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Abstract— This paper is concerned with control of stochastic
systems subject to limited feedback channel capacity. Specifically,
the design of an encoder, decoder, and controller subject to the
mean square observability and stabilizability is considered. It is
shown that by transmitting information which is equal to the
Shannon lower bound, mean square observability and stabiliz-
ability over Additive White Gaussian Noise (AWGN) channel is
achieved. Furthermore, a modified definition for channel capacity
and rate distortion is presented which is suitable for control
applications and real time communication.

I. I NTRODUCTION

Recent advances in technology have created an increasingly
demand on networks. Extensive research activity has been
devoted to the question of how much bit rate must be allocated
to each components of a network. This line of research
is motivated by applications in which the communication
data rates from the channel input to the controller input are
limited and feedback is available from the output of the
channel to the input of the channel. In such applications, due
to limited capacity (Shannon capacity per source message)
constraint, the main assumption is that the source outputs
can not be represented with high precision at the end of
communication system; and only a distorted version of source
output is available. Therefore, the fundamental question in
limited capacity applications is to find an encoding and/or
stabilizibility schemes for reliable data reconstruction and/or
stabilizability by transmitting information from source as
minimum as possible.
The present paper tries to address this question. This paper is

concerned with the control/communication system of Fig. 1.
This block can be viewed as a basic model for the Networked
Control Systems (NCS’s) [1] in which the dynamical sys-
tem (source) and the corresponding controller are connected
through a shared communication media; while, there is un-
shared or high capacity communication link from controller
to source. Thus, the connection from sensors to controller is
subject to limited capacity constraint; while the connection
from controller to the source is unconstraint (direct). The
Control/communication system of Fig. 1 may correspond to
tele-operation systems used for space exploration devices or
wireless microsurgery. In such systems, the communication
from dynamical system to remote controller is subject to
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Fig. 1. A control/communication system

limited capacity constraint due to limited power supply of such
devices; while, the connection from controller to dynamical
system is direct due to unlimited communication resource at
the base station where the controller is located.
The control/communication system of Fig. 1 is defined on
a complete probability space(Ω,F(Ω), P ) with filtration

{Ft}t≥0; t ∈ N+
4
= {0, 1, 2, ...}, where ,Yt, Kt, Zt Z̃t,

K̃t, Ỹt, X̂t and Ut, t ∈ N+, are Random Variables (R.V.’s)
denoting the source message, an innovation process associated
with the source message (in the presence or absence of
feedback), channel input codeword, channel output codeword,



the reproduction of the innovation process, the reproduction of
the source message, the estimated state variables in the mean
square sense, and the control input to the source, respectively.
Further, suppose the channel noise sequence{Nt; t ∈ N+} is
an orthogonal Gaussian process and{αt}t∈N+ and{γt}t∈N+

