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Abstract— In this paper the notion of robust entropy and
subsequently, robust entropy rate for a family of discrete
time uncertain sources is introduced. When the uncertainty
is described by a relative entropy constraint between the
set of uncertain source densities and a given nominal source
density, the solution to this robust notion of information is
presented and its connection with other notions of entropy
definitions, such as, Renyi entropy and Tsallis entropy is
presented. Then, the robust entropy rate is calculated for 1)
Uncertain sources corresponding to a partially observed Gauss
Markov process, 2) Sources with uncertain frequency response,
and 3) Uncertain sources corresponding to a partially observed
controlled Gauss Markov Process. Finally, an application
of the robust entropy rate in networked control systems
is presented by defining necessary conditions for uniform
asymptotic stabilizability and observability.

I. I NTRODUCTION

The entropy and entropy rate are information theoretic
measures. They have applications in physics, probability
and statistics, communication theory and economics. The
importance of entropy in communication theory was first
introduced by Shannon in terms of Shannon first coding
theorem. Then, the application of entropy rate in joint
source channel coding theorem, the AEP and etc. is shown
[1].
Let f(y) represent the Probability Density Function (PDF)
corresponding to a random variableY ∈ <d. The Shannon

entropy is defined byHS(f)
4
= − ∫

f(y) ln f(y)dy (f ∈
L1). In addition to the Shannon entropy, there are the

Renyi, defined byHR
4
= 1

1−α ln
∫

fα(y)dy, for α > 0, and
α 6= 1 (fα ∈ L1) [2], and Tsallis entropy [3] defined by

HT (f)
4
= 1

1−α (
∫

fα(y)dy− 1). Tsallis entropy gives us as
special case the Shannon entropy, in particular, asHS(f) =
limα→1 HR(f), and sinceHT (f) = 1

1−α{e(1−α)HR(f)−1},
by expanding the exponential term,e(1−α)HR(f), and taking
the limit as α → 1, we getHS(f) = limα→1 HT (f) =
limα→1 HR(f).
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The objective of this paper is to extend the notion of
entropy and subsequently entropy rate to the case when
there is uncertainty in the source. The robust entropy is
defined as the maximum of the Shannon entropy over a
family of sources belonging to an uncertainty set. The
explicit solution to the robust entropy is presented when
the uncertainty is described by a constraint on the relative
entropy between the set of uncertain source densities and
the corresponding nominal source density. Subsequently,
the connection between this solution with other entropies
is shown. Then, for different families of uncertain source
densities, the robust entropy rate is calculated and an
application of the robust entropy rate in stabilizability and
observability of networked control systems is presented.
This paper is organized as follows. In Section II, the robust
entropy and the robust entropy rate are defined. The solution
to the robust entropy and its connection to other kinds of
entropy are presented. In Section III, for different families
of uncertain sources, the robust entropy rate is calculated.
Finally in Section IV, an application of robust entropy
rate in stabilizability and observability of networked control
system is presented.

II. PROBLEM FORMULATION, SOLUTION AND

CONNECTIONS

Let D denote the space of density functions defined
on <d. In real world situation, the source is not entirely
known. This introduces some degree of uncertainty in
source density around a nominal fixed source densityg(y).
Let the true source density,f(y), belongs to the uncertainty
setDSU ⊂ D. Then we have the following definition for
robust entropy and subsequently for robust entropy rate.

Definition 2.1: Let Y be a random variable (or a se-
quence of R.V’s.) andf(y) the corresponding density
associated with the uncertain source such thatf(y) ∈ DSU .
Then the robust entropy ofY is defined by

Hrobust(f∗) = sup
f∈DSU

HS(f), (1)

wheref∗ = argsupf∈DSU
HS(f).

Moreover, ifY = (Y0, ..., YT−1)tr represents a sequence of
R.V’s. with lengthT of source symbols produced by the
uncertain source with joint densityf ∈ DSU , the robust
entropy rate is defined by

Hrobust(Y) = lim
T→∞

1
T

Hrobust(f∗), (2)
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provided the limit exists.
Remark 2.2:For the case without uncertainty (DSU =

{g}), the robust entropy and robust entropy rate are reduced
to the Shannon entropy and entropy rate.

A. Relative Entropy Uncertainty Set

Throughout this section we consider an uncertain set
defined by

DSU
4
= {f ∈ D; H(f |g) ≤ Rc}, (3)

where H(.|.) is the relative entropy andRc ∈ [0,∞) is
fixed.

