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Control of Continuous-Time Linear Gaussian Systems
Over Additive Gaussian Wireless Fading Channels:

A Separation Principle

Charalambos D. Charalambous, Alireza Farhadi, and Stojan Z. Denic

Abstract—This note is concerned with the control of continuous-time
linear Gaussian systems over additive white noise wireless fading channels
subject to capacity constraints. Necessary and sufficient conditions
are derived, for bounded asymptotic and asymptotic observability and
stabilizability in the mean square sense, for controlling such systems.
For the case of a noiseless time-invariant system controlled over a
continuous-time additive white Gaussian noise channel, the sufficient
condition for stabilizability and observability states that the capacity
of the channel C must satisfy C >

∑
{i;Re(λi(A))≥0} Re(λi(A)),

where A is the system matrix and λi(A) denotes the eigenvalues of A.
The necessary condition states that the channel capacity must satisfy
C ≥

∑
{i;Re(λi(A))≥0} Re(λi(A)). Further, it is shown that a

separation principle holds between the design of the communication and
the control subsystems, implying that the controller that would be optimal
in the absence of the communication channel is also optimal for the
problem of controlling the system over the communication channel.

Index Terms—Continuous time, mutual information, networked control
system, stabilizability and observability.

I. INTRODUCTION

In recent years, there has been a significant activity in address-
ing issues associated with the control of systems over limited capac-
ity communication channels. A typical example is given in Fig. 1.
The control/communication system of Fig. 1 can be used to describe
a distributed control system in which the plant and the correspond-
ing controller are connected through a shared communication media,
while there is an unshared or high-capacity communication link from
controller to plant. It can also be used to describe a teleoperation
system in which the communication from the plant to the remote con-
troller is subject to limited capacity constraint, while the connection
from the controller to the plant is unconstrained. Since a discrete time
model is more appropriate for today’s digital communication links,
previous work on this subject is focused on the observability and/or
stabilizability of discrete-time systems, controlled over a discrete-time
communication channel with finite capacity [1]–[8]. Nevertheless, in
some applications, analog modulation schemes may be interesting due
to the simplicity in realizing such schemes. On the other hand, hav-
ing a complete theory that deals with continuous-time systems will
help us gain additional insight and understanding into building con-
trol/communication systems.

It is already known that a necessary condition for observability
and stabilizability of linear discrete-time invariant systems is given by
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Fig. 1. Control/communication system over flat fading AWGN channel.

the condition C ≥
∑

{i ;|λi A ) |≥1} log |λi (A)|, where C is the channel

capacity and λi (A)’s are eigenvalues of system matrix A. Furthermore,
when the inequality is strict, this condition is also sufficient.

In this note, we first consider the problem of stabilizability of a linear
continuous-time invariant noiseless plant controlled over a continuous-
time additive white Gaussian noise (AWGN) channel with memory. We
then consider a linear stochastic Gaussian time-varying plant driven by
Brownian motion controlled over a flat fading wireless channel. Here,
we assume complete knowledge of the channel throughout the trans-
mission, at the transmitter and the receiver ends [9]. Optimal encoding
and decoding strategies that minimize the mean square decoding error
as well as an optimal mean square stabilizability scheme are derived,
and conditions for mean square observability and stabilizability
are presented. It is also shown that a separation principle holds
between the design of the control and the communication subsystems.
Similar separation property for discrete-time systems is discussed in
[6] and [10].

The note is organized as follows. In Section II, the problem for-
mulation is given. In Section III, a necessary condition for stabiliz-
ability is presented. In Section IV, the optimal encoding/decoding
scheme that ensures observability is given. In Section V, a stabiliz-
ing controller is designed by using a linear quadratic payoff, and it is
shown that the encoder/decoder proposed achieves the capacity of the
channel.

II. PROBLEM FORMULATION

We shall give the precise definition of the signals and blocks
associated with Fig. 1. Let (Ω,F , P ) be a complete probability
space with a filtration {Ft}t≥0 and time t ∈ [0, T ], T > 0. Let

x
�
= {x(s); 0 ≤ s ≤ T }, x(t) ∈ �n denote the output of the con-

trolled plant (transmitted signal), u
�
= {u(s); 0 ≤ s ≤ T }, u(t) ∈ �m

the control signal, y
�
= {y(s); 0 ≤ s ≤ T }, y(t) ∈ � the output of

the communication channel, θ
�
= {θ(s); 0 ≤ s ≤ T }, θ(t) ∈ �q the

channel state information (CSI), v
�
= {v(s); 0 ≤ s ≤ T }, v(t) ∈ � the

channel noise, w
�
= {w(s); 0 ≤ s ≤ T }, w(t) ∈ �l the plant process

noise, and x̃
�
= {x̃(s); 0 ≤ s ≤ T }, x̃(t) ∈ �n the decoder output. De-

note the fading process by z
�
= {z(s, θ(s)); 0 ≤ s ≤ T }, z(t, θ(t)) ∈ �

that is assumed to be independent of the plant noise and the ini-
tial state. The plant noise w and the channel noise v are indepen-
dent standard Brownain motions (Ev(t)2 = N0 t, Cov(w(t)) = I.t),
which are independent of the initial state x(0). Let {Fx

0 , t}t≥0 ,
{F x̃

0 , t}t≥0 , {F y
0 , t}t≥0 , and {F θ

0 , t}t≥0 denote the complete filtration

generated by Fx
0 , t

�
= σ{x(s); 0 ≤ s ≤ t}, F x̃

0 , t

�
= σ{x̃(s); 0 ≤ s ≤ t},

F y
0 , t

�
= σ{y(s); 0 ≤ s ≤ t}, and F θ

0 , t

�
= σ{θ(s); 0 ≤ s ≤ t}, respec-

tively, which are subsigma fields of {Ft}t≥0 . Here, Fx
0 , t , F x̃

0 , t , F y
0 , t ,

and F θ
0 , t are the Borel σ-algebras on the space of continuous functions

C([0, T ];�n ), C([0, T ];�n ), C([0, T ];�), and C([0, T ];�q ) respec-
tively. Next, the blocks of Fig. 1 are defined.

