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Abstract—This paper is concerned with control of stochastic

systems subject to limited feedback channel capacity. Specifically, Y, ; Encoder
the design of an encoder, decoder, and controller subject to the Partially Observed |

mean square observability and stabilizability is considered. It is Dynamical System -+ Innovation
shown that by transmitting information which is equal to the (Source) | Generator
Shannon lower bound, mean square observability and stabiliz- 4 !
ability over Additive White Gaussian Noise (AWGN) channel is

achieved. Furthermore, a modified definition for channel capacity

and rate distortion is presented which is suitable for control
applications and real time communication.

I. INTRODUCTION
. ) ) U
Recent advances in technology have created an increasingly '

demand on networks. Extensive research activity has been
devoted to the question of how much bit rate must be allocated
to each components of a network. This line of research
is motivated by applications in which the communication
data rates from the channel input to the controller input are
limited and feedback is available from the output of the
channel to the input of the channel. In such applications, due
to limited capacity (Shannon capacity per source message)
constraint, the main assumption is that the source outputs | v
can not be represented with high precision at the end of Simple ‘
communication system:; and only a distorted version of source Operator
output is available. Therefore, the fundamental question in Decoder
limited capacity applications is to find an encoding and/or I
stabilizibility schemes for reliable data reconstruction and/or Y,
stabilizability by transmitting information from source as

minimum as possible. Fig. 1. A control/communication system
The present paper tries to address this question. This paper is

concerned with the control/communication system of Fig. 1.

This block can be viewed as a basic model for the Networked

Control Systems (NCS's) [1] in which the dynamical SySLimited capacity constraint due to limited power supply of such
tem (source) and the corresponding controller are connecflgyices; while, the connection from controller to dynamical
through a shared communication media; while, there is ufystem is direct due to unlimited communication resource at
shared or high capacity communication link from controlleih@ base station where the controller is located.

to source. Thus, the connection from sensors to controlleri§e control/communication system of Fig. 1 is defined on
subject to limited capacity constraint; while the connectiod complete probaliility spac€f), 7(Q2), P) with filtration

from controller to the source is unconstraint (direct). ThéF;},>o; t € N = {0,1,2,...}, where \Y;, K, Z; Z,
Control/communication system of Fig. 1 may correspond t;, Y;, X; andU,, t € N, are Random Variables (R.V.s)
tele-operation systems used for space exploration devicesdenoting the source message, an innovation process associated
wireless microsurgery. In such systems, the communicatiaith the source message (in the presence or absence of
from dynamical system to remote controller is subject tiedback), channel input codeword, channel output codeword,
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the reproduction of the innovation process, the reproductionaddsign). Nevertheless, in the present paper using the idea of
the source message, the estimated state variables in the nmssamce-channel matching, the results of [9] are extended to
square sense, and the control input to the source, respectiviilg. case of partially observed linear dynamical systems sub-
Further, suppose the channel noise sequdi¢et € N, } is ject to measurement noise. Furthermore, since the separation
an orthogonal Gaussian process gnd}cn, and{v;};en, principle between the design of communication and stabilizing
are deterministic real valued (to be defined when designiagntroller holds, the communication and stabilizing controller
the encoding scheme). is designed separately; while the whole system is optimal (with
The objective is to achieve reliable data reconstruction (knowespect to linear quadratic pay off).

also as observability) in the sense th@t (resp.Y;) follows In control applications and real time communication, the
K; (resp.Y;) measured by the mean square error, as well as,dausality of communication channel in the sense that the
achieve mean square stabilizability in the sense that the metannel output does not anticipate the channel input as well
square value of the state variables is bounded for all times the causality of the rate distortion between message and the
when there is a limited data rate constraint. corresponding reproduction in the sense that the reproduction
For most part, research on reliable data reconstruction and staes not anticipate the message, are often desirable or even
bilizability subject to limited capacity constraint has focusedssential. Therefore, it is important to modify the classical
on the basic problem of Fig. 1, beginning with [2] and [3Hefinition of capacity and rate distortion by considering the
and continuing with [4]-[15]. Various publications have incausality constraint. In this paper a modified definition of
troduced necessary and sufficient conditions for observabilithannel capacity and rate distortion by considering causality
and stabilizability of Fig. 1 in various senses [2], [4]-[10]constraint is also given [17].