Lemma 2.3:[4] Given a fixed nominal densityg(y) and
the uncertainty setDSU , the robust entropy is given by

Hrobust(f∗,s
∗
) =

mins≥0[sRc + (1 + s) ln
∫

g(y)
s

1+s dy]

4
= HRc

robust(f
∗,s∗) (4)

and

f∗,s(y) =
g(y)

s
1+s

∫
g(y)

s
1+s dy

, (5)

where the minimizings∗ ≥ 0 in (4) and (5) is the unique
solution ofH(f∗,s

∗ |g) = Rc.
Remark 2.4:The above solution for the robust entropy

is related to the Renyi and consequently to the Tsallis
entropies as follows. Letα = s

1+s ; then

HRc

robust(f
∗,s∗) = minα∈[0,1)

{ α

1− α
Rc + HR(g)

}
. (6)

Moreover, it can be shown that

minα∈[0,1)HR(g) ≤ HRc

robust(f
∗,s∗)

≤ α

1− α
Rc + HR(g), α ∈ [0, 1).

(7)
Corollary 2.5: [5] SupposeRc ≤ H(h|g), whereh(y) is

a uniform Probability Mass Function (PMF) (e.g.,h(y) =∑M
i=1 h(yi)δ(yi), h(yi) = 1

M and δ(.) is a delta mea-
sure). Wheng(y) and consequentlyf(y) correspond to
PMF’s, that is, g(y) =

∑M
i=1 g(yi)δ(yi) and f(y) =∑M

i=1 f(yi)δ(yi), then (4) and (5) are reduced to

HRc

robust(f
∗,s∗) = mins≥0[sRc + (1 + s)

. ln
M∑

i=1

g(yi)
s

1+s ], (8)

f∗,s(yi) =
g(yi)

s
1+s

∑
i g(yi)

s
1+s

, 1 ≤ i ≤ M, (9)

where the minimizings∗ ≥ 0 in (8) and (9) is the unique
solution ofH(f∗,s

∗ |g) = Rc.
Next, the robust entropy rate is computed as a direct
consequence of Lemma 2.3.

Corollary 2.6: Let Y = (Y0, ..., YT−1)tr be a sequence
with lengthT of source symbols with uncertain joint density
function f(y) ∈ DSU , y ∈ <Td andRc → TRc.
The robust entropy rate is given by

Hrobust(Y) = lim
T→∞

1
T

HTRc

robust(f
∗,s∗),

HTRc

robust(f
∗,s∗) = mins≥0[sTRc + (1 + s)

. ln
∫

g(y)
s

1+s dy]
4
= HTRc

robust(f
∗,s∗), (10)

and

f∗,s(y) =
g(y)

s
1+s

∫
g(y)

s
1+s dy

, (11)

where the minimizings∗ ≥ 0 in (10) and (11) is the unique
solution ofH(f∗,s

∗ |g) = TRc.
Remark 2.7:Clearly, limT→∞ 1

T HTRc

robust(f
∗,s∗), is the

solution of the following robust entropy rate

lim
T→∞

sup
{f∈D; 1

T H(f |g)≤Rc}

1
T

HS(f). (12)

Example 2.8:[4] From Corollary 2.6 it follows that,
if the nominal source densityg(y) is Td-dimensional
Gaussian density function with meanm and covarianceΓY ,
∀Rc ∈ [0,∞),

1
T

HTRc

robust(f
∗,s∗) =

d

2
ln(

1 + s

s
) +

d

2
ln(2πe)

+
1

2T
ln det ΓY , (13)

where s > 0 is the unique solution of the following
nonlinear equation

Rc = −d

2
ln(

1 + s

s
) +

d

2s
. (14)

III. ROBUST ENTROPY RATE CALCULATION

In this section, the robust entropy rate is calculated for
1) Uncertain sources corresponding to a partially observed
Gauss Markov process, 2) Sources with uncertain frequency
response, and 3) Uncertain sources corresponding to a
partially observed controlled Gauss Markov process.