Plant: The state of the plant is described by the Itô-controlled diffu-
sion process

dx(t) = A(t)x(t)dt + B(t)u(t)dt + G(t)dw(t), x(0) (1)

where A : [0, T ]→ �n×n , B : [0, T ]→ �n×m , and G : [0, T ]→
�n×l , and x(0) is Gaussian random variable x(0) ∼ N (x̄0 , V̄0 ), which
is independent of w. The control u is {F0 , t}t≥0 adapted, and A(t),
B(t), and G(t) are uniformly bounded.

Encoder: The encoder map {(x(s), x̃(s), z(s, θ(s))); 0 ≤ s ≤
t} → F (t, x, x̃, θ)(= F (t) ∈ � in compact notation) is adapted to

{Fx,x̃ ,θ
0 , t }t≥0 defined byFx,x̃ ,θ

0 , t

�
=Fx

0 , t

∨
F x̃

0 , t

∨
F θ

0 , t , with power con-
straint E[|F (t, x, x̃, θ)|2 |F θ

0 , t ] ≤ P. The set of such admissible en-
coders is denoted by Fad .

Channel: The communication channel is an AWGN, flat fading,
wireless channel whose output y is defined by the following stochastic
differential equation

dy(t) = z(t, θ(t))F (t, x, x̃, θ)dt + dv(t), 0 ≤ t ≤ T (2)

where y(0) = 0 and v is a Brownian motion with Ev2 (t) = N0 t.
Throughout, we shall assume that (2) has a unique solution [11], and
that
∫ T

0 E[z(t, θ(t))F (t, x, x̃, θ)]2dt < ∞, for finite T . Further, when
computing the conditional mutual information over an infinite time
horizon, we shall assume that lim supT →∞

1
2T

∫ T

0 E[z2 (t, θ(t))]dt is
finite. If limt→∞ E[z2 (t, θ(t))] exists, then lim sup can be replaced by
lim.

Decoder: The decoder map {(y(s), z(s, θ(s))); 0 ≤ s ≤ t} →
x̃(t, y, θ)(= x̃(t) in compact notation) is adapted to {F y ,θ

0 , t }t≥0 , where

F y ,θ
0 , t

�
=F y

0 , t

∨
F θ

0 , t . The set of admissible decoders is denoted byDad .
The decoder plays the role of a state estimator.

Controller: The controller u is a nonanticipative functional of the
output of the decoder and the CSI, e.g., u is {F y ,θ

0 , t }t≥0 adapted. The
set of admissible controller is denoted by Uad .

The objective of this note is to find necessary and sufficient condi-
tions for bounded asymptotic and asymptotic observability and stabi-
lizability of system (1), in the following sense.

Definition 2.1: Define E(t) �= E[(x(t)− x̃(t, y, θ))tr (x(t)−
x̃(t, y, θ))|F y ,θ

0 , t ]. System (1) and (2) is bounded asymptotically (re-
spectively, asymptotically) observable, in the mean square sense, if
there exist an encoder F ∈ Fad and decoder x̃ ∈ Dad , such that
limt→∞ E(t) < ∞, P-a.s. (respectively, limt→∞ E(t) = 0, P-a.s.).

Definition 2.2: Define ||x||2 �= xtrx, x ∈ �n . System (1) and (2)
is bounded asymptotically (respectively, asymptotically) stabilizable,
in the mean square sense, if there exit a controller, encoder, and de-
coder, such that limt→∞ E[||x(t)||2 |F θ

0 , t ] < ∞, P-a.s., (respectively,
limt→∞ E[||x(t)||2 |F θ

0 , t ] = 0, P-a.s).
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III. BODE’S INTEGRAL FORMULA, NECESSARY CONDITION

FOR EXISTENCE OF STABILIZING CONTROLLER

FOR CONTINUOUS-TIME SYSTEMS

In this section, we consider the time-invariant noiseless analog of
system (1) with u(t) ∈ �, that is, the plant is given by

ẋ(t) = Ax(t) + Bu(t), x(0) ∈ �n , u(t) ∈ � (3)

x(0) ∼ N (x̄0 , V̄0 ). The communication channel is an AWGN channel
(z = 1) with memory given by

y(t) = o(t) + n(t), o(t) = h(t) ∗ F (t), y(t) ∈ � (4)

where o is a stochastic process with power spectral density (PSD)
So (ω), n is a Gaussian white noise process with the PSD Sn (ω) = N0 ,
h(t) is a causal channel impulse response with corresponding trans-
fer function H(jw), “∗” is the convolution operator, and N (jw) and
Y (jw) are the Fourier transforms of the noise and output signals,
respectively. Note that the Brownian motion and the white noise are
related by v(t) =

∫ t

0 n(s)ds with Ev(t)v(s) = N0 min(t, s). In this
section, it is assumed that the encoder, decoder, and controller are lin-
ear time-invariant with transfer functions E(jw), D(jw), and C(jw),
respectively.

The mutual information between the state of plant x and the chan-

nel output y is given by IT (x; y)
�
= Ex,y [ln(dPx,y (x, y)/(dPx (x) ×

dPy (y)))], where ln(.) denotes the natural logarithm, Ex,y [.] denotes
expectation with respect to sample paths x and y, Px,y is the joint prob-
ability measure of x and y, Px is the probability measure of x, and Py

is the probability measure of y. Subsequently, the finite-time channel
capacity is defined by CT

h = sup(x,F )∈X×Fa d
(1/T )IT (x; y), and the

infinite-horizon channel capacity by Ch = lim infT →∞ CT
h , where X

is the set of all possible continuous sample paths x’s, and Fad is the
set of all admissible encoders [11].

