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Abstract—This paper presents a new technique for state
and reference tracking of nonlinear dynamics systems over
the packet erasure channel, which is an abstract model for
transmission via the Zigbee modules. A proper encoder,
decoder and controller for state and reference tracking
of nonlinear dynamics systems when measurements are
sent through the limited capacity erasure channel, are
presented. Then, the satisfactory performance of the pro-
posed technique is illustrated via computer simulations
by applying this technique on the unicycle model, which
represents the dynamics of autonomous vehicles.

Index Terms—Networked control system, nonlinear sys-
tems, the packet erasure channel, the unicycle model

I. INTRODUCTION

Research on real time state estimation at the end of
communication links (known also as state tracking or
telemetry) and stability over communication channels
subject to limited capacity constraint is concerned with
situations involving dynamics systems controlled over
limited capacity communication links which can be also
corrupted by noise. Fig. 1 illustrates a basic block
diagram considered in the literature for studying the
problem of state tracking and stability subject to limited
capacity constraint. In this block diagram there is a
limited capacity communication link from sensors to
remote controller; while the connection from controller
to the system is direct. The limitation on transmission
capacity results in distortion on the measurements that
must be compensated by designing proper encoder and
decoder for real time reliable data reconstruction of
measurements at the end of communication link.

In the literature (e.g, [1]–[11]) the authors considered
state tracking and/or stability problems of linear systems
over communication channels subject to imperfections
(e.g., limited capacity, noise, etc.), whereas most of im-
portant applications of networked control systems, such
as tele-operation of autonomous vehicles, involve nonlin-
ear systems. The works on state tracking and control of
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nonlinear systems over communication channels subject
to imperfections are limited to state tracking and/or
stability for the digital noiseless channel ( [12], [13] and
[14]), AWGN channel ( [15]) or the nonlinear Lipschitz
dynamics systems ( [14] and [16]). Nevertheless, in some
emerging applications, such as tele-operation of minia-
ture autonomous vehicles (e.g., drones), we deal with
nonlinear dynamics systems which are more complicated
[17] to be modeled by the Lipschitz systems. Also, in
this applications, the communication from the system
to remote base station, where the remote controller is
located, is mostly via low power Zigbee modules; and
there is limitation on the length of transmitted packet
for each measurement in order to save the on board
battery power as much as possible. Hence, in these
applications, the communication link must be modeled
by the limited capacity erasure channel, i.e., by the
packet erasure channel with feedback acknowledgment.
Motivated by these applications; this paper addresses
the problem of state and reference tracking (and hence
stability) of nonlinear systems over the packet erasure
channel with feedback acknowledgment, as is shown
in the block diagram of Fig. 1. In the aforementioned
application, the communication from remote base station
to the dynamics systems can be performed with high
transmission power; and hence, in the block diagram of
Fig. 1, the communication link from remote controller
to the system can be considered without imperfections.

For the block diagram of Fig. 1, which can correspond
to the tele-operation system of autonomous vehicles over
Zigbee, a proper encoder, decoder and controller for state
and reference tracking of nonlinear dynamics systems
by remote controller are presented when measurements
are sent through the packet erasure channel. Then, the
satisfactory performance of the proposed technique is
illustrated via computer simulations by applying this
technique on the unicycle model, which represents the
dynamics of autonomous vehicles.

The paper is organized as follows. In Section II, the
problem formulation is presented. Section III is devoted
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Fig. 1. A dynamics system controlled over the packet erasure channel
with feedback acknowledgment.

to the design of a proper encoder, decoder and controller
for state and reference tracking of nonlinear dynamics
systems over the packet erasure channel. Section IV
is devoted to the simulation results for the unicycle
model. Finally, the paper is concluded by summarizing
the contributions of the paper and direction for future
research in Section V.

II. PROBLEM FORMULATION

Throughout, certain conventions are used: | · | denotes
the absolute value, ‖ · ‖ the Euclidean norm and V ′ de-
notes the transpose of vector/matrix V . A−1 denotes the
inverse of a square matrix A. ’ .=’ means ’by definition
is equivalent to’ and Zt

.
= (Z1, Z2, ..., Zt). R denotes

the set of real numbers and N+
.
= {0, 1, 2, 3, ...}. Also,

0 denotes the zero vector/matrix.
The building blocks of Fig. 1 are described below:
Dynamics System: The dynamics system is described

by the following nonlinear discrete time system:{
Xt+1 = F (Xt) +BUt
Yt = Xt

(1)

where t ∈ N+ is the time instant, F (Xt) =[
f1(Xt) f2(Xt) ... fn(Xt)

]′ ∈ Rn is a nonlinear

continuous function, Xt =
[
x
(1)
t x

(2)
t ... x

(n)
t

]′
∈

Rn is the vector of states of the system, Yt ∈ Rn is
the observation signal, Ut ∈ Rm is the control signal.
Throughout, it is assumed that the probability measure
associated with the initial state X0 with components
x
(i)
0 , i = {1, 2, ..., n}, has bounded support. That is,

for each i ∈ {1, 2, ..., n} there exists a compact set
[−L(i)

0 , L
(i)
0 ] ∈ R such that Pr(x

(i)
0 ∈ [−L(i)

0 , L
(i)
0 ]) = 1.

