σ
(3)
W C (3)′ , Σ

(3)
W ≡ Cov(W (3)

t ), Ξ
(5)
0

= Cov


ξ
(5)
0

ξ
(6)
0


.

Since we are interested in the stationary control law, we must
introduce assumptions that guarantee the existence of the limit,
limt→∞ Ξ

(5)
t = Ξ

(5)
∞ . The following conditions are sufficient for

the finiteness ofΞ (5)
t and the existence of the limit, limt→∞ Ξ

(5)
t =

Ξ
(5)
∞ [23, Theorem 6.45].

(a3) The pair (F (5)
t , A(3)) is uniformly completely reconstructible

[23, Definition 1.22].
(a4) The pair (A(3), C (3)) is controllable.

For subsystem s6 againweuse the dynamicmodel (9). However,

the observation process available at subsystem s6 is Y
(6)
t ≡


ȳ(65)t
y(6)t


.
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Therefore, we use the following dynamic model to construct the
control signal u(6)

t :
X (3)
t+1 = A(3)X (3)

t + B(3)U (3)
t + C (3)W (3)

t

Ỹ (6)
t = F (6)

t X (3)
t + G(6)

t V (6)
t + H(6)

t ,
(21)

where F (6)
t = diag(β(65)

t γ
(65)
t F5, F6),G

(6)
t = diag(β(65)

t γ
(65)
t G5,G6),

V (6)
t =


v
(5)
t

v
(6)
t


,H(6)

t =


ζ̄

(65)
t
0


, ζ̄

(65)
t = (h(65))−1γ

(65)
t ζ

(65)
t and

Ỹ (6)
t ≡ Y (6)

t − Φ
(6)
t ≡


ȳ(65)t
y(6)t


−


(1 − β

(65)
t γ

(65)
t )F5 x̂

(5)
t

0


, x̂(5)

t ≡

E[x(5)
t |F

(3,5)
t−1 ].

For this system again we use the same reconstructability and
controllability assumptions except that here assumption (a3) is
replaced by assumption (á3):

(á3) The pair (F (6)
t , A(3)) is uniformly completely reconstructible.

Then, for the payoff functional J (3) it follows from the standard
LQG results [23] that a stabilizing controller U (3)

t is given by

U (3)
t =


u(65)
t

u(6)
t


= −1(3)X̂ (3,6)

t , (22)

where the controller gain 1(3) is the same as in (19) and
X̂ (3,6)
t ≡ E[X (3)

t |F
(3,6)
t−1 ], is the mean square estimate of the

state variable X (3)
t at subsystem s6 given the information

F
(3,6)
t−1 ≡ σ {U (3)(t − 1), y(6)(t − 1), ȳ(65)(t − 1)}. Following

the same procedure as in the case of subsystem s5, the
error covariance, the filter gain and finally control, etc. for
subsystem s6 are determined. The modifications required are
as follows: F (5)

t → F (6)
t , Ỹ (5)

t → Ỹ (6)
t , L(5)

t → L(6)
t ,G(5)

t →

G(6)
t , Ξ (5)

t → Ξ
(6)
t , Υ

(5)
t → Υ

(6)
t ≡ Cov(H(6)

t ) and Σ
(5)
V →

Σ
(6)
V ≡ Cov(V (6)

t ). Note that the error covariance matrix
Ξ

(6)
t is the solution of the filtered Riccati equation. Under

assumptions (á3) and (a4) the limit, limt→∞ Ξ
(6)
t ≡ Ξ

(6)
∞ ,

exists.