[12]-[15]. In most part, these conditions are given in the forfihis paper is organized as follows. In Section I, the problem
of a lower bound on the capacity in terms of rate of chandgermulation is given. In Section Ill, a modified definition for

of the dynamical system. In particular, it is already knownhannel capacity and rate distortion is presented which is
that the eigenvalues rate condition (i.e., the summation of tbhten desirable especially in control applications and real time
logarithms of the magnitude of the unstable eigenvalues of tbemmunication. Section IV is concerned with mean square
open loop discrete time-invariant systems) is the minimuobservability of the control/communication system of Fig. 1
achievable capacity for observability and stabilizability odnd Section V deals with the mean square stabilizability of
linear time-invariant dynamical systems. In most part, aftéhhe control/communication system of Fig. 1.

finding a necessary condition in terms of a lower bound on
the capacity, an encoder, decoder and controller are proposed o _
which can achieve the lower bound found as a necess&nsider the control/communication system of Fig. 1, where
condition. Subsequently in these publications, the minimutt € Yoo K¢ € K¢ Zo € 24, Zy € 24, Ky € Ky,
achievable capacity for observability and stabilizability ant € Y+ U € U; are Random Variables (R.V:s) denoting
the encoder, decoder and controller which can achieve fi§¢ Source message, innovation, channel input, channel output,
minimum capacity have been proposed. reprodu_ced innovation, reproduced_source message, and the
In this paper, we employ the Shannon lower bound and tR@Nntrol input to the source, respectively, at time N, It

rate distortion theory to obtain tight conditions on the channi§ @ssumed thaly, Ky, Z;, Z;, 2y, Vi, Ky, andU; are com-
capacity for mean square observability of partially observdtiete separable metric spaces a0d, 7 (V:)), (K, F(K1)),
dynamical systems subject to Gaussian measurement hfe F(20), (20, F(Zh)), Vi, FOh), (K, F(Ky)), and
process noises. This is obtained by relating the Shannon loWdr 7 (U:)), 21 € Z; are measurable spaces (e.§()})
bound to the definitions of observability and stabilizabilityS @no-algebra of subsets of the sgt generated by closed
The advantage of using Shannon lower bound to pres&ff)- ForT,n € N, sequences of the R.V’s with length
conditions for observability and stabilizability is its relatiorf@d 7 Of the source, innovation and channel, are identified
to observability and stabilizability definition employed. Subsa¥ith the product measurable space€¥o r—1,F (Yo, r-1)) =
quently, it overcomes the drawbacks of using Shannon capacity—o (V. F(Vk)), and similarly for the innovation, channel

in moment observability and stabilizability. Other advantage i8Put, channel output, reproductions and control input to the
finding a condition in terms of Shannon entropy rate whicgource, respectively.

can be easily computed and can imply the eigenvalues raleroughout, sequences of R.V's are denoted ¥y 2
condition. (Yo, Y1,...,Yr) for T € N,. log(.) denotes logarithm of
Similar results for controlling fully observed linear dynambase 2. A stochastic kernel,P(dF;z), is a mappingP :

ical systems subject to linear quadratic pay off have beehx 4 — [0,1] which satisfies i) For every: € A, the set
reported in [9] in which the idea of source-channel matchirfgnction P(:;x) is a probability measure orl, and ii) For

is employed to obtain the results. Moreover, similar resulevery F € A, the functionP(dF;.) is A-measurable((4, A),

to [9], previously have been reported in [16] where semyfl,/l) are measurable spaces).

aration between communication and control system desifhe different blocks of Fig. 1 are described below.

is established under optimal transmission (encoder/decotigormation Source: The information source is defined by the
design) and Linear Quadratic Gaussian (LQG) pay-off (controlarginal probability distributiorP(dY?) = fyrdY ™, where