are deterministic real valued (to be defined when designing
the encoding scheme).
The objective is to achieve reliable data reconstruction (known
also as observability) in the sense thatK̃t (resp.Ỹt) follows
Kt (resp.Yt) measured by the mean square error, as well as, to
achieve mean square stabilizability in the sense that the mean
square value of the state variables is bounded for all times,
when there is a limited data rate constraint.
For most part, research on reliable data reconstruction and sta-
bilizability subject to limited capacity constraint has focused
on the basic problem of Fig. 1, beginning with [2] and [3]
and continuing with [4]-[15]. Various publications have in-
troduced necessary and sufficient conditions for observability
and stabilizability of Fig. 1 in various senses [2], [4]-[10],
[12]-[15]. In most part, these conditions are given in the form
of a lower bound on the capacity in terms of rate of change
of the dynamical system. In particular, it is already known
that the eigenvalues rate condition (i.e., the summation of the
logarithms of the magnitude of the unstable eigenvalues of the
open loop discrete time-invariant systems) is the minimum
achievable capacity for observability and stabilizability of
linear time-invariant dynamical systems. In most part, after
finding a necessary condition in terms of a lower bound on
the capacity, an encoder, decoder and controller are proposed
which can achieve the lower bound found as a necessary
condition. Subsequently in these publications, the minimum
achievable capacity for observability and stabilizability and
the encoder, decoder and controller which can achieve the
minimum capacity have been proposed.
In this paper, we employ the Shannon lower bound and the
rate distortion theory to obtain tight conditions on the channel
capacity for mean square observability of partially observed
dynamical systems subject to Gaussian measurement and
process noises. This is obtained by relating the Shannon lower
bound to the definitions of observability and stabilizability.
The advantage of using Shannon lower bound to present
conditions for observability and stabilizability is its relation
to observability and stabilizability definition employed. Subse-
quently, it overcomes the drawbacks of using Shannon capacity
in moment observability and stabilizability. Other advantage is
finding a condition in terms of Shannon entropy rate which
can be easily computed and can imply the eigenvalues rate
condition.
Similar results for controlling fully observed linear dynam-
ical systems subject to linear quadratic pay off have been
reported in [9] in which the idea of source-channel matching
is employed to obtain the results. Moreover, similar results
to [9], previously have been reported in [16] where sep-
aration between communication and control system design
is established under optimal transmission (encoder/decoder
design) and Linear Quadratic Gaussian (LQG) pay-off (control

design). Nevertheless, in the present paper using the idea of
source-channel matching, the results of [9] are extended to
the case of partially observed linear dynamical systems sub-
ject to measurement noise. Furthermore, since the separation
principle between the design of communication and stabilizing
controller holds, the communication and stabilizing controller
is designed separately; while the whole system is optimal (with
respect to linear quadratic pay off).
In control applications and real time communication, the
causality of communication channel in the sense that the
channel output does not anticipate the channel input as well
as the causality of the rate distortion between message and the
corresponding reproduction in the sense that the reproduction
does not anticipate the message, are often desirable or even
essential. Therefore, it is important to modify the classical
definition of capacity and rate distortion by considering the
causality constraint. In this paper a modified definition of
channel capacity and rate distortion by considering causality
constraint is also given [17].
This paper is organized as follows. In Section II, the problem
formulation is given. In Section III, a modified definition for
channel capacity and rate distortion is presented which is
often desirable especially in control applications and real time
communication. Section IV is concerned with mean square
observability of the control/communication system of Fig. 1
and Section V deals with the mean square stabilizability of
the control/communication system of Fig. 1.

II. PROBLEM FORMULATION

Consider the control/communication system of Fig. 1, where
Yt ∈ Yt, Kt ∈ Kt Zt ∈ Zt, Z̃t ∈ Z̃t, K̃t ∈ K̃t,
Ỹt ∈ Ỹt, Ut ∈ Ut are Random Variables (R.V.’s) denoting
the source message, innovation, channel input, channel output,
reproduced innovation, reproduced source message, and the
control input to the source, respectively, at timet ∈ N+. It
is assumed thatYt, Kt, Zt, Z̃t, Z̃t, Ỹt, K̃t, and Ũt are com-
plete separable metric spaces and(Yt,F(Yt)), (Kt,F(Kt)),
(Zt,F(Zt)), (Z̃t,F(Z̃t)), (Ỹt,F(Ỹt)), (K̃t,F(K̃t)), and
(Ut,F(Ut)), Z̃t ⊆ Zt are measurable spaces (e.g.,F(Yt)
is an σ-algebra of subsets of the setYt generated by closed
set). ForT, n ∈ N+, sequences of the R.V.’s with lengthT
and n of the source, innovation and channel, are identified
with the product measurable spaces,(Y0,T−1,F(Y0,T−1))

4
=

×T−1
k=0 (Yk,F(Yk)), and similarly for the innovation, channel

input, channel output, reproductions and control input to the
source, respectively.