In order to extract the control signals u(5)
t and u(6)

t from (20)
and (22) we can partition the control matrix 1(3) as follows:
1(3)

=


15
16


where the matrix 15 corresponds to subsystem s5

and the matrix 16 corresponds to subsystem s6. Therefore, u
(5)
t =

−15X̂
(3,5)
t and u(6)

t = −16X̂
(3,6)
t ; and hence

U (3)
t =


u(5)
t

u(6)
t


=


−15X̂

(3,5)
t

−16X̂
(3,6)
t


. (23)

Justification of decoding function: To justify the construction
of the decoding function as given by (11), here we show how
the state estimates are made available at subsystems s5 and s6.
At each t ≥ 0, subsystem s5 knows the control signal u(6)

t =

−16X̂
(3,6)
t . Therefore, under the assumption that thematrix16 has

full column rank, subsystem s5 uses this information to compute
X̂ (3,6)
t = −(1′

616)
−11′

6u
(6)
t . This vector has the representation

X̂ (3,6)
t ≡


x̂(65)t
x̂(6)t


where x̂(65)

t ∈ ℜ
n5 denotes the state estimate of

subsystem s5 at subsystem s6; and x̂(6)
t ∈ ℜ

n6 is the state estimate
of subsystem s6 itself. Therefore, x̂(6)

t is known to subsystem s5.
Similarly, one can justify that the state estimate x̂(5)

t is known at
subsystem s6.

Remark 3.3. From (15) it follows that β
(56)
t γ

(56)
t = η

(56)
t = 1 −

δ(56)

Ψ
(6)
t

and β
(65)
t γ

(65)
t = η

(65)
t = 1 −

δ(65)

Ψ
(5)
t

. Therefore, when the

capacities of communication channels are infinity (i.e., δ(56)
≈ 0

and δ(65)
≈ 0), β

(56)
t γ

(56)
t = β

(65)
t γ

(65)
t = 1 and γ

(56)
t =

γ
(65)
t = 0. Consequently, from (10) and (11) it follows that

ȳ(56)
t = y(6)

t , ȳ(65)
t = y(5)

t and the dynamic models (17) and
(21) are reduced to two identical partially observed time invariant
Gaussian systems. As a result, two control vectors (20) and (22)
are identical and are the optimal controller for systems (17) and
(21) with δ(56)

≈ 0 and δ(65)
≈ 0. Consequently, for this case, the

controller, as specified by (23), is the optimal controller. Note that
the cost functional J (3) is a continuous function of the distortion
levels δ(56) and δ(65). Therefore, when the communication channels
are of high capacities (i.e., the distortion levels are not zero; but
they are small) wewould expect that the controller, as specified by
(23), to be close to the optimal controller. That is, in the presence
of high capacity communication constraints, this controller is only
a suboptimal solution for the payoff functional J (3).

Design methodology for cluster S2: Now, consider cluster S2, as
described by (1), which is reproduced here for convenience of
reference.

X (2)
t+1 = A(2)X (2)

t + B(2)U (2)
t + C (2)W (2)

t + D(3)X (3)
t . (24)

For each t ≥ 0, the information available at subsystem si (i ∈

{3, 4}) of cluster S2 is F
(2,i)
t = σ {U (3)(t),U (2)(t), y(i)(t), ȳ(ij)(t)},

j(≠i) ∈ {4, 3}. Therefore, subsystem si can use the control signal
u(5)
t = −15X̂

(3,5)
t to calculate X̂ (3,5)

t = −(1′

515)
−11′

5u
(5)
t . Unlike

cluster S3, cluster S2 is subject to interaction coming from cluster
S3. Therefore, the controllers of this cluster first compensate the
interaction coming from cluster S3 by using the following control
U (2)
t :

U (2)
t = Ũ (2)

t − B(2)′(B(2)B(2)′)−1(D(3)X̂ (3,5)
t ), (25)

where Ũ (2)
t ≡


ũ(3)
t

ũ(4)
t


and the remaining term compensates the

effect of interacting cluster S3.
By substituting the control signal (25) in the dynamic model

(24), one obtains the compensated dynamics of cluster S2 as
follows:

X (2)
t+1 = A(2)X (2)

t + B(2)Ũ (2)
t + C (2)W (2)

t + D(3)E(5)
t , (26)

where E(5)
t ≡ X (3)

t − X̂ (3,5)
t is the estimation error of the state

variable X (3)
t at subsystem s5. It is an orthogonal Gaussian sequence

with distribution E(5)
t ∼ N(0, Ξ

(5)
t ). Note that the estimation

error E(5)
t is independent of the process noiseW (2)

t . For this cluster
we use similar encoding and decoding techniques, as used for
cluster S3. Controllers ũ(3)

t and ũ(4)
t are also obtained following a

similar procedure by the use of the LQG methodology [23]; except
that here we use the compensated dynamic (26) and the payoff
functional J̃ (2), which is the cost functional J (2) with the control
vector U (2)

t replaced by Ũ (2)
t . Controllers ũ(3)

t and ũ(4)
t have similar

forms as the controllers u(5)
t and u(6)

t . That is,

Ũ (2)
t =


ũ(3)
t

ũ(4)
t


=


−13X̂

(2,3)
t

−14X̂
(2,4)
t


, (27)

where 13 and 14 are the controller gains and X̂ (2,3)
t ≡ E[X (2)

t |

F
(2,3)
t−1 ] and X̂ (2,4)

t ≡ E[X (2)
t |F

(2,4)
t−1 ] are the mean square state

estimates of the state variable X (2)
t at subsystems s3 and s4,

respectively.
Designmethodology for cluster S1: For clusterS1 wealso use sim-

ilar encoding and decoding techniques. This cluster includes sub-
system si, i ∈ {1, 2}. The information pattern of subsystem si for
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each t ≥ 0 is F
(1,i)
t = σ {U (2)(t), Ũ (2)(t),U (1)(t), y(i)(t), ȳ(ij)(t)}

(j(≠i) ∈ {2, 1}). Controllers for this cluster are obtained following
a similar procedure, as described above, by use of the cost func-
tional J̃ (1), which is the payoff functional J (1) with U (1)

t replaced by
Ũ (1)
t (=U (1)

t + B(1)′(B(1)B(1)′)−1(D(2)X̂ (2,3)
t )). The controllers of this

cluster are given by:

U (1)
t =


u(1)
t

u(2)
t


= Ũ (1)

t − B(1)′(B(1)B(1)′)−1(D(2)X̂ (2,3)
t ),

Ũ (1)
t =


ũ(1)
t

ũ(2)
t


=


−11X̂

(1,1)
t

−12X̂
(1,2)
t


, (28)

where 11 and 12 are the controller gains and X̂ (1,1)
t ≡

E[X (1)
t |F

(1,1)
t−1 ] and X̂ (1,2)

t ≡ E[X (1)
t |F

(1,2)
t−1 ] are the mean square

state estimates of the state variable X (1)
t at subsystems s1 and s2,

respectively.
When the capacities of communication channels are infinity

and the coupling matrices D(2) and D(1) are equal to zero, the
controllers as specified by (23), (25), (27) and (28) are the optimal
solution of the cost functional (8) subject to the dynamic model
(2)–(4) with three decoupled clusters. This implies that when this
system is weakly cascaded and communication channels are of
high capacities, we would expect that the controls, as specified
above, to be close to the optimal controller.

Now, we are prepared to consider the main objective of this
paper which is the question of stability of the large scale system.

3.2. Stability analysis

It is known that a finite solution to quadratic cost functional
with positive definite weighting matrices results in mean square
stability of Gaussian systems. Hence, the proposed linear policy,
which is a suboptimal solution for quadratic payoff functional,
results inmean square stability. In this sectionwe show this result.
This is done by proving themean square stability of each of clusters
S3, S2 and S1 in that order and then justifying that this implies the
stability of the whole system.

Proposition 3.4 (Stability of Cluster S3). Consider cluster S3
with all the assumptions following its description. Further, suppose
assumptions (a1)–(a4) and (á3) hold. Then, cluster S3 with the
controls as specified by (23) is mean square stable.