A. Partially Observed Gauss Markov Process

In this section, the uncertainty is described by a constraint
on the relative entropy between the set of uncertain sources
and the corresponding nominal source via

DSU = {f ∈ D;
1
T

H(f |g) ≤ Rc}, (15)

wheref(y) andg(y) are PDF’s corresponding to a sequence
with length T of the symbols produced by uncertain and
nominal sources, respectively.
Now, consider a nominal density induced by a partially
observed Gauss Markov nominal source described via

Xt+1 = AXt + BWt, X0,

Yt = CXt + DVt, t ∈ N+
4
= {0, 1, 2, ...}, (16)
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whereXt ∈ <n denotes the unobserved process,Yt ∈ <d

is the observed process,Wt ∈ <m, Vt ∈ <l, Wt is i.i.d.
∼ N(0, Im×m), Vt is i.i.d. ∼ N(0, Il×l), X0 ∼ N(x̄0, V0),
and{X0, Vt,Wt} are mutually independent,t ∈ N+. Here
it is assumed that (C, A) is detectable,(A, (BBtr)

1
2 ) is

stabilizable andD 6= 0.
The objective is to calculate the robust entropy rate. We
shall need the following lemmas.

Lemma 3.1:[4] Let Y : Ω×N+ → <d, be a stationary
Gaussian process with power spectral densitySY (ejw).
Let Zt

4
= Yt − E[Yt|Y t−1], Y t−1 = {Y0, ..., Yt−1},

Λt
4
= Cov(Zt) and assumeΛ∞

4
= limt→∞ Λt exists.

Then an application of Szego limit formula [6] and Cholsky
decomposition [7] implies that

ln detΛ∞ =
1
2π

∫ π

−π

ln det SY (ejw)dw

= lim
T→∞

1
T

ln det ΓY , (17)

whereΓY
4
= Cov[(Y0, Y1, ..., YT−1)tr].

Note that in Lemma 3.1, the required stationary condition
can be relaxed as long asΛ∞ or limT→∞ 1

T ln det ΓY exist
and they finite.

Lemma 3.2:[7] For the nominal source model (16),

Λ∞ = CV∞Ctr + DDtr, (18)

whereV∞ is unique positive semi-definite solution of the
following Algebraic Riccati-equation

V∞ = AV∞Atr −AV∞Ctr[CV∞Ctr + DDtr]−1

.CV∞Atr + BBtr. (19)
Next, in the following Proposition, using Example 2.8,
Lemma 3.1 and Lemma 3.2, we calculate the robust entropy
rate for the family of uncertain sources which corresponds
to the nominal source model (16) and the relative entropy
uncertainty set (15).

Proposition 3.3:The robust entropy rate of an uncertain
source with corresponding nominal source model (16) is

Hrobust(Y) =
d

2
ln(

1 + s

s
) +HS(Y),

HS(Y)
4
=

d

2
ln(2πe) +

1
2

ln det Λ∞,

(20)

wheres > 0 is the unique solution of (14),Λ∞ is given by
(18), andHS(Y) is the Shannon entropy rate of the nominal
source model (16).

Remark 3.4:From (14), it follows that, the caseRc → 0
corresponds tos → +∞. Letting s → +∞ in (20), we
obtain

Hrobust(Y) = HS(Y). (21)

That is, the robust entropy rate is equal to the Shannon
entropy rate of the nominal source. This is the result that
we expected, since the caseRc → 0 corresponds to the case
without uncertainty.

)()( zWz

X
+

Y
)( zH

Fig. 1. Source with additive uncertainty

Corollary 3.5: [4] For the scalar case withB = 0, after
solving V∞ from (19) we obtain

Hrobust(Y) =
1
2

ln(
1 + s

s
) +

1
2

ln(2πeD2)

+max{0, ln |A|}. (22)

B. Uncertain Sources in Frequency Domain

Let β(1)
4
= {z; z ∈ C, |z| ≤ 1} andH∞ be the space of

scalar bounded, analytic functions ofz ∈ β(1). This space

endowed with the norm||.||∞ defined by||H(ejw)||∞ 4
=

sup−π≤w≤π |H(ejw)|, (z = ejw) is a Banach space. Sup-
pose the uncertain source is obtained by passing a stationary
Gaussian random processX : Ω × N+ → <, with known
power spectral densitySX(ejw), through an uncertain linear
filter H̃(z). H̃(z) belongs to the additive uncertainty model
(See Fig. 1)

H̃ ∈ Dad
4
={

H̃ ∈ H∞; H̃(z) = H(z) + ∆(z)W (z); H̃(z),

H(z), ∆(z),W (z) ∈ H∞,H(z),W (z) are fixed,

∆(z) is unknown and||∆||∞ ≤ 1
}

, (23)

whereH(z) is the nominal source transfer function based
on previous experience or belief, and∆(z)W (z) represents
the uncertainty part of the source. Clearly, this additive
uncertainty model implies|H̃(ejw)−H(ejw)| ≤ |W (ejw)|,
∀w ∈ [−π, π] and thus the size of uncertainty is controlled
by the fixed transfer functionW (z).
SinceX is a Gaussian random process andH̃(z) is linear
transformation,Y is a Gaussian random process. Moreover,
since X is stationary andH̃(z) ∈ H∞, SY (ejw) =
|H̃(ejw)|2SX(ejw), consequently from [7], the entropy rate
is given by