Throughout, sequences of R.V.’s are denoted byY T 4
=

(Y0, Y1, ..., YT ) for T ∈ N+. log(.) denotes logarithm of
base2. A stochastic kernel,P (dF ;x), is a mappingP :
Â × A → [0, 1] which satisfies i) For everyx ∈ A, the set
function P (:; x) is a probability measure on̂A, and ii) For
everyF ∈ Â, the functionP (dF ; .) is A-measurable ((A,A),
(Â, Â) are measurable spaces).
The different blocks of Fig. 1 are described below.
Information Source: The information source is defined by the
marginal probability distributionP (dY T ) = fY T dY T , where



Y T is the source output produced by the following linear
discrete time stochastic partially observed control system.

{
Xt+1 = AXt + NUt + BWt, X0 = X,
Yt = CXt + DGt,

(1)

where t ∈ N+, Xt ∈ <q is the unobserved (state) process,
Yt ∈ <d is the observed process,Ut ∈ <o is the control signal,
Wt ∈ <m, Gt ∈ <l in which {Wt; t ∈ N+} is Independent
Identically Distributed (i.i.d.)∼ N(0, Im×m) and {Gt; t ∈
N+} is i.i.d. ∼ N(0, Il×l). Moreover,X0 ∼ N(x̄0, V̄0) and
{Wt, Gt, X0; t ∈ N+} are mutually independent.
Communication Channel: The communication channel at
time t ∈ N+ is described byZ̃t = Zt + Nt (E[Z

′
tZt] ≤ Pt),

whereZt, Z̃t ∈ <d are the channel input and output at time
t and the stochastic process{Nt ∈ <d; t ∈ N+} is an
orthogonal zero mean Gaussian process independent ofZt.
Encoder: We define and discuss the following types of en-
coders.
Class A) The encoder at any timet ∈ N+ is modeled by a
stochastic kernelP (dZt; yt, ut−1).
Class B) The encoder at any timet ∈ N+ is modeled by a
stochastic kernelP (dZt; yt, ut−1, z̃t−1).
Class C) The encoder at any timet ∈ N+ is modeled by a
stochastic kernelP (dZt; yt, z̃t−1).
Decoder: We define and discuss the following types of de-
coders.
Class A) The decoder at any timet ∈ N+ is modeled by a
stochastic kernelP (dK̃t; z̃t) (resp.P (dỸt; z̃t)).
Class B) The decoder at any timet ∈ N+ is modeled by a
stochastic kernelP (dK̃t; z̃t, ut−1) (resp.P (dỸt; z̃t, ut−1)).
Controller: The control law at any timet ∈ N+ is modeled
by a stochastic kernelP (dUt; z̃t).
The objective of this paper is the mean square observability
and stabilizability of the control/communication system of Fig.
1, when there is a limited amount of information constraint for
describing source outputs, as defined as follows.

Definition 2.1: (Observability in the Mean Square Sense).
Consider the block diagram of Fig. 1. The source is called
observable in the mean square sense if there exists a finite
Dv ≥ 0, a control sequence, an encoder, and a decoder
such that limT→∞ 1

T

∑T−1
t=0 E||Kt − K̃t||2 ≤ Dv (resp.

limT→∞ 1
T

∑T−1
t=0 E||Yt − Ỹt||2 ≤ Dv), where ||.|| is the

Euclidian norm.

Definition 2.2: (Stabilizability in the Mean Square Sense).
Consider the block diagram of Fig. 1. The source is called
stabilizable in the mean square sense if there exists a finite
Dc

v ≥ 0, a controller, an encoder, and a decoder such that
limT→∞ 1

T

∑T−1
t=0 E||Xt||2C′C ≤ Dc

v.

Throughout, when we are concerned with observability, it is
assumed that(A,C) is detectable and(A, (BB

′
)

1
2 ) is stabiliz-

able; while, when we are also concerned with stabilizability,
it is also assumed that((C

′
C)

1
2 , A) is detectable and(A,N)

is stabilizable [18].