Let λi (A) denote the eigenvalues of A. We shall show that Ch ≥∑
{i ;R e(λi (A ))≥0}Re(λi (A)) is a necessary condition for the existence

of a stabilizing controller.
In this section, a controller is called stabilizable if the correspond-

ing closed-loop sensitivity transfer function S(jw) = Y (jw)/N (jw),
from n to y, is strictly stable or alternatively limt→∞ E|y(t)|2 < ∞ or
limt→∞ E||x(t)||2 < ∞.

The main result of this section is given in the following theorem.
Theorem 3.1: Consider the control/communication system of Fig. 1

described by (3) and (4) with linear time-invariant encoder, decoder, and
controller in which there is no feedback from the output of the decoder
to the input of the encoder. A necessary condition for the existence of a
stabilizing controller is given by Ch ≥

∑
{i :R e(λi (A ))≥0}Re(λi (A)),

where Ch is the capacity of the AWGN channel with memory.
Proof: Assume there exist a stabilizing controller, and an en-

coder/decoder pair such that the control/communication system is sta-

ble. Define l(t)
�
=
∫ t

0 y(s)ds. Then, l(t) =
∫ t

0 o(s)ds +
∫ t

0 n(s)ds.

Since, v(t) =
∫ t

0 n(s)ds is Brownian motion, then we can

apply [12] to get: IT (l; x) = 1
2N 0

E{
∫ T

0 |o(t)− ô(t)|2dt} =
1

2N 0

∫ T

0 E|o(t)− ô(t)|2dt = 1
2N 0

∫ T

0 Σt dt where ô(t)
�
=

E[o(t)|F y
0 , t ], and Σt

�
= E|o(t)− ô(t)|2 . Then, from the data process-

ing inequality, it follows that IT (y; x) ≥ IT (l; x), and thus, IT (y; x) ≥
1

2N 0

∫ T

0 Σt dt. On the other hand, the mean square error is related to

the PSDs via limT →∞ ΣT = N 0
2π

∫ +∞
−∞ ln(1 + (So (ω)/N0 ))dω [12],

where So (ω) is the PSD of o, and Sn (ω) = N0 is the PSD

of n. Subsequently, limT →∞ 1/T
∫ T

0 Σt dt = limT →∞ ΣT =

N 0
2π

∫ +∞
−∞ ln(1 + (So (ω)/N0 ))dω. Next, an application of Bode’s

integral formula [13] implies that

lim
T →∞

1
T

IT (y; x) ≥ lim
T →∞

1
2N0

1
T

∫ T

0

Σt dt

=
1
4π

∫ +∞

−∞
ln
(
1 +

So (ω)
N0

)
dω

=
1
4π

∫ +∞

−∞
ln

Sy (ω)
Sn (ω)

dω

=
1
4π

∫ +∞

−∞
ln |S(ω)|2dω

=
∑

{i :R e(λi (A ))≥0}

Re(λi (A)). (5)

Note that in order to derive the aforementioned result, the Bode in-
tegral formula is employed under the assumption that the stabilizing
controller is chosen such that the corresponding open-loop transfer
function (i.e., multiplications of channel, encoder, plant, controller,
and decoder transfer functions) is strictly proper with degree at least 2.
Subsequently, from (5), it follows that

Ch
�
= lim inf

T →∞
sup

(x,F )∈X×Fa d

1
T

IT (y; x)

≥ lim
T →∞

1
T

IT (y; x) ≥
∑

{i :R e(λi (A ))≥0}

Re(λi (A)). (6)

Remark 3.2: Note that (6) is also a necessary condition for the case of
AWGN channel [e.g., h(t) = δ(t)]. That is, for AWGN channel, (6) is
reduced to the following condition C ≥

∑
{i :R e(λi (A ))≥0}Re(λi (A)),

where C is the AWGN channel capacity. The equivalent condition of C
for controlling discrete-time systems over a discrete-time noisy channel
is given by [4] C ≥

∑
{i ;|λi (A ) |≥1} log |λi (A)|. In Section V, we will

achieve C by constructing an encoder, decoder, and controller that
stabilize the plant.

IV. OPTIMAL ENCODING/DECODING SCHEME FOR OBSERVABILITY

In this section, we design an optimal encoder/decoder pair for the
time-varying system defined by (1) and (2) (in this section and the
next section, we assume N0 = 1) that guarantees the observability
condition defined in the sense of Definition 2.1. The necessary and
sufficient condition for the existence of such an encoder/decoder pair
is given in terms of the capacity of the channel and the time-varying
matrix A(t). First, we consider the scalar case of system (1) because
it is easier to present the idea developed that is based on [11] and [14],
and then, we extend the result to the vector case.

A. Optimal Encoding/Decoding Scheme for Observability:
The Scalar Case

1) Conditional Mutual Information and Capacity of Feedback Sys-
tems: We shall need the following equivalent expressions for condi-
tional mutual information (which are variants of the mutual information
found in [12] or [15]).