Proof. Denote the state estimation error at subsystem s6 by E(6)
t ≡

X (3)
t − X̂ (3,6)

t and the mismatch of the state estimates of cluster S3

by E(5,6)
t ≡ X̂ (3,5)

t − X̂ (3,6)
t (as computed at subsystems s5 and s6). In

order to deduce stability, we introduce an augmented systemwith

corresponding state denoted by Z (3)
t ≡


X(3)
t

E(6)
t

E(5,6)
t


. This is given by

Z (3)
t+1 = S(3)

t Z (3)
t + R(3)

t , (29)

where

S(3)
t =

A(3)
− B(3)1(3) B(3)1(3)

−B(3,5)15

0 A(3)
− L(6)

t F (6)
t 0

0 L(5)
t F (5)

t − L(6)
t F (6)

t A(3)
− L(5)

t F (5)
t

 ,

and

R(3)
t =

 C (3)W (3)
t

C (3)W (3)
t − L(6)

t G(6)
t V (6)

t − L(6)
t H(6)

t

(L(5)
t G(5)

t − L(6)
t G(6)

t )V (6)
t + L(5)

t H(5)
t − L(6)

t H(6)
t

 .

All the entries of the matrices S(3)
t and R(3)

t are described in
Sections 2 and 3.1 except the matrix B(3,5) which appears in the
1st row and the 3rd column of the matrix S(3)

t . This term is part
of the control matrix B(3) of the dynamic model (9) and is given
by B(3)

=

B(3,5) B(3,6)


where B(3,5) corresponds to the control

signal u(5)
t and B(3,6) corresponds to the control signal u(6)

t , giving
B(3)U (3)

t = B(3,5)u(5)
t + B(3,6)u(6)

t . It is evident that the stability of
the augmented system (29) is equivalent to the stability of cluster
S3. Hence, it suffices to show that the dynamic model described by
(29) is stable in themean square sense. From the reconstructability
and controllability assumptions, (a3)–(á3) and (a4), respectively,
we have, limt→∞ S(3)

t ≡ S(3), where in the matrix S(3) we have
L(5)

≡ limt→∞ L(5)
t , L(6)

≡ limt→∞ L(6)
t , F (5)

≡ limt→∞ F (5)
t and

F (6)
≡ limt→∞ F (6)

t . It is easy to verify that the stability of the
matrix S(3) is equivalent to the stability of its diagonal elements.
From assumption (a1) it follows that the matrix A(3)

− B(3)1(3) is
stable. Similarly from assumptions (a3) and (á3) it follows that the
matrices A(3)

− L(5)F (5) and A(3)
− L(6)F (6) are stable. Therefore, the

matrix S(3) is stable. This implies that, for sufficiently large enough
t , the systemmatrix S(3)

t is stable. On the other hand, for each t ≥ 0,
the random vector R(3)

t has a finite second moment. Hence, the
dynamic model (29) is stable in mean square sense. �

Stability of clusters S2 and S1: The stability of the remaining
clusters S2 and S1 is established using a similar procedure. For
cluster S2, again let

Z (2)
t ≡

 X (2)
t

E(4)
t

E(3,4)
t

 , E(4)
t ≡ X (2)

t − X̂ (2,4)
t ,

E(3,4)
t ≡ X̂ (2,3)

t − X̂ (2,4)
t .

Similarly for cluster S1 let

Z (1)
t ≡

 X (1)
t

E(2)
t

E(1,2)
t

 , E(2)
t ≡ X (1)

t − X̂ (1,2)
t ,

E(1,2)
t ≡ X̂ (1,1)

t − X̂ (1,2)
t .

Then, for these two clusters we have Z (2)
t+1 = S(2)

t Z (2)
t + R(2)

t , and
Z (1)
t+1 = S(1)

t Z (1)
t + R(1)

t , where under similar controllability and
reconstructability assumptions one can show that the matrices
S(2)
t and S(1)

t are stable for sufficiently large enough t . Therefore, it
follows from similar arguments that these two clusters are stable.

Stability of the large scale system: Now,we are ready to prove the
stability of the large scale system.

Theorem 3.5. Consider the large scale system described by (2)–(4)
consisting of three clusters S1, S2 and S3, as described earlier. Suppose
that the controllability and reconstructability assumptions hold. Then
the large scale systemwith controls as specified by (23), (25), (27) and
(28) is stable in the mean square sense.