III. M ATHEMATICAL PRELIMINARIES

In this section we give a modified definition for channel
capacity and rate distortion which is often desirable in control
applications and real time communication. We also recall the
classical Shannon lower bound which is used in subsequent
sections to describe the conditions for mean square observ-
ability and stabilizability.
For general feedback channels causality is often desirable
especially in control or real time communication in which
the channel output does not anticipate the channel input. The
causality between stochastic kernel connectingY T to Ỹ T is
defined as follow.

Definition 3.1: (Causality)[17],[19] Given two sequences
Y T andỸ T , we shall say that the stochastic kernel connecting
Y T to Ỹ T is causal if and only if{P (dỸt; yn, ỹt−1) =
P (dỸt; yt, ỹt−1)}T

t=0 ∀n > t. The causality of the stochastic

kernel connectingY T to Ỹ T is denoted byY T C→ Ỹ T .
Since the causality of the communication channel is often an
essential future of communication channels used in control or
real time communication, we have to modify the definition
of the capacity by considering the causality constraint. This
involves the restricted mutual information which is defined as
follows.

Definition 3.2: (Restricted Mutual Information)[17],[19]
Consider the sequences of R.V.’sY T−1 andỸ T−1 in which the
stochastic kernel connectingY T−1 to Ỹ T−1 is causal. Then,
the mutual information fromY T−1 to Ỹ T−1 is defined by.

I(Y T−1; Ỹ T−1)
∣∣∣
R

4
= EP (dỸ T−1,dY T−1) log

P (dỸ T−1; yT−1)
P (dỸ T−1)

∣∣∣
R

=
T−1∑
t=0

EP (dỸ t,dY t) log
P (dỸt; yt, ỹt−1)
P (dỸt; ỹt−1)

4
=

T−1∑
t=0

I(Y t; Ỹt|Ỹ t−1). (2)

Now, we are ready to define the information capacity for causal
channels.

Definition 3.3: (Information Capacity for Causal
Channels)[17],[19]. Consider a causal communication
channel (with memory and feedback)Zn−1 C→ Z̃n−1

connecting input sequenceZn−1 to output sequencẽZn−1,
and constraint setMCI on the possible joint distribution
functions, P (dZn−1). The causal information capacity for
the time horizonn is defined as follow.

Cn|R
4
= sup

P (dZn−1)∈MCI

I(Zn−1; Z̃n−1)
∣∣∣
R
. (3)

Subsequently, the capacity is defined by

C|R = lim
n→∞

1
n
Cn|R (4)

provided the limit exists.
Please note that since Discrete Memoryless Channels (DMC’s)
as well as AWGN channel are causal, for such channels (4) is



equal to the classical Shannon capacity,C, defined in [20].
Causality of the rate distortion between the source message
and the corresponding reproduced message is also desir-
able in control applications and real time communication.
Subsequently, we have the following modified definition for
information rate distortion.

Definition 3.4: (Information Rate Distortion for Causal
Systems)[17],[19] LetY T−1 and Ỹ T−1 denote sequences of
length T of the source output and the reproduction of the
source output, respectively. Let also

MDC = {P (dỸ T−1; yT−1);
T−1∑
t=0

Eρt(Y t, Ỹ t) ≤ Dv} (5)

denotes the distortion constraint where{ρt(., .); t ∈ N+} is a
sequence of distortion measures (which are continuous in the
second argument and non-negative functions) andDv ≥ 0 is
the distortion level.
Then, causal rate distortion function is defined by

RT (Dv)|R
= inf

P (dỸ T−1;yT−1)∈MDC

I(Y T−1; Ỹ T−1)
∣∣∣
R
. (6)

Subsequently, the rate distortion is defined by

R(Dv)|R = lim
T→∞

1
T

RT (Dv)|R. (7)

Moreover, the non-anticipative stochastic kernel which
achieves the infimum of the rate distortion function is given
by

