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Computation Time Analysis of a Distributed Optimization Algorithm
Applied to Automated Irrigation Networks

Alireza Farhadi, Michael Cantoni, and Peter M. Dower

Abstract— This paper considers the computation time of two
algorithms for solving a structured constrained linear optimal
control problem with finite horizon quadratic cost within the
context of automated irrigation networks. The first is a standard
centralized algorithm based on the interior point method that
does not exploit problem structure. The second is distributed
and based on a consensus algorithm, not specifically tailored to
account for system structure, but devised rather to facilitate the
management of conflicting computational and communication
overheads. It is shown that there is a significant advantage
in terms of computation time in using the second algorithm
in large-scale networks. Specifically, for a fixed horizon length
the computation time of the centralized algorithm grows as
O(n*) with the number n of sub-systems. By contrast, it is
observed via a combination of analysis and experiment that
the computation time of the distributed algorithm grows as
O(n) with the number n of sub-systems.

[. INTRODUCTION
A. MOTIVATION and BACKGROUND

Some large-scale systems and networks, such as automated
irrigation networks, have a cascade topology. The dynamical
behavior of such cascade networks can be modeled by n
distributed interacting linear time invariant sub-systems of
the following form:

Si txik + 1] = A [k] + Biui[k] + Fidi[k] + vi[k],
yl[k‘] = Cll'z[k?], Zl[k?] = Dzl‘l[ki], (1)

fori =1,2,....,n and k € {0,1,2,...,N — 1}, where N €
N, is the horizon length, v;[k] = M;x;1[k] represents the
cascade interconnection, x; € R™ is the state variable of
dimension n; € N4, u; € R is the control input, y; € R and
z; € R are variables to be controlled, and d; € R is a known
disturbance for the i-th sub-system. For the system (1) we
are interested in solving the following linear-quadratic (LQ)

constrained optimal control problem:
(min J(x[0],d,r,u)
u=(U1,...,Un

subject to (1) and

ilk], wilk] € [Li, Hi] \
{ ’ zilk) € [E;i, Z] }VZ €l,n], ke[0,N —1],
2
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where
J(x[0],d,r,u)
n N-1
=D walk] = rillB o+ [ealk] = wilk — 1]
i=1 k=0
i [k]17- 3)
Here ||.|| denotes the Euclidean norm (i.e., ||z||%=2'Pxz),
x[0] = (zj[0] . . . ,[0]) is the vector of initial

states, d[k] = (d1[k] dy[k]) is a vector of known
disturbances, r = (7 ) is the vector of desired
values for y;, and @, P > 0, R > 0 are weighting matrices.

By expanding the state vector
x[k]=(2}[k] . . . a,[k]) at time step k in terms
of the initial states, disturbances and controls vectors
and substituting it in the quadratic cost functional (3),
the equality constraint in the optimization problem (2)
vanishes and it is observed that the Quadratic Programming
(QP) problem (2) involves ng = nIV decision variables
and n, = 6n/V inequality constraints. Algorithms, such
as the generic interior point method [1], involving one
decision maker that is responsible for computing the
controls w; without accounting for system structure are
referred to here as centralized optimization algorithms.
In large-scale systems (i.e. when nN is large), the total
number of constraints and decision variables can be very
large. In many cases this means the computation time of the
centralized optimization algorithms is not practical. Towards
overcoming this computational scalability problem, in [2],
[3], [4], [5] distributed optimization algorithms are proposed
that exploit the computational power very often available
at distributed sub-systems. These distributed algorithms
can be used to approximate the solution of the structured
optimal control problem (2). While the approaches do not
directly account for network structure, the distribution of
the computational load between sub-systems can give rise to
significant reduction in computation time as studied within
the context of a cascade network structure.

B. PAPER CONTRIBUTIONS

This paper compares the computation time of the cen-
tralized optimization algorithm, with the computation time
of the distributed optimization algorithm of [2], for the QP
problem (2) subject to inequality constraints. It is shown
for a fixed horizon length that the computation time of the
centralized algorithm grows as O(n*) with the number n of
sub-systems. By contrast, it is observed via a combination
of analysis and experiment that the computation time of

2193



the distributed algorithm grows as O(n) with the number
n of sub-systems. On the other hand, it is shown for a
fixed number of sub-systems that the computation time of
the centralized algorithm grows as O(IN°) with the horizon
length N. For a fixed number of sub-systems it is observed
that the computation time of the distributed algorithm also
grows as O(N®) with the horizon length N. However, on
the basis of experiments for a particular irrigation network of
interest to us, it is observed that the growth of the distributed
algorithm computation time in N is bounded above by that
of the centralized algorithm. In summary, either way there is
a significant advantage in terms of the computation time in
using the distributed optimization algorithm of [2] in large-
scale irrigation networks by exploiting the computational
power very often available at distributed sub-systems and
the distribution of the computational load between them.