Theorem 4.1: Consider the model given by (1) and (2), shown in
Fig. 1. The mutual information between the state of plant x and the
channel output y, conditional on the state θ is given by

1) IT (x; y|θ)
�
= Ex,y ,θ

[
ln

dPx,y |θ (x, y|θ)
dPx |θ (x|θ)× dPy |θ (y|θ)

]
(7)
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2) IT (x; y|θ) =
1
2
Eθ

∫ T

0

z2 (t, θ(t))E[|F (t, x, x̃, θ)|2

− |F̂ (t, x̃, θ)|2 |F θ
0 , t ]dt (8)

3) IT (x; y|θ) =
∫

θ

ĨT (θ)dPθ (θ) (9)

where ĨT (θ) =
∫

ln(dPx,y |θ (x, y|θ)/(dPx |θ (x|θ) × dPy |θ (y|θ)))
dPx,y |θ (x, y|θ), Ex,y ,θ [.] represents expectation with respect to
the sample paths x, y, θ, (similarly for Eθ [.]) and F̂ (t, x̃, θ) =
E[F (t, x, x̃, θ)|F y ,θ

0 , t ]. Here, Pθ is the probability measure induced by
θ, while Px,y |θ is a joint probability measure of x, and y conditional
on θ (similarly for Px |θ and Py |θ ) (e.g., these are measures defined on
the sample paths on the space of continuous functions).

Proof: 3) By invoking the definition of the conditional mutual infor-
mation

IT (x; y|θ)
�
=
∫

ln
dPx,y |θ (x, y|θ)

dPx |θ (x|θ)× dPy |θ (y|θ)

.dPx,y ,θ (x, y, θ) (10)

where dPx,y ,θ (x, y, θ) = dPx,y |θ (x, y|θ)dPθ (θ), we obtain (9).
Proof: 2) Using the methodology of [15], applied to mutual infor-

mation, we deduce (8).
Next, the definition of the channel capacity for a Gaussian flat fading

channel, when the CSI is fully known is given. Thereafter, an upper
bound on the mutual information is introduced, and subsequently, it
is shown that this upper bound is the channel capacity. Note that con-
ditional mutual information IT (x; y|θ) defined previously is different
from conditional expectation [9].

Definition 4.2: Consider the model given by (1) and (2),
when the fading process θ is completely known to the trans-
mitter and receiver, subject to the instantaneous power constraint
E[|F (t, x, x̃, θ)|2 |F θ

0 , t ] ≤ P, ∀t ≥ 0, where P is fixed and positive.
Then the finite-time and infinite-time channel capacity are defined by

CT
f

�
= sup(x,F )∈X×Fa d

( 1
T

)IT (x; y|θ) and Cf
�
= lim infT →∞ CT

f , re-
spectively. Here, the supremum is taken over all state processes x ∈ X
that are solutions to (1) and over all encoding functions F ∈ Fad that
satisfy the power constraint [9], [11], [16].

Since the encoder and decoder have access to the channel state
information θ, then sup(x,F )∈X×Fa d

(1/T )IT (x; y|θ) = (1/T )
∫

θ

sup(x,F )∈X×Fa d
ĨT (θ)dPθ (θ), and similarly for Cf . Hence, CT

f and Cf

are obtained via an average with respect to Pθ of the supremum over
(x, F ) ∈ X × Fad of ĨT (θ). The selection of the instantaneous power
constraint reflects the constraint on the channel input signal expressed
in terms of the square of the amplitude. One may consider alternative
power constraints to reflect a constraint on the average power over a
time interval [0,T] per unit time, or even a constraint on the receiver.
However, care must be taken to incorporate the alternative constraint
in the main results.

Lemma 4.3: Consider the model given by (1) and (2) sub-
ject to instantaneous power constraint. Then, (1/T )IT (x; y|θ) ≤
1

2T
P
∫ T

0 E[z2 (t, θ(t))]dt. Moreover, the infinite-time channel capac-

ity is given by Cf = lim infT →∞
P
2T

∫ T

0 E[z2 (t, θ(t))]dt.
Proof: According to (8) and by considering the power

constraint, we have IT (x; y|θ) ≤ (1/2)Eθ

∫ T

0 z2 (t, θ(t))

E[|F (t, x, x̃, θ)|2 |F θ
0 , t ]dt ≤ P/2

∫ T

0 E[z2 (t, θ(t))]dt. Following
the methodology in [11, Sec. 16.4], it is shown that the aforementioned
upper bound determines the channel capacity, that is, a white Gaussian
noise signal x achieves the capacity.

2) Optimal Encoding and Decoding: In this section, we design
an optimal (in mean square sense) encoding/decoding strategy that
achieves the channel capacity CT

f and Cf . We then employ the expres-
sion for the minimum mean square decoding error to obtain necessary
and sufficient conditions for bounded asymptotic and asymptotic ob-
servability. In the subsequent development, only linear encoders are
considered, because along the same lines of [11, Sec. 16.4], it can
be shown that linear encoders achieve the channel capacity and the
minimum mean square decoding error.

Definition 4.4: The set of linear admissible encoders Lad , where
Lad ⊂ Fad , is the set of linear nonanticipative functionals F with
respect to (x, x̃, θ), which have the following form F (t, x, x̃, θ) =
F0 (t, x̃, θ) + F1 (t, x̃,θ)x(t).

Using linear encoders, the received signal y is given by dy(t) =
z(t, θ(t))[F0 (t, x̃, θ) + F1 (t, x̃, θ)x(t)]dt + dv(t), y(0) = 0.

Decoding: Because the decoded signal x̃ is a func-
tion of the received signal y and the channel θ, the opti-
mal decoder minimizing the mean square decoding error is
x̃opt (t, y, θ) = x̂(t, y, θ) = E[x(t)|F y ,θ

0 , t ], which is the condi-
tional mean. The conditional error variance for the decoder is
V (t, y, θ) = E[(x(t) − x̂(t, y, θ))2 |F y ,θ

0 , t ]. Moreover, they satisfy the
following generalized Kalman filtering equations [11]: dx̂(t, y, θ) =
A(t)x̂(t, y, θ)dt+B(t)u(t)dt+z(t, θ(t))V (t, y, θ)F1 (t, x̂, θ)[dy(t)−
z(t, θ(t))(F0 (t, x̂, θ) + F1 (t, x̂, θ)x̂(t, y, θ))dt], x̂(0) = x̄0 and V̇
(t, y, θ)=2A(t)V (t, y, θ)−z2 (t, θ(t))F 2

1 (t, x̂, θ)V 2 (t, y, θ)+G2 (t),
V (0) = V̄0 .