P ∗(dỸ T−1; yT−1) =
T−1∏
t=0

P ∗(dỸt; yt, ỹt−1),

P ∗(dỸt; yt, ỹt−1) =
esρt(y

t,ỹt)P ∗(dỸt; ỹt−1)∫
Ỹt

esρt(yt,ỹt)P ∗(dỸt; ỹt−1)
(8)

wheres ≤ 0 is the solution ofs = d
dDv

RT (Dv)|R.
From (8) follows that the causal rate distortion is the sequential
rate distortion introduced in [22].
Please note that for sources producing independent asymptotic
stationary sequences, the information rate distortion functions
for causal systems (i.e.,RT (Dv)|R andR(Dv)|R) are equal to
the classical Shannon rate distortion functions (i.e.,RT (Dv)
andR(Dv) defined in [20] and [21]).
Next, we give data processing inequalities for causal systems,
using the restricted mutual information. The failure of sym-
metry associated with the restricted mutual information affects
the derivation of data processing inequalities. Specifically,
the derivation of classical data processing inequalities [20] is
based on the symmetry of mutual information. Here, we need
the Markovian property, which is equivalent to conditional in-
dependence assumption. We shall sayY T → Zn → Z̃n forms
a Markov chain if P (dZ̃t; zt, z̃t−1, yT )= P (dZ̃t; zt, z̃t−1)
(t ∈ {0, 1, ..., n}) P-a.s.

Definition 3.5: (Data Processing Inequalities For Causal
Systems)[17],[19] LetY T → Zn → Z̃n → Ỹ T forms a

Markov chain, andZn C→ Z̃n, Y T C→ Ỹ T .
Then

I(Zn; Z̃n)
∣∣∣
R
≥ I(Y T ; Z̃n) ≥ I(Y T ; Ỹ T )

∣∣∣
R
, (9)

whereI(.; .) is the classical mutual information [20].
Next, we recall the classical Shannon lower bound which is
a tight approximation of the classical rate distortion function;
and subsequently, a tight lower bound for causal rate distortion
when the classical rate distortion and causal rate distortion are
the same.

Lemma 3.6:(Shannon Lower Bound). Let Y T−1,
Yt ∈ <d, 0 ≤ t ≤ T − 1 be a sequence with length
T produced by the sourceP (dY T−1) = fY T−1dY T−1.
Consider the following distortion constraintMDC =
{P (dỸ T−1; yT−1); 1

T

∑T−1
t=0 ρ(yt, ỹt) ≤ Dv}, where

ρ(yt, ỹt) = ρ(yt − ỹt) : <d → [0,∞) is continuous.
Then
i) A lower bound for 1

T RT (Dv) is given by

1
T

RT (Dv) ≥ 1
T

HS(Y T−1)− max
h∈GD

HS(h), (10)

where HS(.) is the Shannon differential entropy [20] and

GD is defined byGD
4
= {h : <d → [0,∞);

∫
<d h(ξ)dξ =

1,
∫
<d ρ(ξ)h(ξ)dξ ≤ Dv, ξ ∈ <d}. Moreover, when∫

<d esρ(ξ)dξ < ∞ for all s < 0, then h∗(ξ) ∈ GD that
maximizesHS(h) is

h∗(ξ) =
esρ(ξ)

∫
<d esρ(ξ)dξ

,

∫

<d

ρ(ξ)h∗(ξ)dξ = Dv. (11)

Subsequently, when R(Dv) and HS(Y)
4
=

limT→∞ 1
T HS(Y T−1) exist, the Shannon lower bound,

RS(Dv), is given by

R(Dv) ≥ HS(Y)− max
h∈GD

HS(h)
4
= RS(Dv). (12)

ii) Suppose the difference distortion measureρ(.) satisfies the
conditions a,b,d of ([24], pp. 2029),

∫
<d esρ(ξ)dξ < ∞ for all

s < 0, HS(Y) > −∞ and there exists any∗ ∈ <d such that
Eρ(y − y∗) < ∞, ∀y ∈ <d.
Then, in the limit asDv → 0, the lower bound is as-
ymptotically exact. That is, for the case whenR(Dv) and

HS(Y) exist, limDv→0

[
R(Dv)−

(
HS(Y)−HS(h∗)

)]
= 0.