Il. PROBLEM FORMULATION



YT is the source output produced by the following linear [1l. M ATHEMATICAL PRELIMINARIES
discrete time stochastic partially observed control system. |, this section we give a modified definition for channel

capacity and rate distortion which is often desirable in control
X1 = AX, + NU, + BW,, X, = X, applications and real time communication. We also recall the
{ Y; = CX,; + DG, (1) classical Shannon lower bound which is used in subsequent
sections to describe the conditions for mean square observ-
ability and stabilizability.
wheret € N4, X; € R is the unobserved (state) process:or general feedback channels causality is often desirable
Y; € R? is the observed proceds, € R° is the control signal, especially in control or real time communication in which
W, € ®", G; € R in which {W;;¢t € N, } is Independent the channel output does not anticipate the channel input. The
Identically Distributed (i.i.d} N(0,Lnxm) and {G¢;t € causality between stochastic kernel connectiffg to Y7 is
N+} is ii.d. ~ N(O,lel). MOfeOVGr,Xo ~ N(i’o,VO) and defined as follow.

{Wi, Gy, Xo;t € Ny } are mutually independent. Definition 3.1: (Causality)[17],[19] Given two sequences
Communication Channel: The communication channel aty” andy”, we shall say that the stochastic kernel connecting
time ¢t € Ny is described byZ, = Z; + Ny (E[Z,Z:) < P,), yT to YT is causal if and only if{P(dY;;y", §'1) =
where Z,, Z, € R are the channel input and output at timqa(dfft;yt,gtfl) T, ¥n > t. The causality of the stochastic

t and the stochastic procedsV; € R4t € N,} is an kernel connecting’” to Y7 is denoted byy'” Sy
orthogonal zero mean Gaussian process independefit. of  gjncq the causality of the communication channel is often an

Encoder: We define and discuss the following types of enggsentia) future of communication channels used in control or
coders. _ _ real time communication, we have to modify the definition

Class A) The encoder att any tintec N, is modeled by & f yhe capacity by considering the causality constraint. This
stochastic kerneP(dZ; y',u"™"). _ involves the restricted mutual information which is defined as
Class B) The encoder at any tiniec N is modeled by a ¢,ows.

i . t—1 zt—1
stochastic kerneP(dZy;y',u' ™", 271). Definition 3.2: (Restricted Mutual Information)[17],[19]
Class C) The encoder at any times N is modeled by a ¢pgiger the sequences of R.\W$~! andY 7~ in which the

i Lot ost—1 ~
stochastic kerneP(dZ;y", 2'~1). _ stochastic kernel connectiig? —! to Y7~ is causal. Then,
Decoder: We define and discuss the following types of dethe mutual information fromv’ 7~ to Y7~ is defined by.
coders.

Class A) The decoder at any timtec N, is modeled by a ](YTfl;f/Tfl)‘
stochastic kerneP(dKy; zt) (resp. P(dYy; zY)).
Class B) The decoder at any times N, is modeled by a

R ~
Py Ty

1>

Ep(gyr-1,ayr-1)108

stochastic kerneP(dK,; ', ut~1) (resp.P(dY;; 2, ut=1)). P(dyT-1) IR
Controller: The control law at any timeé € N is modeled T-1 P(dY.: vt i1

by a stochastic kerndP(dUy; z¢). = Z Epaye,ayey1og %
The objective of this paper is the mean square observability t=0 P(dYy;5~)

and stabilizability of the control/communication system of Fig. PNy o et
1, when there is a limited amount of information constraint for =) 1YY, (2)

ihi ; t=0
describing source outputs, as defined as follows. Now, we are ready to define the information capacity for causal
Definition 2.1: (Observability in the Mean Square Sensekxhannels.

Consider the block diagram of Fig. 1. The source is called Definition 3.3: (Information ~ Capacity  for ~ Causal

observable in the mean square sense if there exists a fimiigannels)[17],[19]. Consider a causal communication

D, > 0, a control sequence, an encoder, and a deco@@fannel (with memory and feedbacky”—! & 771

such thatlimy .o 732, EllK; — Kil[* < D, (resp. connecting input sequencé™~! to output sequence”,

limg o % S22V E|[Y; — Yi||?> < D,), where||.|| is the and constraint setMc; on the possible joint distribution

Euclidian norm. functions, P(dZ™~1). The causal information capacity for
Definition 2.2: (Stabilizability in the Mean Square Sense)the time horizon: is defined as follow.