Encoding: From the point of view of the coding theorem, an en-
coder is optimal if it operates near the channel capacity, while ensuring
a decoding error that tends to zero exponentially fast, as the codeword
length tends to infinity. In our case, by choosing (F0 , F1 ) appropriately,
the conditional error variance is minimized, and the channel capacity
CT

f is achieved. The optimal encoder and decoder as well as the corre-
sponding conditional error variance are given by the following theorem.
The methodology is similar to one found in [11, Sec. 16.4], except that
the channel state information θ has to be taken into account, by working
with the conditional mutual information instead of the unconditional.

Theorem 4.5 (Coding theorem): Suppose the received signal is de-
fined by (2) and the source by (1). Then, the encoder, which achieves
the finite-time channel capacity CT

f , the optimal decoder, and the cor-
responding error variance are, respectively, given by

F ∗(t, x, x̂∗, θ) =

√
P

V ∗(t, y, θ)
(x(t)− x̂∗(t, y, θ)) (11)

dx̂∗(t, y, θ) = A(t)x̂∗(t, y, θ)dt + B(t)u(t)dt

+ z(t, θ(t))
√

PV ∗(t, y, θ)dy(t), x̂∗(0) = x̄0

(12)

V ∗(t, y, θ) = V ∗(0) exp

{
2
∫ t

0

A(s)ds−
∫ t

0

z2 (s, θ(s))Pds

}

+
∫ t

0

G2 (s) exp

{
2
∫ t

s

A(u)du

−
∫ t

s

z2 (u, θ(u))Pdu

}
ds, V ∗(0) = V̄0 . (13)

Proof: Substituting (11)–(13) into the conditional mutual informa-
tion of Theorem 4.1, we deduce that for finite time, the upper bound of
Lemma 4.3 is achieved (the proof is a variant of the one given in [11,
Sec. 16.4]).
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From (13), it follows that by employing the proposed optimal encod-
ing/decoding scheme the mean square estimation error V ∗(t, y, θ) is
independent of a control signal. This suggests that the encoder and de-
coder can be designed independent of the controller; thus, a separation
principle holds between the control and the communication designs.
Optimality of the separated design will be shown in the last section.

Theorem 4.6: 1) When G(t) �= 0, a sufficient condi-
tion for bounded asymptotic observability in the form of:
lim supt→∞ E(t) < ∞ is inf t∈[0 ,∞) (Pz2 (t, θ(t))− 2[A(t)]+ ) > 0,
P-a.s., where [a]+ = a if a ≥ 0 and [a]+ = 0 otherwise, and Cf =
lim infT →∞

P
2T

∫ T

0 E[z2 (t, θ(t))]dt.
2) When G(t) = 0, the aforementioned condition is also a sufficient

condition for asymptotic observability in the mean square sense [i.e.,
limt→∞ E(t) = 0].

3) For the case of a time-invariant analog system and when G �= 0
and z = 1, a sufficient condition for bounded asymptotic observabil-
ity [i.e., limt→∞ E(t) < ∞] is given by C = Cf = (P/2) > [A]+ .
Moreover, a necessary condition for such observability is given by
C ≥ [A]+ . Furthermore, the aforementioned conditions are also suffi-
cient and necessary conditions (if V̄0 �= 0) for asymptotic observability
[i.e., limt→∞ E(t) = 0], respectively, for the case of G = 0.

Proof (sufficient part): 1) Suppose inf t∈[0 ,∞) (Pz2 (t, θ(t)) −
2[A(t)]+ ) > 0, P-a.s. holds. Then, from (13), it follows that
by using the optimal encoder and decoder of Theorem 4.5,
lim supt→∞ V ∗(t, y, θ) < ∞ P-a.s. 2) This follows along the same
lines of 1). 3) Follows easily from (13).

Necessary part: Consider the case of G �= 0. If condition C =
P/2 ≥ [A]+ is not satisfied, then A > P/2 and consequently,
V ∗(t, y, θ)→∞ as t→∞, P-a.s. Therefore, since among all admis-
sible encoding/decoding schemes (including nonlinear ones), the pro-
posed encoding/decoding scheme is optimal [i.e., E(t) ≥ V ∗(t, y, θ),
P-a.s.], and the mean square estimation error E(t) associated with all
other admissible encoding schemes is going to be unbounded asymp-
totically, P-a.s. This implies that condition C ≥ [A]+ is a necessary
condition for bounded asymptotic observability. The result for the case
of G = 0 follows similarly.

Remark 4.7: When G(t) = 0, lim supt→∞(1/t)
∫ t

0 A(s)ds is
bounded, and the channel is the continuous-time AWGN channel
(z = 1), for which the channel capacity is C = P/2, it is easily
shown that another sufficient condition for asymptotic observability is
C = P/2 > lim supt→∞(1/t)

∫ t

0 A(s)ds. Moreover, a necessary con-

dition for asymptotic observability is C ≥ lim inf t→∞ 1/t
∫ t

0 A(s)ds.
By looking at the transmitted signal F ∗(t, x, x̂∗, θ) =√

P
V ∗(t ,y ,θ ) (x(t)− x̂∗(t, y, θ)), it can be concluded that the en-

coding scheme is equivalent to a controller that uses the weighted
error between the transmitted signal and its estimate. This kind of
solution in which only the error is transmitted resembles the usual
tracking strategy of feedback control theory. The goal of the output of
the decoder x̂ is to track the information signal.