C. PAPER ORGANIZATION

The paper is organized as follows: Section II recalls the
distributed optimization algorithm of [2]. This is followed
by computation time analysis for networks with cascade
structure in Section III. Simulation results are presented in
Section IV and the paper is concluded in Section V.

II. CONSENSUS BASED DISTRIBUTED
OPTIMIZATION ALGORITHM

The consensus based distributed optimization algorithm
of [2] is concerned with n interacting linear sub-systems:
S1, S2, ..., S, each equipped with a decision maker with
limited available computational power. For this system, [2]
is concerned with the following optimization problem via
distributed decision makers.

min{J(g7u)7 u=(uj..u,) u; €U, i€{l, ...,n}},
u

where g is a collection of known vectors, e.g., g may include
vectors x[0], d, r, u; is the decision variable of sub-system
Si, U; is the corresponding closed convex constraint set and
J is a finite horizon quadratic cost function of decision
variables.

Remark 2.1: For a given vector x[0] of initial states,
vector d[k] of disturbances and vector r of references,
the cost functional J in (2) is a quadratic function of
the control inputs u;, i« € {1,2,...,n}. Moreover, since
[L;, H;],[E;, Z;] C R are closed convex sets, and linear
transformations preserve closedness and convexity [1], the
control inputs (i.e. decision variables) in the QP problem (2),
belong to closed convex constraint sets. Hence, the consensus
based distributed optimization algorithm of [2] converges
when applied to the QP (2), see [2].

In [2], decision variables w;, ¢ € {1,...,n}, are generated
using an algorithm that employs the following two steps.
Note that for the simplicity of presentation in the following
we drop the dependency of the cost function to g and we
present it as J(u) = J(uy, ..., uy).

o Initialization: In this step first each decision maker S;

chooses an arbitrary admissible value u? € U; for

its decision variable. Then, the information exchange
between decision makers at inner iterate ¢ = 0 makes
it possible for each sub-system S; to initialize its local
decision variables as u?, Vi € {1, ...,n}, where u{ € U;
are chosen arbitrarily at ¢ = 0.

o Inner Iterate: Then, sub-system S; performs the follow-
ing tasks iteratively:
Sub-system S; first updates its decision variable via

ut = ol + (1 — )l “4)

79

where 7; is chosen subject to 7; > 0, Z?:l m; = 1, and
uf=argmin, o, J(uf,...,u;, ..., ul,). Then, it shares its
updated decision variable, u!™' with all other sub-
systems.

In [2] the authors proved feasibility (constraints satis-
faction by the approximated solutions), convergence and
optimality of the above algorithm.

Remark 2.2: 1) For large-scale systems and networks the
above algorithm induces a large communication overhead
for exchanging information between distributed decision
makers. In order to overcome this drawback, the authors
of [6] proposed a two-level communication architecture and
a three-step algorithm including an extra outer iterate step.
To complete their work a proof feasibility, convergence and
optimality of this three-step algorithm is documented in [7].
A simple algorithm for decomposing large problems into
smaller ones via ‘neighborhoods’ is also documented there.
ii) In this paper we are not concerned with communication
overhead as it can be managed by decomposing the system
into disjoint neighborhoods and using the three-step algo-
rithm.

In order to analyze the computation time of the above con-
sensus based distributed optimization algorithm, throughout
this paper we use the following stopping criterion.

Definition 2.3: For a given € > 0, the two-step algorithm
of [2] is terminated as soon as the following inequality holds

|J(ub, ul) — Tt ul ) < e

Note that for small values for ¢, there will be very small
improvement in the approximation of the optimal solution
by the distributed optimization algorithm of [2]; and as
the algorithm converges, the algorithm can therefore be
terminated as soon as the above inequality holds.