Furthermore, for independent asymptotic stationary sources
R(Dv)|R = R(Dv) = RS(Dv).
Proof: Follows from [24] by considering the method proposed
in ([21], pp. 140) or [25].

IV. M EAN SQUARE OBSERVABILITY OVER AWGN
CHANNEL

In this section, it is shown that if the capacity is at least equal
to the Shannon lower bound, there exists an encoding scheme
which guarantees the mean square observability over AWGN
channel. This result together with the results of [15] implies
that the Shannon lower bound is the minimum achievable
capacity for the mean square observability. For simplicity, we



consider the case ofYt ∈ < (the case ofYt ∈ <d follows
similarly).
Consider the control/communication system of Fig. 1. Assume
the encoder and decoder is of Class A, and the innovation gen-
erator block of Fig. 1 produces an orthogonal Gaussian inno-
vations processKt = Yt−E[Yt|σ{Y t−1, U t−1}] ∼ N(0, Λt),
whereσ{.} denotes theσ-algebra andΛt

4
= CVtC

′
+DD

′
in

which

Vt+1 = AVtA
′ −AVtC

′
(CVtC

′
+ DD

′
)−1CVtA

′

+BB
′
, V0 = V̄0. (13)

Next, for the distortion constraint MDC =
{P (dK̃T−1; kT−1); 1

T

∑T−1
t=0 E||Kt − K̃t||2 ≤ Dv},

consider the rate distortion function of Definition 3.4. For
Dv < mint∈N+ Λt, the minimizing kernel is given by

P ∗(dK̃t; kt, k̃t−1) = q∗(K̃t|kt)dK̃t,

q∗(K̃t|kt) ∼ N(βtKt, βtDv), βt
4
= 1− Dv

Λt
. (14)

Subsequently, the solution to the rate distortion is given by
RT (Dv)|R =

∑T−1
t=0

1
2 log Λt

Dv
. Next, under assumption of

(C,A) is detectable,(A, (BB
′
)

1
2 ) is stabilizable, andD 6= 0,

limT→∞ ΛT = Λ∞ [18], where Λ∞ = CV∞C
′

+ DD
′

and V∞ is the solution of the Algebraic Riccati equation
corresponding to the Riccati equation (13). Therefore, for
Dv < mint∈N+ Λt, we have

R(Dv)|R =
1
2

log
Λ∞
Dv

. (15)

On the other hand, for the same distortion measure, as
above, the Shannon lower bound,RS(Dv), for the innovations
process{Kt}t∈N+ is given by

R(Dv)|R = R(Dv) ≥ RS(Dv)
4
= Hs(K)− max

h∈GD

HS(h)

=
1
2

log
Λ∞
Dv

. (16)

Subsequently, from (15) and (16) it follows that forDv <
mint∈N+ Λt, the Shannon lower bound is exact.
Next, a matched channel (e.g., a communication channel in
which the channel input-to-channel output behaves like the
rate distortion infimizing stochastic kernel [22]) corresponding
to (14) is the following AWGN channel

Z̃t = Zt + Nt, Zt ∈ <
E[Z2

t ] ≤ Pt, Nt orthogonal∼ N(0,
Dv

βt
), t ∈ N+.

(17)

Next, if we chooseαt = 1 andγt = βt, the power constraint
associated to this encoding scheme isPt = E[K2

t ] = Λt and
for Dv < mint∈N+ Λt, it can be easily shown that the capacity
is C|R = RS(Dv); alsoE||Kt − K̃t||2 = Dv, ∀t ∈ N+. That
is, using this encoding scheme the mean square observability
of innovations process over the matched channel (17) with
capacityRS(Dv) can be obtained.