B. Optimal Encoding/Decoding Scheme for Observability:
The Vector Case

In this section, we extend the previous results to the vector case. From
the classical control literature (e.g., [17]), we know that if A(t) is time
invariant [i.e., A(t) = A], it is diagonalizable, if there exists a similarity
transformation S, such that SAS−1 = Λ = diag(λ1 (A), . . . ,λn (A)),
where λi (A)’s are eigenvalues of A. Next, we assume A is diagonaliz-
able and λi (A)’s are real numbers (e.g., A is a symmetric matrix), and

we apply such a similarity transformation γ(t)
�
= Sx(t) to transform

system (1) into the following system

dγ(t) = Λγ(t)dt + SB(t)u(t)dt + SG(t)dw(t) (14)

where γ(0) = Sx̄0 and

Λ =

(
Λs 0
0 Λus

)
in which Λs block corresponds to the stable subspace and Λus block cor-
responds to the unstable subspace. From the previous part, we noticed
that the stable eigenvalues do not contribute to the capacity requirement
for observability. Thus, for the transformed system (14), without loss
of generality, we can restrict our attention to A matrices that contains
only unstable eigenvalues (e.g., A is positive semi definite). A similar
idea for discrete-time systems is used in [4] and [5].

In order to extend the previous result, the following assumptions are
introduced.

Assumption 4.8: In (14), it is assumed that SG(t)Gtr (t)Str and
SV̄0S

tr are diagonal matrices.
Notice that Assumptions 4.8 are satisfied if G(t)Gtr (t) = I (e.g.,

G is orthogonal), A is a symmetric system matrix (note that for A
symmetric, Str = S−1 ), and the initial condition x(0) has a cor-
responding covariance matrix of the form V̄0 = α.I, α ≥ 0. Under
Assumptions 4.8, it can be shown that the optimal mean square de-
coding error, obtained by transmitting γ(t), is diagonal. Notice that
γ(t)trγ(t)= xtr (t)StrSx(t) (= xtr (t)x(t) for A symmetric). Thus,
stabilizability of γ(t) is equivalent to the stabilizability of x(t) and
vice versa. Further, observability of γ(t) is equivalent to observability
of x(t), particularly for A symmetric. Therefore, without loss of gen-
erality, we can consider the transformed system (14) instead of system
(1) in our analysis. By replacing γ(t) with x(t), the results obtained in
Section IV-A1 do not change, and therefore, the finite-time ca-
pacity of the flat fading AWGN channel is given by CT

f =
P
2T

∫ T

0 E[z2 (t, θ(t))]dt.

By defining F1 (t, γ̃, θ)
�
= [f11 (t, γ̃, θ), . . . , fn n (t, γ̃, θ)], the re-

ceived signal is

dy(t) = z(t, θ(t))[F0 (t, γ̃, θ) + F1 (t, γ̃, θ)γ(t)]dt + dv(t) (15)

y(0) = 0. The optimal mean square error decoder is
γ̃opt (t, y, θ) = γ̂(t, y, θ) = E[γ(t)|F y ,θ

0 , t ] with error covariance

V (t, y, θ) = E[(γ(t)− γ̂(t, y, θ))(γ(t) − γ̂(t, y, θ))tr |F y ,θ
0 , t ]. More-

over [11], the decoder γ̂(t, y, θ) and the corresponding error covariance
V (t, y, θ) satisfy the following generalized Kalman filter equation:

dγ̂(t, y, θ) = Λγ̂(t, y, θ)dt + SB(t)u(t)dt

+ V (t, y, θ)F tr
1 (t, γ̂, θ)z(t, θ(t))[dy(t)

− z(t, θ(t))(F0 (t, γ̂, θ)

+ F1 (t, γ̂, θ)γ̂(t, y, θ))dt], γ̂(0) = Sx̄0 (16)

V̇ (t, y, θ) = 2ΛV (t, y, θ)− z2 (t, θ(t))V (t, y, θ)

.F tr
1 (t, γ̂, θ)F1 (t, γ̂, θ)V (t, y, θ) + SG(t)Gtr (t)Str ,

V (0) = SV̄0S
tr . (17)

Applying Assumptions 4.8, V (t, y, θ) is diagonal, e.g., V (t, y, θ) =
diag(V11 (t, y, θ), . . . , Vn n (t, y, θ)), and the ith diagonal ele-
ment of (17) is given by V̇ii (t, y, θ) = 2λi (A)Vii (t, y, θ)−
z2 (t, θ(t))V 2

ii (t, y, θ)f 2
ii (t, γ̃, θ) + [SG(t)Gtr (t)Str ]ii , where [SG

(t)Gtr (t)Str ]ii is the ith diagonal element of SG(t)G(t)trStr . Conse-
quently, following the same methodology used to prove Theorem 4.5,
we have the following theorem.
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Theorem 4.9: Suppose Assumptions 4.8 hold, the received signal
is defined by (15) and the source by (14). Then, the encoder,
which achieves the finite-time channel capacity CT

f = P
2T

∫ T

0 E[z2

(t, θ(t))]dt, the optimal decoder, and the corresponding er-
ror covariance are given by F ∗(t, γ, γ̂∗, θ) = F ∗