Proof. When these controllers are used the entire (large scale)
system appears as follows:Z (1)

t+1

Z (2)
t+1

Z (3)
t+1

 = St

Z (1)
t

Z (2)
t

Z (3)
t

+ Rt , (30)

where

St = diag(S(1)
t , S(2)

t , S(3)
t ), Rt =

R(1)
t

R(2)
t

R(3)
t

 .
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As shown above, for sufficiently large enough t , the matrices
S(1)
t , S(2)

t , and S(3)
t are stable; and hence the diagonal matrix St is

stable. On the other hand, for each t ≥ 0, the random vector Rt has
finite second moment. Hence, the dynamic model (30) is stable in
mean square sense. �

When the controls, as specified in Theorem 3.5, are used, from
the reconstructability and controllability assumptions (a1)–(a4)
and (á3) it follows that the limit, limt→∞ E[‖Z (r)

t ‖
2
H ], (r =

1, 2, 3), exists for any positive semi-definite matrix H . For H =

diag(Qr , 0, 0), this implies that the limit, limt→∞ E[‖X (r)
t ‖

2
Qr

],
exists. The above conditions also imply that for the stabilizing
controllers specified in Theorem 3.5, the limit, limt→∞ E[‖U (r)

t ‖
2
Rr ],

exists. Therefore, the limit, limt→∞ E[‖X (r)
t ‖

2
Qr

+ ‖U (r)
t ‖

2
Rr ], exists

and hence the limit in (8) exists.
Now, combining the results of Theorem 3.5 for mean square

stability and the results of Section 3.1 (e.g., Proposition 3.2),
which are concerned with the rate requirements for reliable
communication, we have the following sufficient condition on the
capacity of channels for mean square stability.

Theorem 3.6. Consider the large scale system described by (2)–(4)
consisting of three clusters S1, S2 and S3, as described earlier, over
AWGN channels (6), with all the assumptions have been made so far
for stability and reliable communication. Then, a sufficient condition
on the capacity of channels for mean square stability is as follows:

l−
r=1

−
i,j(≠i)∈Sr

C(ji)
≥ Cd ≡

l−
r=1

−
i,j(≠i)∈Sr

1
2
log

Ψ
(i)
∞

δ(ji)
, (31)

where C(ji) is the capacity of the channel used for transmission from
subsystem i to subsystem j, δ(ji) is the distortion level and Ψ

(i)
∞ =

limt→∞ Ψ
(i)
t .

Proof. From condition (31) it follows that it is possible to choose

the capacity C(ji) such that C(ji)
≥

1
2 log Ψ

(i)
∞

δ(ji) , where i, j(≠i) ∈

Sr and r ∈ {1, 2, . . . , l}. This condition guarantees a reliable
communication of the form ρji = δ̂(ji)

≤ δ(ji) where δ̂(ji) is such

that C(ji)
=

1
2 log Ψ

(i)
∞

δ̂(ji) . Subsequently, by employing the controls

as specified by (23), (25), (27) and (28), with δ(ji) replaced by δ̂(ji),
mean square stability is obtained. �

4. Comparison

In this section, we compare the rate requirement for stability
using the decentralized technique of Section 3.1with theminimum
rate requirement for stability using the centralized technique
of [12]. For simplicity of comparison, we consider the large scale
systemof Section 3with only two clustersS3 andS2 (S1 is omitted).
That is, we consider the following system:
Xt+1 = AXt + BUt + CWt ,

y(i)
t = Fix

(i)
t + Giv

(i)
t , i = 3, 4, 5, 6,

(32)

where Xt =

x(3)t
x(4)t
x(5)t
x(6)t

 , X0 ∼ N(X̄, V̄ ), Ut =

u(3)
t

u(4)
t

u(5)
t

u(6)
t

 , Wt =

w
(3)
t

w
(4)
t

w
(5)
t

w
(6)
t

, A =


A(2) D(3)

0 A(3)


, B =


B(2) 0
0 B(3)


, C =


C(2) 0
0 C(3)


,

A(2)
=


A3 D34
D43 A4


, D(3)

=


D35 D36
D45 D46


, A(3)

=


A5 D56
D65 A6


, B(2)

=


B3 E34
E43 B4


, B(3)

=


B5 E56
E65 B6


, C (2)

=


C3 0
0 C4


, C (3)

=
C5 0
0 C6


, y(i)

t ∈ ℜ, w
(i)
t i.i.d. ∼ N(0, Σ (i)

w ) and v
(i)
t i.i.d. ∼

N(0, Σ (i)
v ). Also, for simplicity, without loss of generality, we

assume that the channel gains are equal to one, that is, h(34)
=

h(43)
= h(56)

= h(65)
= 1.