Definition 2.4: (Total Number of Iterations for e-
Convergence) For a given € > 0, let T, be the smallest integer
such that [J(ul,...,ut) — J(u! ™' . ulmh)| <€ Vt > T..
Then, T, is referred as the total number of iterations for
€-convergence.

We refer to J(u'®,...,uls) as an approximation of the
optimal cost and the sequence (ulT, ...;uL<) as an approxi-
mation of the optimal solution.

III. COMPUTATION TIME ANALYSIS

The interior point method [1], [8] and the active set method
[8], [9] are the most commonly used approaches for solving
general QP problems. As a benchmark, we employ a generic
interior point method [8] to solve the QP problem (2) using
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the centralized optimization algorithm and the distributed
algorithm of [2]. Computation time analysis of the active
set method is investigated in [10].

Let n. and ny be the numbers of inequality constraints
and decision variables of a QP problem, respectively. As
stated in [8] at each iteration of the interior point method, the
computing device must solve n. times a system of ng linear
equations. Therefore, if the commonly used techniques, such
as the generic Gauss-Jordan elimination technique or Gaus-
sian elimination technique (which have cubic computational
complexity) is used to solve this system of linear equations,
the optimization computational complexity (i.e., the number
of floating point arithmetic operations required to find the
optimal solution) associated with each iteration of the interior
point method is O(n. x n3). As pointed out in [8], the
number of iterations required for convergence of the interior
point method to the optimal solution is insensitive to n. and
ngq. Therefore, the optimization computational complexity of
the Interior Point Method (IPM) for solving QPs is

IPM ~ O(n. x n3). )

In this paper we are concerned with computation time
which is the empirical time spent by computing devices
to find the solution. The computation time for finding the
optimal solution consists of two terms: (i) Optimization time
Copt, which is the empirical time spent by computing devices
to solve the optimization problem. This complexity term
is proportional to the empirical number of floating point
arithmetic operations required for solving the optimization
problem. Therefore, if IPM is used, then

Copt ~ O(n,e x n3). (6)

(ii) Constraint making time complexity term C.,, which
is the empirical time spent for making constraints to be
implemented in optimizer. This complexity term is also
proportional to the empirical number of required floating
point arithmetic operations.

In this section, the computation time (as described above)
for the centralized algorithm and distributed algorithm are
analyzed for the QP problem (2) for two cases: (i) Fixed V.
(i) Fixed n.

A. Fixed N, Varying n

In this section it is assumed that the horizon length N
is fixed but the number of sub-systems n varies. It is also
assumed that the distributed decision makers use the interior
point method for their smaller QPs, and at each inner itera-
tion updated decision variables are exchanged only when all
optimizers finish their computation. That is, the distributed
algorithm uses synchronized communication. Under these
assumptions expressions for the computation times of the
centralized algorithm and distributed algorithm in terms of
the number of sub-systems n are presented in this section.

As the centralized optimization algorithm applied to the
QP problem (2) involves n, = 6n/N inequality constraints
and ng = nN decision variables, from (6) it follows that the

optimization time of the centralized algorithm is of order 4,
ie.,
Copt(n) ~ O(ne x n3) ~ O(n*).

In addition, as the number of inequality constraints is a linear
function of n, the complexity term C,,, is a linear function
of n, i.e., Cem(n) ~ O(n.) ~ O(n). Hence, the computation
time of the centralized algorithm is of order 4, i.e.,

Ceen(n) = Copt(n) + Cem(n) ~ O(n*). @)

When the distributed optimization algorithm of [2] is
applied to the QP problem (2), each decision maker ¢ has a
decision variable u; of dimension N and the horizon length
N determines its number of inequality constraints. Under the
assumption of synchronized communication, the computation
time of the distributed optimization algorithm of [2] in terms
of the number of sub-systems, i.e., Cy;s(n), is given by

Cdis (ﬂ) (8)

I
™
S

where T.(n) is the empirical number of required iterations
for e-convergence and C(n) is the computation time of the
decision maker with the largest computation time at iteration
7. This decision maker is referred to here as ‘dominant
decision maker’. As it is assumed that the distributed decision
makers also use the interior point method for their smaller
QPs, their optimization times are determined only by their
number of inequality constraints, as each of them has N
decision variables.