0 (t, γ̂∗, θ) +∑n

i=1f
∗
ii (t, γ̂

∗, θ)γi (t), F ∗
0 (t, γ̂∗, θ)=−

∑n

i=0 f ∗ii (t, γ̂
∗, θ)γ̂∗i (t, y, θ),

f ∗ii (t, γ̂
∗, θ) =

√
α i P

V ∗
i i

(t ,y ,θ ) , dγ̂∗(t, y, θ) =Λγ̂∗(t, y, θ)dt + SB(t)u(t)

dt + z(t, θ(t))[
√

α1PV ∗
11 (t, y, θ), . . . ,

√
αn PV ∗

n n (t, y, θ)]trdy(t),

V ∗
ii (t, y, θ) = [SV̄0S

tr ]ii exp

{
2
∫ t

0

λi (A)ds

−
∫ t

0

αiz
2 (s, θ(s))Pds

}
+
∫ t

0

[SG(s)Gtr (s)Str ]ii

. exp

{
2
∫ t

s

λi (A)du −
∫ t

s

αi z
2 (u, θ(u))Pdu

}
ds

(18)

where γ̂∗i (t, y, θ) is the ith element of γ̂∗(t, y, θ) and 0 ≤ αi ≤ 1,∑n

i=1 αi = 1.
Next, we have the following theorem that extends Theorem 4.6 to

the vector case.
Theorem 4.10: Suppose Assumptions 4.8 hold and the en-

coder/decoder of Theorem 4.10 is employed.
1) If there exists a set of {αi}n

i=1 such that 0 ≤ αi ≤ 1,
∑n

i=1 αi =
1 in which ∀i = 1, 2, . . . , n, P − a.s.,

inf
t∈[0 ,∞)

(αiP z2 (t, θ(t))− 2[Re(λi (A))]+ ) > 0 (19)

then, for the case of G(t) �= 0, we have bounded asymptotic
observability in the sense lim supt→∞ E[(γ(t)− γ̃(t))tr (γ(t)−
γ̃(t))|F y ,θ

0 , t ]<∞. Moreover, for the case of G(t) = 0, we have asymp-
totic observability in the mean square sense [i.e., limt→∞ E[(γ(t)−
γ̃(t))tr (γ(t)− γ̃(t))|F y ,θ

0 , t ] = 0].
2) For the time-invariant analog of (14) and when G �= 0 and z =

1, a sufficient condition for bounded asymptotic observability [i.e.,
limt→∞ E[(γ(t)− γ̃(t))tr (γ(t)− γ̃(t))|F y ,θ

0 , t ] < ∞] is given by

C = Cf =
P

2
>

∑
{i ;R e(λi (A ))≥0}

Re(λi (A)). (20)

Moreover, a necessary condition for such observability is given by

C = Cf =
P

2
≥

∑
{i ;R e(λi (A ))≥0}

Re(λi (A)). (21)

Furthermore, the aforementioned conditions are also sufficient and nec-
essary conditions for asymptotic observability [i.e., limt→∞ E[(γ(t)−
γ̃(t))tr (γ(t)− γ̃(t))|F y ,θ

0 , t ] = 0], respectively, for G = 0.
Proof (sufficient part): 1) Follows from (18).
2) If condition (20) holds, there exists a set {αi}n

i=1 such that
0 ≤ αi ≤ 1 and

∑n

i=1 αi = 1 in which αiP/2 > [Re(λi (A))]+ . Sub-
sequently, from (18), the result is obtained.

Necessary part: 2) Consider the case of G �= 0. If condition (21)
is not satisfied, then for each set {αi}n

i=1 such that 0 ≤ αi ≤ 1,
and
∑n

i=1 αi = 1, there exists one element αj ∈ {αi}n
i=1 such that

αj P/2 < [Re(λj (A))]+ . This implies that V ∗
j j (t, y, θ)→∞ as t→

∞. Subsequently, there is no other encoding scheme with asymptotic
bounded mean square estimation error. The result for the case of G = 0
follows similarly.

V. OPTIMAL CONTROLLER, SUFFICIENT CONDITION

FOR STABILIZABILITY

In this section, we propose a state feedback controller that minimizes
a quadratic payoff while stabilizing the time-invariant analog of system
(1) [e.g., when A(t) = A, B(t) = B, G(t) = G, for all t]. Similarly
to the previous section, we assume that there exists a similarity trans-
formation S under which SAS−1 = Λ, in which we can consider the
time-invariant analog of transformed system (14). Since, it is assumed
that the channel state information is known, for a fixed channel sample
path θ, the state feedback controller is chosen to minimize the following
quadratic payoff

JT =
1
T

E

{∫ T

0

[γtr (t)γ(t) + utr (t)Ru(t)]dt

}
(22)

where R > 0 is symmetric weighting matrix. Moreover, we also
consider the infinite horizon J̄ = limT →∞ JT . For the infinite hori-
zon, we assume the controllability rank condition Rank(C) =

n, C �= ( B AB · · · An−1B ).
According to the classical separation theorem of estimation and

control (see [17, pp. 389–395] and [11]), the optimal controller that
minimizes (22) subject to a flat fading AWGN communication channel
and the linear encoder F (t, γ, γ̃, θ) = F0 (t, γ̃, θ) + F1 (t, γ̃, θ)γ(t) is
separated into a state estimator and a certainty equivalent controller
given by

u∗(t) = −K(t)γ̂(t, y, θ), K(t) = R−1BtrP (t) (23)

where the state estimator γ̂(t, y, θ) is the solution of (16) with the
corresponding observer Riccati equation (17), and P (t) is the solution
of the following regulator Riccati equation

−Ṗ (t) = I − P (t)SBR−1BtrStrP (t) + 2ΛP (t) (24)

where P (T ) = 0. For a fixed sample path of the channel, it fol-
lows that if the observer Riccati equation has a steady-state solu-
tion V̄ and the regulator Riccati equation has a steady-state solution
P̄ , then the averaged criterion J̄ = limT →∞

1
T

E{
∫ T

0 [γtr (t)γ(t) +
u∗,tr (t)Ru∗(t)]dt} can be expressed in the alternative form [17,
pp. 395]