From Theorem 3.6 it follows that using the decentralized
technique of Section 3.1, the rate requirement for stability and
reliable communication up to the distortion levels δ(43), δ(34), δ(65),

and δ(56) is Cd =
1
2 log Ψ

(3)
∞

δ(43) +
1
2 log Ψ

(4)
∞

δ(34) +
1
2 log Ψ

(5)
∞

δ(65) +
1
2 log Ψ

(6)
∞

δ(56) .
Now, consider the centralized technique of [12] for the system

described by (32). Denote by Et(·) the centralized encoding law
and let Yt =


y(3)
t y(4)

t y(5)
t y(6)

t

′
∈ ℜ

4 be the observation
vector and Ut be the control signal produced by the centralized
controller. Also, denote the channel input by Tt and the output by
Rt . Using the centralized technique of [12] the observation vector
Yt is transmitted via the following AWGN channel

Rt = Tt + ζt ∈ ℜ
4,

Tt =


T (3)
t

T (4)
t

T (5)
t

T (6)
t

 = Et(Y (t),U(t − 1), R(t − 1)) ∈ ℜ
4,

ζt i.i.d. ∼ N(0, diag(Γ (43), Γ (34), Γ (65), Γ (56))),

E[(T (i)
t )2] ≤ P (i)

t , i = 3, 4, 5, 6, (33)

to the centralized controller. As described in [12], the centralized
encoder first produces the Gaussian innovation sequence Kt . Then,
it orthogonalizes Kt by applying the matrix E ′

t where Et is the
unitary matrix that diagonalizes the symmetric matrix Ψt =

Cov(Kt) (i.e., Σt = E ′
tΨtEt where Σt = diag(λ(3)

t , λ
(4)
t , λ

(5)
t , λ

(6)
t )).

Finally, the encoder applies the diagonal encoding gain At ∈

M(4 × 4) to the vector E ′
tKt and produces Tt = AtE ′

tKt . The
encoding gainAt is defined such that the source-channelmatching
principle [24] holds for the orthogonal Gaussian source message
E ′
tKt =


g(3)
t g(4)

t g(5)
t g(6)

t

′
and the Gaussian channel

(33), giving a reliable communication up to the distortion levels
δ(43), δ(34), δ(65), and δ(56) for messages g(3)

t , g(4)
t , g(5)

t , and g(6)
t ,

respectively. Note that the symmetric matrix Ψt is given by
Ψt = FΠtF ′

+ GΣVG′, where F = diag(F3, F4, F5, F6), G =

diag(G3,G4,G5,G6), ΣV = diag(Σ (3)
v , Σ (4)

v , Σ (5)
v , Σ (6)

v ), and Πt
is the solution of the following Riccati equation: Πt+1 = AΠtA′

−AΠtF ′


FΠtF ′

+GΣVG′
+(EtA−1

t )Wc(EtA−1
t )′

−1
FΠtA′

+CΣWC ′,

Π0 = Cov(X0), Wc = diag(Γ (43), Γ (34), Γ (65), Γ (56)), ΣW =

diag(Σ (3)
w , Σ (4)

w , Σ (5)
w , Σ (6)

w ). Following source-channel matching

principles, At is given by: At = diag


η
(43)
t Γ (43)

δ(43) ,


η
(34)
t Γ (34)

δ(34) ,
η
(65)
t Γ (65)

δ(65) ,


η
(56)
t Γ (56)

δ(56)


, where η

(43)
t = 1 −

δ(43)

λ
(3)
t

, η
(34)
t = 1 −

δ(34)

λ
(4)
t

, η
(65)
t = 1 −

δ(65)

λ
(5)
t

, and η
(56)
t = 1 −

δ(56)

λ
(6)
t

. Note that the

power constraints P (i)
t ’s are specific to the encoder and are given

by P (3)
t =

η
(43)
t Γ (43)

δ(43) λ
(3)
t , P (4)

t =
η
(34)
t Γ (34)

δ(34) λ
(4)
t , P (5)

t =
η
(65)
t Γ (65)

δ(65) λ
(5)
t ,

and P (6)
t =

η
(56)
t Γ (56)

δ(56) λ
(6)
t .