Consider the block diagram of Fig. 1. The source is called A el An—1

o ) ; ; L Cnir = sup Iz .z . 3)
stabilizable in the mean square sense if there exists a finite P(dZn—1)eMeor R
D¢ > 0, a controller, an encoder, and a decoder such théa\tb iy, th ity is defined b
limg o %Zf:_olEHXtHé . <D ubsequently, the capacity is defined by
Throughout, when we are concerned with observability, it is Cr = lim lC”‘R (4)
assumed thatd, C) is detectable andA, (BB')z ) is stabiliz- n—oom

able; while, when we are also concerned with stabilizabilitprovided the limit exists.
it is also assumed thdfC’'C)z, A) is detectable and4, N) Please note that since Discrete Memoryless Channels (DMC's)
is stabilizable [18]. as well as AWGN channel are causal, for such channels (4) is



equal to the classical Shannon capaditydefined in [20]. Markov chain, andZ™ oA A Syr,
Causality of the rate distortion between the source messageen
and the corresponding reproduced message is also desir-
able in control applications and real time communication.

Subsequently, we have the following modified definition fO\R/hereI( ..) is the classical mutual information [20]
information rate distortion. ) :

N i ; . . Next, we recall the classical Shannon lower bound which is
Definition 3.4: (Inforr’r;zition R?.tj?_lDIS'[OI‘IIOH for Causalfa tight approximation of the classical rate distortion function;
Systems)[17],[19] Let”™ " and Y™ " denote sequences oOf, 4’ hsequently, a tight lower bound for causal rate distortion

length 7" of the source output and the reproduction of thg o the classical rate distortion and causal rate distortion are
source output, respectively. Let also

1(Z™ Z"™) = YT, zmy > 1yt v? K 9)

the same.
T-1 Lemma 3.6:(Shannon Lower Bound). LetY7-1!,
Mbpe :{P(df/T‘l;yT‘l);ZEpt(Yt,f’t) <D,} (B) Y, € R, 0 < t < T —1 be a sequence with length
t=0 T produced by the sourc(dY?—!) = fyrdYT™1L

denotes the distortion constraint whefie(.,.);t € N, } isa Consider the following distortion constrainMpc =
. . . . . (dnyl. Tfl).lz -1 ( ~) < D } where

sequence of distortion measures (which are continuous in e ! Y P T 2410 Pt ye) s v I

second argument and non-negative functions) Bpd> 0 is /)(hyuyt) = p(yr — yt) : R* — [0, 00) is continuous.

the distortion level. Then X o
Then, causal rate distortion function is defined by i) A lower bound for 7 Rr(D.) is given by
1 1
Rr(Dy)|r —Rp(D,) > =Hs(YT™') — max Hg(h), (10)
— inf ](YT_l'YT_l)‘ (6) T T heGp
- P(dnyl;ﬁfl)eMDc ’ R where Hg(.) is the Shannon differential entropy [20] and
: . A
Subsequently, the rate distortion is defined by Gp is defined byGp = {h : R — [0,00); [ h(&)dE =
L [rap(©h(€)dE < D,, ¢ € R} Moreover, when
R(D,)|g = lim lRT(Dv”R- (7)  Jpa€*OdE < oo for all s < 0, thenh*(§) € Gp that
T—oo T maximizesHg (h) is
Moreover, the non-anticipative stochastic kernel which sp(€)
achieves the infimum of the rate distortion function is given p*(¢) = 67, / p(E)h* (&)dE = D,,. (11)
by fw esP)d¢ Y
. 1 . Subsequently, when R(D,) and Hs(Y) =
Py iy = [ Pr@vsytath, limr_o ~Hs(YT~1) exist, the Shannon lower bound,
t=0 4 ) B Rs(D,), is given by
- . spe(y™,y p*(dy.gt—l)
P* dY, t7 t—1 _ € t: é
(Wb 070 = e g R(D,) > Hs(Y) — max Hs(h) = Rs(Dy).  (12)
where s < 0 is the solution ofs = d%RT(DU)IR- ii) Suppose the difference distortion measpfe satisfies the
From (8) follows that the causal rate distortion is the sequentR@nditions a,b,d of ([24], pp. 2029)y,, e**¢)d¢ < oo for all
rate distortion introduced in [22]. s <0, Hs(Y) > —oo and there exists ap* € R¢ such that