The horizon length N determines the number of inequality
constraints affecting each decision maker. Specifically, if
n < (%W, then the effect of a change in the decision
variables of each sub-system is seen in all upstream sub-
systems. Therefore, for n < {%] the number of inequality
constraints required to describe the QP associated with the
sub-system at the end of the cascade (i.e. sub-system S,,) is
ne = 2N (2n+ 1), which is the largest number of inequality
constraints, compared to all other sub-systems. On the other
hand, if n > {%1, then the effect of a change in the
decision variables of each sub-system is seen in only a
subset of the upstream sub-systems. Specifically, it is seen
in the observation signals of (ﬂw upstream sub-systems
and in the control signals of [gJ upstream sub-systems.
This follows from the cascade topology of the system (1).
Consequently, for n > (%J, the number 2N (2 |5 | + 1)
(for an even N) or 2N( (7-‘ + L%J + 1) (for an odd N)
of inequality constraints in the QPs associated with the last
few sub-systems remains unchanged, even if the number of
upstream sub-systems increases. That is, several downstream
decision makers have the same largest number of inequality
constraints. Either way, the optimization time of the sub-
system at the end of the cascade dominates. Similarly, the
constraint making complexity term of the sub-system at the
end of the cascade dominates. Therefore, the computation
time of the last sub-system .S,, dominates. That is, S,, is

the dominant sub-system. Note that at each iteration j, the
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dominant computation time consists of two terms: C;(n) =
Copt,j(n) + Cem j(n), where Copy j(n) is the optimization
time and C.,, ;(n) is the constraint making time complexity
term of the dominant sub-system (i.e., sub-system S) at
iteration j.

From above, for a given number of sub-systems n, the
dominant sub-system remains constant for all iterations,
whereby the dominant computation time C;(n) also remains
constant for j > 1, since there is no change in the number
of inequality constraints associated with the dominant sub-
system for j > 1. Therefore, C;(n) = C(n) = Copt(n) +
Cem(n),¥j > 1, where Copi(n) and Cep(n) are the op-
timization time and constraint making complexity term of
the dominant sub-system. However, for j = 1, it takes some
time that variables to be placed into the cache memory and
therefore

C1(n) = Cy(n) = C(n),¥j > 1

Hence, applying (8) to the QP problem (2) results in the
following expression for the computation time.

Cais(n) = Ci(n) + (Te(n) — 1)C(n). )

Remark 3.1: The formula (9) is applicable to any unstruc-
tured system having an unchanged dominant sub-system with
computation time C(n).

In summary, the maximum number of the inequality
constraints affecting any sub-system is

2N (2 | ¥ +1), ifn > [%\J and N is even,
eN([&]+[§]+1), ifn>[5].and N is odd,

N (2n+ 1), itn < [,

Ne =

and the number of decision variables of each sub-system
is ng = N. Hence, for the case of n > {%w , we have:
Copt(n) ~ O(ne x 1) ~ O(°), Comn(n) ~ Olne) ~
O(n®), C(n) = Copi(n) + Cem(n) ~ O(n), and Cy(n) ~
O(n. +ng) ~ O(n®). Note that for the other case of n <
[Z1, Copt(n), Cem(n), C(n) and Cy(n) are linear functions
of n. In addition, from the experimental results (given in the
next section) it is observed that T.(n) as a function of n
is approximated and upper bounded by a linear function.
Hence, for the QP problem (2), from (9) it follows for the
case of n > [4] that Cy;s(n) has the following expression.

Cyis(n) ~ O(n). (10)
Note that for the other case of n < [£], Cus(n) is a
polynomial function of n with order 2.

Remark 3.2: Similar to the centralized optimization algo-
rithm, the distributed optimization algorithm does not exploit
the topology of the network either in its formulation or in
the solutions of smaller QPs. The topology of the network
just helped us to determine the dominant sub-system to
analyze the computation time of the distributed optimization
algorithm on cascade systems.

B. Fixed n, Varying N

In this section it is assumed that the number of sub-
systems n is fixed but the horizon length N varies. Similar
to the previous section it is also assumed that the distributed
decision makers use the interior point method and synchro-
nized communication. Under these assumptions expressions
for the computation times in terms of the horizon length N
are presented in this section.