On the other hand, from ([15], Theorem 3.3), we conclude that
C|R ≥ RS(Dv) is also a necessary condition for existence of
an encoding scheme (e.g., for the existence ofαt andγt) for
the mean square observability. Subsequently, following this
result and the above result, we can conclude that forDv <
mint∈N+ Λt, C|R = RS(Dv) is the minimum achievable
capacity for the mean square observability of innovations
process over the matched AWGN channel (17), where this
capacity is obtained forαt = 1 andγt = βt.
In the above analysis we have shown that over the matched
AWGN channel (17), reliable data reconstruction is possible
by transmitting information from the source at least equals to
RS(Dv). Nevertheless, in rare situations the communication
channel is of the form (17) and it is normally of the following
form.

Z̃t = Zt + Nt, Zt ∈ <
E[Z2

t ] ≤ Pt, Nt orthogonal ∼ N(0,W ). (18)

However, over this communication channel by choosingαt =√
βtW
Dv

andγt =
√

Dvβt

W , we can still have the mean square
observability of innovations process by transmittingC|R =
RS(Dv) bits in each time step. In other words,C|R = RS(Dv)
is also the minimum achievable capacity over the AWGN
channel (18) in which this capacity is obtained by choosing

αt =
√

βtW
Dv

andγt =
√

Dvβt

W .
Please note that from classical information theoretic results
(e.g., information transmission theorem [21] [23]), we already
know that for the (asymptotic) stationary ergodic sources over
DMC’s or AWGN channels, the rate distortion and subse-
quently the Shannon lower bound is the minimum achievable
capacity for observability. This result is obtained following
the random coding argument in which it does not address a
specific encoding scheme for reliable data reconstruction of
a given source over a given channel. Nevertheless, in this
section, we investigated the validity of this theorem for the
Gaussian system (1) over AWGN channel (18) by proposing
a specific encoding scheme. Further, we relate this rate to the
parameters of the Gaussian system (1), in particular to the
Shannon entropy rate.

V. M EAN SQUARE STABILIZABILITY

In the previous section when the encoder is of Class A, we
proposed an encoding scheme that reliably transmits informa-
tion for the partially observed system (1) over AWGN channel
(18). Next, we can use this transmitted information to stabilize
the dynamical system (1). Since we are interested in mean
square stabilizability, we shall first provide the mean square
estimation of the states of the dynamical system.
When the decoder is of Class B, the optimal mean square state
estimator is given byX̂t = E[Xt|K̃t−1, U t−1]. Nevertheless,
for the unstable system (i.e., when some of the eigenvalues of
the system matrixA in (1) are outside or on the unit circle),
the mean square estimation error associated to the innovations
process produced by the encoder of Class A is going to
be unbounded. Subsequently, in the control/communication



system of Fig. 1, we shall use an innovations encoder which
uses channel with feedback. That is, we use an encoder
of Class B to produce the orthogonal Gaussian innovations
processKt = Yt − CE[Xt|K̃t−1, U t−1]. This encoder scales

Kt by αt =
√

ηtW
Dv

where Dv ≤ mint∈N+ Υt (Υt
4
=

CΠtC
′
+ DD

′
), and ηt

4
= 1 − Dv

Υt
in which Πt is obtained

from the following recursive equation

Πt+1
4
= AΠtA

′ −AΠtC
′
(CΠtC

′
+ DD

′
+

W

α2
t

)−1

.CΠtA
′
+ BB

′
, Π0 = V̄0. (19)

The decoder, on the other hand, scales the output of the

channel byγt =
√

Dvηt

W and produces̃Kt =
√

Dvηt

W Z̃t.
Consequently, using this encoding scheme, it can be easily
shown that under the assumption of (A,C) is detectable and
(A, (B

′
B)

1
2 ) is stabilizable,C|R = 1

2 log Υ∞
Dv

= RS(Dv),
where RS(Dv) is the Shannon lower bound associated to
the innovations processKt = Yt − CE[Xt|K̃t−1, U t−1] and
Υ∞ = CΠ∞C

′
+ DD

′
where Π∞ is the solution to the

Algebraic Riccati equation corresponding to the Riccati equa-
tion (19). Further, following the expression for the innovation
process and sinceE[Xt|K̃t−1, U t−1] is known for both the
encoder and decoder, the reproduction of the source message

at the decoder end, is̃Yt
4
= K̃t + CE[Xt|K̃t−1, U t−1].