Please note that for sources producing independent asymptétidy — y*) < oo, Vy € R,

stationary sequences, the information rate distortion functiohgen, in the limit asD, — 0, the lower bound is as-

for causal systems (i.eRr (D, )|z andR(D,)|r) are equal to ymptotically exact. That is, for the case whé¥(D,) and

the classical Shannon rate distortion functions (ifer(D,) Hs(Y) exist,limp, .o {R(Dv) - <H5(y) - Hs(h*)) =0.

and R(D,) defined in [20] and [21]). Furthermore, for independent asymptotic stationary sources

Next, we give data processing inequalities for causal systen&.D,)|gr = R(D,) = Rs(D,).

using the restricted mutual information. The failure of symProof: Follows from [24] by considering the method proposed

metry associated with the restricted mutual information affedis ([21], pp. 140) or [25].

the derivation of data processing inequalities. Specifically,

the derivation of classical data processing inequalities [20] is V- MEAN SQUARE OBSERVABILITY OVER AWGN

based on the symmetry of mutual information. Here, we need CHANNEL

the Markovian property, which is equivalent to conditional inkn this section, it is shown that if the capacity is at least equal

dependence assumption. We shalll ¥y — Zn — Z™ forms  to the Shannon lower bound, there exists an encoding scheme

a Markov chain if P(dZ;; 2t 201 yT)= P(dZ;;2*, 2'~') which guarantees the mean square observability over AWGN

(te{0,1,...,n}) P-as. channel. This result together with the results of [15] implies
Definition 3.5: (Data Processing Inequalities For Causdhat the Shannon lower bound is the minimum achievable

Systems)[17],[19] Letv” — Z» — Z» — YT forms a capacity for the mean square observability. For simplicity, we



consider the case df; € R (the case ofY; € R? follows On the other hand, from ([15], Theorem 3.3), we conclude that
similarly). Clr > Rs(D,) is also a necessary condition for existence of
Consider the control/communication system of Fig. 1. Assuna@ encoding scheme (e.g., for the existencei,0ind~;) for

the encoder and decoder is of Class A, and the innovation géme mean square observability. Subsequently, following this
erator block of Fig. 1 produces an orthogonal Gaussian inm@sult and the above result, we can conclude thatligr<
vations process; = Y; — E[Y;[o{Y'" 1, U '}] ~ N(0,A;), mineen, Ay, (g = Rg(D,) is the minimum achievable
wheres{.} denotes ther-algebra and\, 2 CV,C'+DD" in capacity for the mean square observability of innovations

which process over the matched AWGN channel (17), where this
, , , , , capacity is obtained fon; = 1 and~; = ;.

Visn = AV,A — AV,C (CV,C + DD ) 'CV;,A In the above analysis we have shown that over the matched

+BB', Vo = V. (13) AWGN channel (17), reliable data reconstruction is possible

) ) ) by transmitting information from the source at least equals to

Next, for the distortion constraint Mpc = Rs(D,). Nevertheless, in rare situations the communication

T—1.1.7—1Y. 1 T-1 2%
{P(d_K HETTY); T 2t=0 E|| K, - Kqf|? ] S Dy}, channel is of the form (17) and it is normally of the following
consider the rate distortion function of Definition 3.4. FOform_

D, < minsen, A¢, the minimizing kernel is given by

P*(dE; kb ETY) = ¢ (Ky k) dK,

. A D,
¢ (Kilke) ~ N(BeKy, Do), e =1 A, However, over this communication channel by choosing=
B:eW

Subsequently, the solution to the rate distortion is given by 5.~ andy; = y/ Delt we can still have the mean square

Rr(Dy)|r = Zthfol 1log % Next, under assumption of observability of innovations process by transmittidg; =

(C, A) is detectable(A, (BB')?) is stabilizable, and> # 0, Rs(D.) bits in each time step. In other word$, = Rs(D»)
limr—oco A7 = Ao [18], where Aoe = CVooC' + DD’ is also the minimum achievable capacity over the AWGN

and V.. is the solution of the Algebraic Riccati equatiorthannel (18) in which this capacity is obtained by choosing