As the centralized optimization algorithm applied to the
QP problem (2) involves n. = 6nN inequality constraints
and ngy = nN decision variables, from a similar argument
as we used in previous section, it follows that Cop(N) ~
O(N%), and C,,(N) ~ O(N). Hence, the computation time
of the centralized optimization algorithm is of order 4, i.e.,

Cren(N) = Copt(N) 4 Cepn(N) ~ O(N?). (11)

For the distributed algorithm following a similar argument
as we used in the previous section it also follows for the case
of N > 2n that Cop(N) ~ O(N*), Cern(N) ~ O(N), and
C1(N) ~ O(N). Note that for the other case of N < 2n,
Copt(N), Ce(N) and C1(N) are polynomial functions of
N with order 5,2, and 2, respectively. In addition, from the
experimental results (given in the next section) it is observed
that T.(IN) grows linearly with N. Hence, for the case of
N > 2n, we have:

Cais(N) = C1(N)+ (T.(N) = 1)(Copt(N) + Com(N))
O(N®). (12)

Note that for the other case, Cy;s(N) is a polynomial
function of N with order 6.

Remark 3.3: The communication overhead analysis is re-
ported in ([10], Section III), in which it is shown for auto-
mated irrigation networks that the communication overhead
can be a quadratic function of the number of sub-systems n.

IV. SIMULATION RESULTS

In this section, the expressions for the computation time
are verified for the automated East Goulburn irrigation dis-
trict No. 12 with a total 42 sub-systems (pools operating
under distributed distant-downstream PI control for water-
level regulation), which is of the form (1). This network
of heterogeneous sub-systems represents a typical irrigation
system in Australia and other locations globally. The com-
putation times of the centralized optimization algorithm and
consensus based distributed optimization algorithm of [2] are
compared with each other in this section for two cases: (i)
Fixed N and (ii) Fixed n. For the first case the expressions
for the computation time are verified by increasing the num-
ber of upstream sub-systems. In particular, the centralized
optimization algorithm and the consensus based distributed
optimization algorithm of [2] are applied to the last 6, 12,
18, 24, 30, 36, and 42 sub-systems of the automated East
Goulburn irrigation district No. 12. For the other case, we
fix n to be n = 42 and verify the expressions for computation
time for N = {24, 44,64, 74,84}. Throughout, it is assumed
that the last sub-system of this irrigation district is subject to
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n Cem(sec.) | Copt(sec.) | Ceen(sec.)

6 4.15 9.63 13.73

12 7.24 47.46 54.7

18 12.45 150.6 163.05

24 19.25 321.33 340.58

30 28.74 1014.08 1024.82

36 33.98 3243.1 3277.1

42 435 5340.3 5383.8
TABLE 1

TRADE-OFFS BETWEEN 1, Cem (1), Copt (n) AND Ceen ().

17.8041 m3 /min off-take disturbance and the water levels
must be within +0.25m of the desired water levels. That
is, the lower bounds on the water levels are set to be L; =
r; —0.25 and the upper bounds are set to be H; = r; +0.25.
It is also assumesd that the upper bounds on the input flow

rates are Z; = L?, the lower bounds are E; = 0, m; = % and
the weighting matrices ), R, P in (2) are identity matrices.
u? are chosen to be the desired water levels and ¢ is set
to be 0.1. For optimization, the MATLAB solver quadprog
is used, via YALMIP [11], to compute the solution to QPs
numerically. The solver quadprog is set to use the interior

point method [1],[8].

A. Fixed N, Varying n

In this section we fix the horizon length to be N = 84.
Similar to [8] to find the computation time spent for comput-
ing the optimal solution for each n = 6,12, 18,24, 30, 36, 42,
the simulation results are repeated several times by choosing
different initial conditions: z;[0] = (g; 0 . . . 0),
where ¢g; = r;—0.2, g; = r;—0.18, ... ,g; = 14, g; = 7;+0.02,
.y gi = 7; + 0.2. Then, the average of the obtained times
is calculated by excluding those results which are subject to
infeasible optimization solution. This average represents the
computation time for a given n.

Table 1 summarizes trade-offs between n, Cep,(n),
Copt(n) and Ceepn(n) for the centralized optimization algo-
rithm and Fig. 1 and Fig. 2 show the optimization time and
computation time of the centralized algorithm, respectively,
applied to the QP problem (2). As clear from Fig. 1 and Fig.
2 the optimization time and computation time in terms of the
number of sub-systems are approximated and upper bounded
by the following functions, which are of order 4 (note that
for n > 6, C.y, is approximated and upper bounded by the
following linear function C,,,(n) ~ 1.2087n — 7.264).