J̄ = lim
T →∞

1
T

E

{∫ T

0

[γtr (t)γ(t) + u∗,tr (t)Ru∗(t)]dt

}
= T rac[P̄ SGGtrStr + V̄ K̄ trRK̄ ] (25)

where K̄ = R−1Btr P̄ . From [17, Th. 3.5, p. 231], it follows that
if the controllability rank condition holds, the Riccati equation (24)
has steady-state solution limt→∞ P (t) = P̄ . Under Assumptions 4.8,
and assuming the optimal encoding/decoding scheme of Theorem 4.9
is used, then the observer Riccati equation (17) is reduced to the

linear time-varying equation V (t, y, θ) = V ∗(t, y, θ)
�
= diag(V ∗

11
(t, y, θ), . . . , V ∗

n n (t, y, θ)), V̇ ∗
ii (t, y, θ) = Ãi (t, θ(t))V ∗

ii (t, y, θ) +

[SGGtrStr ]ii , V ∗
ii (0, y, θ) = [SV̄0S

tr ]ii , i = 1, . . . , n, Ãi (t, θ(t))
�
=

2λi (A)− αiz
2 (t, θ(t))P , which shows the solution is inde-

pendent of the sample path y. Moreover, if in addition,
|Ãi (t, θ)| ≤ k, k > 0, 1 ≤ i ≤ n for all θ ∈ �q , 0 ≤ t ≤ T , the
channel fading process converges to a random variable for large t,
which implies the following limit exists, limt→∞ z2 (t, θ(t)) = z2

∞,

P-a.s., and Ãi,∞
�
= 2λi (A)− αiz

2
∞P < 0, P-a.s., then limt→∞ V (t, y,

θ) = V̄ , P-a.s., where V̄ = diag(V̄11 , . . . , V̄n n ), V̄ii = [SGGtr

Str ]ii /(αiz
2
∞P − 2λi (A)), i = 1, . . . , n. Such a fading process is
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encountered in practice when the Doppler spread of the channel is
zero (e.g., there is no relative motion between the transmitter and the
receiver [9]). Notice that the statements of Theorems 4.10 and 4.9 do
not assume a random variable fading process. Clearly, when G = 0,
then V̄ = 0, P-a.s.

Proposition 5.1: Consider the time-invariant analog of system (14)
and assume Rank(C) = n.

Then, for a fixed sample path of the channel, we have the following
(P-a.s.).

1) Assuming G �= 0 and V (t, y, θ)→ V̄ , as t→∞, by using the
optimal policy (23), we have E||γ(t)||2 < ∞ and E||u(t)||2R < ∞, as

t→∞, where ||u(t)||2R
�
= utr (t)Ru(t).

2) Assuming G = 0 and V (t, y, θ)→ 0, as t→∞, by using the
optimal policy (23), we have E||γ(t)||2 → 0 and E||u(t)||2R → 0, as
t→∞.

Proof: This follows from (25).
Next, by using Theorem 4.10 and Proposition 5.1, the following

theorem for bounded asymptotic and asymptotic stabilizability in the
mean square sense is derived.

Theorem 5.2: Consider the time-invariant analog of the system (14),
assume Rank(C) = n and Assumptions 4.8 hold.

Then, the following cases occur.
1) For the case when G �= 0 and z = 1, a sufficient condition for

bounded asymptotic stabilizability in the mean square sense is given by

C =
P

2
>

∑
{i ;R e(λi (A ))≥0}

Re(λi (A)). (26)

2) For the case when G = 0 and z = 1, (26) is also a sufficient
condition for asymptotic stabilizability in the mean square sense.

3) For the case when G = 0 and in the presence of fading (i.e.,
z �= 1), (19) is a sufficient condition for asymptotic stabilizability in
the mean square sense.

Proof: 1) Suppose the condition (26) is satisfied. Then, by us-
ing the optimal encoding/decoding scheme proposed in Theorem 4.9,
limt→∞ V (t, y, θ) = V̄ . Consequently, from Proposition 5.1, it fol-
lows that by using the optimal control policy (23) and the optimal
encoding/decoding scheme proposed in Theorem 4.9, the stabilizabil-
ity condition is guaranteed. 2) It is shown along the same lines of 1).
3) It is shown along the same lines of 1).

Remark 5.3: As it was shown in this section, a separation princi-
ple holds between the design of the communication and the control
subsystems. The efficient encoding/decoding scheme that minimizes
the mean square estimation error and achieves the channel capacity is
given in Section IV, while the optimal certainty equivalent controller
that optimizes a quadratic cost functional is given by (23). Although
we designed an optimal encoder/decoder pair and controller separately,
the whole system is optimal since the separation principle holds and
the communication system sends information at capacity.
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Adaptive Control for the Systems Preceded by Hysteresis

Xinkai Chen, Chun-Yi Su, and Toshio Fukuda

Abstract—Hysteresis hinders the effectiveness of smart materials in sen-
sors and actuators. It is a challenging task to control the systems with
hysteresis. This note discusses the adaptive control for discrete time lin-
ear dynamical systems preceded with hysteresis described by the Prandtl–
Ishlinskii model. The time delay and the order of the linear dynamical sys-
tem are assumed to be known. The contribution of the note is the fusion of
the hysteresis model with adaptive control techniques without constructing
the inverse hysteresis nonlinearity. Only the parameters (which are gen-
erated from the parameters of the linear system and the density function
of the hysteresis) directly needed in the formulation of the controller are
adaptively estimated online. The proposed control law ensures the global
stability of the closed-loop system, and the output tracking error can be
controlled to be as small as required by choosing the design parameters.
Simulation results show the effectiveness of the proposed algorithm.

Index Terms—Adaptive control, discrete time linear systems, hysteresis,
Prandtl-Ishlinskii model.
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