Zy=Zi+ Ny, Zi€R
E[Z?] < P,, N, orthogonal ~ N (0,W). (18)

. (14)

corresponding to the Riccati equation (13). Therefore, for, = f”DW and~; = DT‘”
D, < mingen, Ay, We have Please note that from classical information theoretic results
1 A (e.g., information transmission theorem [21] [23]), we already
(oo}

R(Dy,)|r = 3 log D (15) know that for the (asymptotic) stationary ergodic sources over

v _ DMC’s or AWGN channels, the rate distortion and subse-

On the other hand, for the same distortion measure, @gently the Shannon lower bound is the minimum achievable
above, the Shannon lower bourfds (D,), for the innovations capacity for observability. This result is obtained following

process{ K; }ten, IS given by the random coding argument in which it does not address a

A specific encoding scheme for reliable data reconstruction of

R(Dy)lr = R(Dy) 2 Rs(Dy) = H,(K) — neax Hs(h) 4 given source over a given channel. Nevertheless, in this
1 As section, we investigated the validity of this theorem for the
) log D, (16) Gaussian system (1) over AWGN channel (18) by proposing

a specific encoding scheme. Further, we relate this rate to the

Sgbsequintlyt/h frgrrr: (15) e}nd (1? It ;O!IOWS ﬂ:at for, < parameters of the Gaussian system (1), in particular to the
minsen, A¢, the Shannon lower bound is exact. Shannon entropy rate.

Next, a matched channel (e.g., a communication channel in
which the channel input-to-channel output behaves like the V. MEAN SQUARE STABILIZABILITY
rate distortion infimizing stochastic kernel [22]) corresponding, e previous section when the encoder is of Class A, we

to (14) is the following AWGN channel proposed an encoding scheme that reliably transmits informa-

Zi=Z,+N,, Z,€R tion for the partially obser_ved syste_m (1_) over AWGN char!r?el
) ) (18). Next, we can use this transmitted information to stabilize
E[Z;] < P, Ny orthogonak N (0, E)’ t€Ni.  the dynamical system (1). Since we are interested in mean

17) square stabilizability, we shall first provide the mean square
estimation of the states of the dynamical system.

Next, if we choosey; = 1 and~, = f3;, the power constraint When the decoder is of Class B, the optimal mean square state
associated to this encoding schemePis= E[K?] = A, and estimator is given byX, = E[X;|K'~1, U*~1]. Nevertheless,
for D, < minsen, Ay, it can be easily shown that the capacityor the unstable system (i.e., when some of the eigenvalues of
is C|gr = Rs(D,); also E||K; — K> = D,, ¥t € N,. That the system matrix4 in (1) are outside or on the unit circle),
is, using this encoding scheme the mean square observabilityg mean square estimation error associated to the innovations
of innovations process over the matched channel (17) witnocess produced by the encoder of Class A is going to
capacityRs(D,) can be obtained. be unbounded. Subsequently, in the control/communication



system of Fig. 1, we shall use an innovations encoder whielhere D¢ is the minimum quadratic cost (i.eD =

uses channel with feedback. That is, we use an encodgigh, . %EZtT;ol ||Xt||2‘C/CJr HUt*H%—I))! when the trans-

of Class B to produce thgtgrlthog_olnal Qaus&an innovatiofSssion data rate i€ = Rs(D,).

processK, =¥, — CE[X,|K*™*, U*™"]. This encoder SCEilesPlease note that since{U!} C o{K'} C o{Z'}, then

Ky by oy = /%" where D, < mingen, T¢ (Y: = by knowing the output of the communication channel, the
CIL,C' + DD'), and, 29 % in which II, is obtained encoder and decoder can also specify the control sequence.
from the following recursive equation Consequently, the encoder can be of Class C, Whllg the
decoder of Class A. Moreover, from the above construction it

’ ’ ’ ’ %4 i i 1 i i i i
My A AL A — AILC (CILC + DD’ + 72)—1 is evident that a separation prln_C|pI_e exists between the design
o of the control and the communication systems.
CTLA + BB, T, =1, (19) Moreover, the above analysis shows that mean square ob-

servability of innovations process over an AWGN channel
The decoder, on the other hand, scales the output of thith minimum achievable capacity is possible in the present
channel byy, = /222t and producesk, = /222 7Z,. of channel with feedback. That is, if the encoder is of