Copt(n) = asn® + azn® + agn?
+4.0212896n + 1.1336, (13)
Ccen(n) = Copt (TL) + Ccm (TL) ~ Oé4’fl4 + OégTLB + a2n2
+5.2299896n — 6.1304. (14)

Here ay = 0.001, ag = 0.052134 and oy = —0.7829.
Remark 4.1: 1) During the experiments it is observed that

for a given n the overheads for different initial conditions

are very close to the corresponding empirical value.

ii) The expressions for C¢,, and C,,: are obtained by

6000

5000 1

4000r J

(seconds)

3000 1

opt

2000y 1

C

1000r 1

S REET 20 30 40 50

n

Fig. 1. Optimization time of the centralized algorithm versus the number
of sub-systems n for N = 84. Blue dots are experimental data. Red curve
includes the corresponding approximated data obtained by polynomial (13).

n | Ci(sec.) | Cem(sec.) | Copt(sec.) | Te | Cuis(sec.)

6 6.57 3.67 0.64 10 43.1

12 8.86 4.44 1.19 15 89.6

18 11.3 5.17 1.63 21 144.47

24 12.85 5.81 1.98 32 250.43

30 14.94 6.6 2.26 38 334.79

36 17.02 7.22 2.53 46 462.5

42 19.41 7.95 2.71 54 584.39
TABLE II

TRADE-OFFS BETWEEN n, C1(n), Cem (n), Copt(n), Te(n) AND
Cdis (n) .

interpolating a linear function and a polynomial function of
order 4, respectively. For C.,,, it is observed that there will
be very small improvement in interpolation error if a higher
order function is used. This is also true for C,p¢. For Cope,
it is also observed that approximating C,,; by a lower order
function results in a significant interpolation error.

Table IT summarizes trade-offs between n, C1(n), Cem(n),
Copt(n), Te(n) and the distributed algorithm computation
time Cy;s(n). From this table it is observed that Cy(n),
Cem(n) and T.(n) are approximated and upper bounded
by the following linear functions, respectively: Ci(n) =~
0.3379n + 5.3, Cem(n) = 0.1192n + 3.025, and T.(n) ~
1.223n 4 2.67. From this table it also follows that the
dominant optimization time C,pi(n) is approximated and
upper bounded by the following linear function: Cop(n) ~
0.045n 4 0.91.

Consequently, from (9) it follows that Cy;(n) is approx-
imated as follows:

Cais(n) = 0.2008n> + 5.4246n + 11.8714. (15)

Fig. 3 compares the experimental data with the approx-
imation given by the above function, which is obtained
from the formula (9). From this figure it follows that the
distributed algorithm computation time is approximated and
upper bounded by the above quadratic function.

Fig. 4 compares the computation times of the central-
ized algorithm and the distributed optimization algorithm
with each other for N = 84. From this figure it follows
that for the irrigation network of interest to us there is a
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Fig. 2. Centralized computation time Cecern (1) versus the number of sub-
systems n for N = 84. Blue dots are experimental data. Red curve includes
the corresponding approximated data obtained by polynomial (14).
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Fig. 3. Cg;s(n) versus the number of sub-systems for N = 84. Blue dots
are experimental data. Red curve includes the corresponding approximated
data obtained by polynomial (15).

significant advantage in terms of the computation time in
using the distributed optimization algorithm. Specifically, the
computation time of the centralized algorithm for n = 42 is
Ceen(42) = 5383.8 seconds which is obviously intractable,
while the computation time of the distributed optimization
algorithm is Cy;s(42) = 584.39 seconds. Also, when nN >
2500 there is a significant reduction in computation time if
the distributed optimization algorithm is used.

B. Fixed n, Varying N

In this section we fix the number of sub-systems to
be n = 42 and vary the horizon length N. Table III
summarizes trade-offs between N = {24,44, 64,74,84},
Cem(N), Copt(N) and Cleep, (N). From this table it follows
that the above complexity terms are approximated and upper
bounded by the following functions.

Com(N) ~ 0.6372N — 9.172,
Copt(N) 64N4 +ﬂ3N3 +ﬁ2N2
+9.488987N — 590.67916,

Q

,Cdis(seconds)

10

20

50

Fig. 4. Cecen(n) and Cy;s(n) versus the number of sub-systems for N =
84. Solid curve indicates Ceen(n) and dashed curve indicates Cy;s(n).