At the receiver, the centralized decoder first multiples
the received signal Rt by EtBt and produces K̃t = EtBtRt ,
where K̃t is the reconstructed version of the innovation pro-
cess Kt and Bt is the decoding gain. It is obtained from the
source-channel matching principle and is given by Bt = diag



Author's personal copy

A. Farhadi, N.U. Ahmed / Systems & Control Letters 60 (2011) 285–293 293
η
(43)
t δ(43)

Γ (43) ,


η
(34)
t δ(34)

Γ (34) ,


η
(65)
t δ(65)

Γ (65) ,


η
(56)
t δ(56)

Γ (56)


. The decoder uses

the reconstructed process K̃t and by use of the Kalman filter pro-
duces X̂t which is the state estimate of the state of (32). This esti-
mation is then used in the construction of the optimal centralized
controller given by Ut = −1X̂t , where 1 is the controller gain, as
specified in [12].

Let λ(i)
= limt→∞ λ

(i)
t (i = 3, 4, 5, 6). From the analysis

of [12] it follows that under some detectability and stabilizability
assumptions, the minimum rate requirement for stability and
reliable communication using the above centralized technique is,
Cc =

1
2 log λ(3)

δ(43) +
1
2 log λ(4)

δ(34) +
1
2 log λ(5)

δ(65) +
1
2 log λ(6)

δ(56) .
For illustrationwe nowpresent the following numerical results.
Numerical results: For illustration let us pick the values as A(2)

=
1.2 0.5
0.5 −1.2


, A(3)

=


2 0.1
1 −3


,Wc = C = ΣW = ΣV = I4, δ(34)

=

δ(43)
= δ(56)

= δ(65)
= 0.12 and X0 ∼ N(0, I4). We compare the

rate requirements for two cases: (i) Strongly cascaded case and (ii)
Weakly cascaded case.

For the first case (strongly cascaded case) let us pick the
coupling matrix as D(3)

=


16.9 0
0 16.9


where its smallest singular

value is 16.9. It is thirteen times larger than the largest singular
value of the system matrix A(2) which is 1.3. For this case it
can be verified that the rate requirement for stability using the
decentralized technique isCd = 35.41 (bits/time step). It is almost
two times bigger than the minimum rate Cc = 14.55 (bits/time
step) required for stability using the centralized version. For the
second case (weakly cascaded case) let us pick the coupling matrix
as D(3)

=


0.1 0
0 0.1


where its largest singular value is 0.1. It

is thirteen times smaller than the smallest singular value of the
system matrix A(2) which is 1.3. For this case it can be verified
that the rate requirement for stability using the decentralized
technique isCd = 10.91 (bits/time step). This rate is slightly bigger
than the minimum rate Cc = 10.83 (bits/time step) required for
stability using the centralized version. This suggests that for the
weakly cascaded systems, the rate requirement for stability using
the proposed decentralized technique is slightly bigger than the
minimum rate required for stability using the centralized version.

Note that by increasing the number of clusters and/or the
strength of couplings, things get worse in the sense that the rate
requirement for stability is going to be bigger than the minimum
required rate.

5. Conclusion

In this paper we considered large scale systems with cascaded
clusters of linear subsystems, in which the observation signals are
exchanged between subsystems via AWGN channels. It was shown
that the linear policies stabilize these systems. That was shown
by finding a suboptimal solution for quadratic payoff functional
which results inmean square stability. A sufficient condition on the
capacity of channels formean square stabilitywaspresented. Using
an example it was shown that, for the weakly cascaded systems,
the rate requirement for stability using the proposed scheme is
slightly bigger than the minimum required rate for stability using

the centralized version. For the future we would like to extend the
results to more complicated systems.
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