Consequently, using this encoding scheme, it can be ea&i{pss € ar;d ldecoder is of Class A. I_:urtherrpolre, one can
shown that under the assumption of,(C) is detectable and pon3|gegK s an orthogonal version of " ~". That

(A, (B'B)%) is stabilizable,Cjr = ilog L= = Rg(D,), 1S K~ =T "% where Cov((Ko, Ky, ... Kr1)) =
where Rg(D,) is the Shannon lower bound associated tb  Cov((Yo, Y1,....Yr—1) )(I'™") (e, T is the uni-

the innovations procesk, = Y; — CE[X,|Kt~!,Ut1] and tary matrix that dlagonallzé?ov((YO,_Yl, .._.,YT_l) )_). Subse-
Y., = CI..C' + DD" whereTl,, is the solution to the quently, from ([21], pp.110) rate distortion function between
Algebraic Riccati equation corresponding to the Riccati equé-’ — and K71 is identical to the rate distortion function
tion (19). Further, following the expression for the innovatio#?‘?tweenYT_1 and Y"1, Thus, in the presence of channel
process and sinc&[X,|K*~!,Ut1] is known for both the with feedback mean square observability of the observed

encoder and decoder, the reproduction of the source mesJieess over an AWGN channel with minimum achievable
at the decoder end, i¥; 2 K, + CE[X,|K*',U1). capacity is possible.

Subsequently, it can be easily shown tHafYy; — Vi||? = VI. CONCLUSION

E||K; — Ki[[* = Dy, vt € Ny. Next, we can use the meanrpe present paper complements the results of [15] by
square estimator to estimate the state variable (even for fygiqning encoder, decoder and controller which can guarantee
unstable system). This estimator is given by the followingysenapility and stabilizability. Further a modified definition
recursive equation (Kalman filter) for channel capacity and rate distortion which is suitable for

N . 1 / / W~ control applications and real time communication has been
Xipp = AXi + v AILC (CTL,C + DD + 073) K presented. In this paper the aim is to show the achievablity
By over wireless communication channels. Therefore, AWGN

+NU;, Xo=Zo. (20)

channel which is a basic model for wireless communication
Next, consider the following quadratic pay off functional channels, was considered. Nevertheless, for future direction
it would be interesting to consider the effects of fading
oo = ) ) and interference since wireless communication channels are
71520 TE Z (HXtHc’c + ||UtHH) (H > 0). (1) normally subject to fading and interference.
t=0

From classical separatio_n_pr_inciple [18] follows th_at the sta- ACKNOWLEDGMENT

bilizing controller that minimizes the pay off functional (21)

subject to AWGN communication constraint is given by ~ This work was supported by Cyprus Research Promotion
Foundation under GradfiAHPO/05/0506/20.

Ut* = —AXt
A , , REFERENCES
A = (H+NP.N)'NP A _ . _
, , , , [1] Wei Zhang, Stability Analysis of Networked Control Systenih.D.
P, = APLA—APN(H+NP.N)"'NP A Thesis, Department of Electrical Engineering and Computer Science,
, Case Western Reserve University, Auguest 2001.
+C C (22) [2] D. F. Delchamps, Stabilizing a Linear System with Quantized State
. Feedback]EEE Transactions on Automatic Contralol. 35, No. 8, pp.
provided((C' C)z, A) is detectable an¢lA, N) is stabilizable. - 916-924, Auguejt 1990. ) )
; : 3] W. S. Wong and R. W. Brockett, Systems with Finite Communication
Th.at s, for D, < m.mteN+ T, over AWGN channel (18)’ Bandwidth Constraints-Part I: State Estimation Probld8EE Transac-
using the control policy (22), we can have tions on Automatic Controlvol. 42, No. 9, pp. 1294-1299, September
1997.
it [4] A.V.Savkin and |. R. Petersen, Set-Valued State Estimation via a Limited
lim — Z B|| X% ., < DS, (23) Capacity Communication ChannelEEE Transactions on Automatic
T—oo T cc v

—0 Control, vol. 48, No. 4, pp. 676-680, Appril 2003.