N | Cem(sec.) | Copt(sec.) | Ceen(sec.)
24 5.12 51.75 56.86
44 16.27 244.85 261.12
54 25 353.64 378.64
64 30.31 688.75 719.07
74 35.57 2201.43 2237

84 45.35 5025.9 5070.3

TABLE III

TRADE-OFFS BETWEEN N, Cem (N), Copt (N) AND Ceen (N).

Ccen (N) Copt(N) + Ccm(N)
BsN* + B3N° + B N?

+10.126187N — 599.851161.

Q

(16)

Here 84 = 0.000615525, B3 = —0.067118567 and (B =
1.97799323.

Remark 4.2: During the experiments it is observed that
for a given IV the overheads of different initial conditions
are very close to the corresponding empirical value.

Table IV summarizes trade-offs between N, Ci(N),
Cem(N), Copt(N), Te(N) and Cg;s(N). From this table it
follows that the above complexity terms are approximated
and upper bounded by the following functions.

C1(N) =~ 0.004863N? — 0.231N + 4.52,

6000

5000r

4000

,Cdis(seconds)

cen
N w
o o
o o
o o

C

1000r

%

Fig. 5. Ccen(N) and Cy;5(N) versus the horizon length N for n = 42.
Solid curve indicates Ccer, (IN) and dashed curve indicates Cy;s(N).
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N | Ci(sec.) | Cem(sec.) | Copi(sec.) | Te | Cais(sec.)

24 1.77 0.79 0.196 18 18.53

44 3.76 1.9 0.48 35 84.44

54 5.89 2.82 0.77 39 140.5

64 8.87 3.99 1.24 44 229.58

74 12.33 5.55 1.69 48 348.99

84 19.41 7.95 2.71 54 584.39
TABLE IV

TRADE-OFFS BETWEEN N, C1(N), Cem(N), Copt(N), Te(N) AND

Cdis (N)

Com(N) 0.001595N? — 0.053016 N + 1.1432,
Copt(N) N5N° + naN* + s N° + np N?
+m N + o,
T.(N) =~ 0.475N + 14.1,
Cais(N) = Ci1(N)+ (Te(N) = 1)(Copt(N) + Cem(N))

Y6 N® + 5 N° + 1 N* + 3 N?
+7N2 + v N + 7. (17)

Here 15 = 1.6703099 x 1078, n4 = 3.63306543 x 107,
N3 = 2.85851661451 x 1074, 7y = —9.1807458 x 1073,
m = 0.108077, o = 0.011009, v = 7.933972x 1079, 75 =
—1.5068 x 1076, 4 = 8.81864 x 107°, 3 = 1.4183 x 1074,
2 = —6.83463 x 1072, 41 = 1.038541 and vy = 19.64014.

Fig. 5 compares the computation times of the centralized
algorithm and the distributed optimization algorithm with
each other for n = 42. From this figure it also follows that
there is a significant advantage in terms of the computation
time in using the distributed algorithm for the irrigation
network of interest to us. That is, while the computation time
of the distributed optimization algorithm is described by a
polynomial function of order 6, on the basis of experiments
for the particular system of interest to us, the growth of
the distributed algorithm computation time in N is bounded
above by that of the centralized algorithm. Specifically, when
nN > 2500 there is a significant reduction in computation
time if the distributed optimization algorithm is used. This
follows as each decision maker frequently updates its local
component of the overall decision variable by solving an
optimization problem of reduced size.

V. CONCLUSIONS

In this paper we compared the computation time of a cen-
tralized optimization algorithm for solving the QP problem
(2), with the computation time of the distributed optimization
algorithm of [2]. It was assumed that both algorithms use the
interior point method and do not exploit problem structure.
For the QP problem (2), which represents the typical opti-
mization problem arising in automated irrigation networks, it
was illustrated that there is a significant advantage in terms
of computation time in using the distributed optimization
algorithm of [2] for large-scale networks. Specifically, for
the particular network of interest to us (East Goulburn
irrigation district No. 12) it was shown that the centralized
optimization algorithm cannot provide a computationally
tractable solution; and there is a significant reduction in

the computation time when n/N > 2500 if the distributed
optimization algorithm of [2] is used.
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