Subsequently, it can be easily shown thatE||Yt − Ỹt||2 =
E||Kt − K̃t||2 = Dv, ∀t ∈ N+. Next, we can use the mean
square estimator to estimate the state variable (even for the
unstable system). This estimator is given by the following
recursive equation (Kalman filter)

X̂t+1 = AX̂t +
1

αtγt
AΠtC

′
(CΠtC

′
+ DD

′
+

W

α2
t

)−1K̃t

+NUt, X̂0 = x̄0. (20)

Next, consider the following quadratic pay off functional

lim
T→∞

1
T

E

T−1∑
t=0

(
||Xt||2C′C + ||Ut||2H

)
(H > 0). (21)

From classical separation principle [18] follows that the sta-
bilizing controller that minimizes the pay off functional (21)
subject to AWGN communication constraint is given by

U∗
t = −∆X̂t

∆
4
= (H + N

′
P∞N)−1N

′
P∞A

P∞ = A
′
P∞A−A

′
P∞N(H + N

′
P∞N)−1N

′
P∞A

+C
′
C (22)

provided((C
′
C)

1
2 , A) is detectable and(A,N) is stabilizable.

That is, for Dv < mint∈N+ Υt over AWGN channel (18),
using the control policy (22), we can have

lim
T→∞

1
T

T−1∑
t=0

E||Xt||2C′C < Dc
v, (23)

where Dc
v is the minimum quadratic cost (i.e.,Dc

v =
limT→∞ 1

T E
∑T−1

t=0

(
||Xt||2C′C + ||U∗

t ||2H
)

), when the trans-

mission data rate isC|R = RS(Dv).
Please note that sinceσ{U t} ⊆ σ{K̃t} ⊆ σ{Z̃t}, then
by knowing the output of the communication channel, the
encoder and decoder can also specify the control sequence.
Consequently, the encoder can be of Class C, while the
decoder of Class A. Moreover, from the above construction it
is evident that a separation principle exists between the design
of the control and the communication systems.
Moreover, the above analysis shows that mean square ob-
servability of innovations process over an AWGN channel
with minimum achievable capacity is possible in the present
of channel with feedback. That is, if the encoder is of
Class C and decoder is of Class A. Furthermore, one can
consider KT−1 as an orthogonal version ofY T−1. That
is, KT−1 = Γ−1Y T−1 where Cov((K0,K1, ..., KT−1)

′
) =

Γ−1Cov((Y0, Y1, ..., YT−1)
′
)(Γ−1)

′
(i.e., Γ−1 is the uni-

tary matrix that diagonalizeCov((Y0, Y1, ..., YT−1)
′
)). Subse-

quently, from ([21], pp.110) rate distortion function between
KT−1 and K̃T−1 is identical to the rate distortion function
betweenY T−1 and Ỹ T−1. Thus, in the presence of channel
with feedback mean square observability of the observed
process over an AWGN channel with minimum achievable
capacity is possible.

VI. CONCLUSION

The present paper complements the results of [15] by
designing encoder, decoder and controller which can guarantee
observability and stabilizability. Further a modified definition
for channel capacity and rate distortion which is suitable for
control applications and real time communication has been
presented. In this paper the aim is to show the achievablity
over wireless communication channels. Therefore, AWGN
channel which is a basic model for wireless communication
channels, was considered. Nevertheless, for future direction
it would be interesting to consider the effects of fading
and interference since wireless communication channels are
normally subject to fading and interference.
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