[5] V. Malyavej and A. V. Savkin, The problem of Optimal Robust Kalman
State Estimation via Limited Capacity Digital Communication Channels,
System and Control Lettersol. 45, No. 3, pp. 283-292, March 2005.

[6] G. N. Nair and R. J. Evans, Stabilizability of Stochastic Linear Systems
With Finite Feedback Data RateSJAM Journal of Control and Opti-
mization vol. 43, No. 2, pp. 413-436, 2004.

[7] S. Tatikonda and S. Mitter, Control over Noisy Channt#&E Transac-
tions on Automatic Contrplvol. 49, No. 7, pp. 1196-1201, July 2004.

[8] S. Tatikonda and S. Mitter, Control under Communication Constraints,
IEEE Transactions on Automatic Contralol. 49, No. 7, pp. 1056-1068,
July 2004.

[9] S. Tatikonda, A. Sahai, and S. Mitter, Stochastic Linear Control Over a
Communication ChannelEEE Transactions on Automatic Contralol.

49, No. 9, pp. 1549-1561, Sempetmber 2004.

[10] Nicola Elia, When Bode Meets Shannon: Control-Oriented Feedback
Communication Schemel;EE Transactions on Automatic Contrafol.

49, No. 9, pp. 1477-1488, September 2004.

[11] K. Li and J. Baillieal, Robust Quantization for Digital Finite Commu-
nication Bandwidth (DFCB) ControllEEE Transactions on Automatic
Control, vol. 49, No. 9, pp. 1573-1584, September 2004.

[12] G. N. Nair, R. J. Evans, I. M. Y. Mareels and W. Moran, Topological
Feedback Entropy and Nonlinear StabilizatidEEE Transations on
Automatic Contrglvol. 49, No. 9, pp. 1585-1597, September 2004.

[13] D. Liberzon and J. P. Hespanha, Stabilization of Nonlinear Systems with
Limited Information FeedbackEEE Transactions on Automatic Contyol
vol. 50, No. 6, pp. 910-915, June 2005.

[14] N. C. Martins, A. Dahleh, and N. Elia, Feedback Stabilization of
Uncertain Systems in the Presence of a Direct LIBEE Transactions
on Automatic Contrglvol. 51, No. 3, March 2006.

[15] C. D. Charalambous and Alireza Farhadi, “A Mathematical Framework
for Robust Control over Uncertain Communication Channels”, in the
Proceedings of the 44th IEEE Conference on Decision and Control and
2005 European Control Conferencpp. 2530-2535, Seville, December
12-15, 2005.

[16] Rajesh Bansal and Tamer Basar, Simultaneous Design of Measurement
and Control Strategies for Stochastic Systems with Feedbart&matica
vol. 25, No. 5, pp. 679-694, 1989.

[17] C. D. Charalambous,“Information Theory for Control Systems: Causal-
ity and Feedback'the Lecture Presented at the Symposium on Towards a
Science of Networks, Communication Networks and Compleéxitens,
Greece, Auguest 31st, 2006.

[18] P. E. Caineslinear Stochastic System¥ohn Wiley and Sons, 1988.

[19] C. D. Charalambous, Alireza Farhadi, and F. Rezaei, Information The-
ory for Control Systems: Causality, Feedback and Separation Principle,
(Preprint).

[20] T. M. Cover and J. A. Thoma£lements of Information Thegryohn
willey and Sons, 1991.

[21] Toby Berger,Rate Distortion Theory: A Mathematical Basis for Data
CompressionPrintice-Hall, 1971.

[22] Sekhar TatikondaControl Under Communication ConstrajnPh.D.
Thesis, Department of Electrical Engineering and Computer Science,
MIT., September 2000.

[23] R. G. Gallager)nformation Theory and Reliable Communicatidohn
Wiley and Sons, INC., 1968.

[24] T. Linder and R. Zamir, On the Asymptotic Tightness of the Shannon
Lower Bound,|IEEE Transactions on Information Thegmwol. 40, No. 6,
pp. 2026-2031, November 1994.

[25] J. T. Pinkston|nformation Rates of Independent Sample SourbeS.
Thesis, Department of Electerical Engineering, MIT., Cambridge, Mass.
1966.