HS(Y) =
1
2

ln(2πe) +
1
4π

∫ π

−π

ln SY (ejw)dw. (24)

Consequently, the robust entropy rate is defined by

Hrobust(Y)
4
=

1
2

ln(2πe)

+
1
4π

sup
H̃∈Dad

∫ π

−π

ln SY (ejw)dw. (25)
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Next, from analysis done in [4], the solution of (25) is given
by

Hrobust(Y) =
1
2

ln(2πe) +
1
4π

∫ π

−π

ln(|H(ejw)|2

+|W (ejw)|2)SX(ejw)dw. (26)

C. Partially Observed Controlled Gauss Markov Process

In this section, it is assumed that the uncertainty set is the
relative entropy set (15). The nominal model is defined via
a partially observed controlled Gauss Markov source given
by

Xt+1 = AXt + BUt Ut = −KYt

Yt = CXt + DVt, t ∈ N+, (27)

whereK is stabilizing matrix (e.g.,A−BK has eigenvalues
within the unit circle),Xt ∈ <n denotes the unobserved
process,Yt ∈ < is the observed process,Ut ∈ <, Vt ∈ <,
Vt is i.i.d. ∼ N(0, 1), X0 ∼ N(x̄0, V0), {X0, Vt} are
mutually independent,t ∈ N+, and D 6= 0. Next, in the
following Proposition, using Example 2.8 and the Body
integral formula [8], we calculate the robust entropy rate.

Proposition 3.6:The robust entropy rate of an uncertain
source with corresponding nominal source model (27) is

Hrobust(Y) =
1
2

ln(
1 + s

s
) +HS(Y)

HS(Y)
4
=

1
2

ln(2πeD2)

+
∑

{i:|λi(A)|≥1}
ln |λi(A)|, (28)

wheres > 0 is the unique solution of (14),HS(Y) is the
Shannon entropy rate of the nominal source model (27),
andλi(A) is the eigenvalues of the system matrixA.

IV. A PPLICATION IN STABILIZABILITY OF NETWORK

CONTROL SYSTEM

An application of information theory in networked con-
trol systems (See Fig. 2), subject to uncertainty in the source
requires that the robust channel capacity of the uncertain
communication link must be at least equal to the robust
entropy rate of the family of uncertain sources [9], in order
to have uniform asymptotic observability and stabilizability
in probability as defined below.

Definition 4.1: The uncertain source is uniform asymp-
totic observable in probability if there exists an encoder and
decoder such that

lim
t→+∞

sup
f∈DSU

1
t

t−1∑

k=0

Pr(||Yk − Ỹk||2 > δ) ≤ ε, (29)

whereδ ≥ 0 and0 ≤ ε ≤ 1 are fixed and||y||2 = (ytry)
1
2 .

The uncertain source is uniform asymptotic stabilizable in
probability if there exists encoder, decoder, and controller
such that

lim
t→∞

sup
f∈DSU

1
t

t−1∑

k=0

Pr(||Yk||2 > δ) ≤ ε. (30)

Plant (Source) 

Channel with 

Memory

DecoderController

Encoder

t
Y

t
U

t
Y
~

Fig. 2. Networked control system

Next, we have the following proposition which gives nec-
essary condition for uniform asymptotic observability and
stabilizability in terms of the robust entropy rate.

Proposition 4.2: [9] A necessary condition on the robust
channel capacity (Crobust = limn→∞ 1

nCn,robust, where
Cn,robust is the robust channel capacity forn-times channel
use) for uniform asymptotic observability and stabilizability
in probability is

Crobust ≥ Hrobust(Y)− 1
2

ln(2πe)d det Γg, (31)

whereHrobust(Y) is the robust entropy rate,d is the di-
mension of source symbol, andΓg is the covariance matrix
of the Gaussian distributiong(y) ∼ N(0, Γg) (y ∈ <d) that
satisfies

∫
||y||2>δ

g(y)dy = ε.
Remark 4.3:For the family of uncertain sources that

corresponds to the nominal source model (16),Hrobust(Y)
(found in (31)) is computed from (20). For an uncertain
sources given in Section III-B (DSU → Dad), it is found
from (26).
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