Note that X0 is unknown for decoder and controller.
Communication Channel: Communication channel

between the system and controller is a limited capacity
erasure channel with feedback acknowledgment. It is a
digital channel that transmits a packet of binary data
with the limited length at each channel use. The channel
input and output alphabets are denoted by Z and Z̃ ,
respectively; and Zt denotes the channel input at time
instant t ∈ N+, which is a packet of binary data with
length R containing information bits. Also Z̃t denotes

the corresponding channel output. Let e denote the
erasure symbol. Then,

Z̃t =

{
Zt with probability 1− α
e with probability α

(2)

That is, this channel erases a transmitted packet with
probability α. Throughout, it is assumed that the erasure
probability α is known a priori. In the channel considered
in this paper, there are feedback acknowledgments from
receiver to encoder. That is, if a transmission is suc-
cessful, an acknowledgment bit is sent from receiver to
encoder indicating that the transmission was successful.
The packet erasure channel with feedback acknowledg-
ment is an abstract model for the commonly used data
transmission technologies, such as the Internet, WiFi and
Zigbee. The capacity of this channel is (1−α)R bits/time
step.

To compensate the imperfections on the received mea-
surements which are due to random packet dropout and
distortion caused by the limitation on channel capacity,
we need to use a proper encoder and decoder. Encoder
and decoder considered in this paper have the following
general description.

Encoder: Encoder is a causal operator denoted by
Zt = E(Yt, Z̃

t−1, U t−1) that maps the system output
Yt (by the knowledge of the past channel outputs and
control signals) to the channel input Zt, which is a string
of binaries with length R.

Decoder: Decoder is a causal operator denoted by
X̂t = D(Z̃t, U t−1) that maps the channel output to X̂t,
which is the estimate of the states variable at the decoder.

Controller: Controller has the following structure
Ut = −B′(BB′)−1(F (X̂t)−Rt+1), where Rt+1 is the
reference signal. Note that for the stability purposes, we
set Rt = 0.

The objective of this paper is to design an encoder,
decoder and a controller that result in almost sure asymp-
totic state and reference tracking (and hence stability) of
the system (1), as defined below:

Definition 2.1: (Almost Sure Asymptotic State Track-
ing): Consider the block diagram of Fig. 1 described
by the nonlinear dynamics system (1) over the packet
erasure channel, as described above. It is said that the
states are almost sure asymptotically tracked if there
exist an encoder and a decoder such that the following
property holds: Pr(limt→∞ ‖Xt − X̂t‖ = 0) = 1.

Definition 2.2: (Almost Sure Asymptotic Stability):
Consider the block diagram of Fig. 1 described by the
nonlinear dynamics system (1) over the packet erasure
channel, as described above. It is said that the system
is almost sure asymptotically stable if there exist an
encoder, decoder and a controller such that the following
property holds: Pr(limt→∞ ‖Xt‖ = 0) = 1.

Definition 2.3: (Almost Sure Asymptotic Reference
Tracking): Consider the block diagram of Fig. 1 de-
scribed by the nonlinear dynamics system (1) over the
packet erasure channel, as described above. It is said



that the system is almost sure asymptotically track the
reference signal Rt ∈ Rn if there exist an encoder,
decoder and a controller such that the following property
holds: Pr(limt→∞ ‖Xt −Rt‖ = 0) = 1.

Remark 2.4: Note that the stability is a special case
of the reference tracking with Rt = 0.

III. ENCODER, DECODER AND CONTROLLER

In this section, we are concerned with the dynamics
system (1). We first present an encoder, decoder and a
sufficient condition on the length of transmitted packets
R, under which the states of the system almost sure
asymptotically are estimated at the end of communica-
tion link. To achieve this goal and for the simplicity
of presentation, we first suppose that F (X) in (1) is
monotone and scalar function. The extensions of this
result to more general case of non-monotone and vector
function F (X) are straight forward. Subsequently, we
show that using the proposed structure for the controller,
the reference tracking and stability are also achieved.

Now, suppose the nonlinear function F (X) is strictly
monotone and Scalar. Also, suppose Xt, Ut ∈ R
(n,m = 1). The proposed coding scheme for the scalar
case works as follows:
We fix the rate to be R. At the time instant t = 0, we
notice that X0 ∈ [−L0, L0]. The encoder and decoder
partition the interval [F (−L0), F (L0)] into 2R equal
sized, non-overlapping sub-intervals and the center of
each sub-interval is denoted by η0, η1, ..., η2R−1 (see
Fig. 2). Then, the projection of ηis in the X-axes
is computed and denoted by γ0 = F−1(η0), γ1 =
F−1(η1), ..., γ2R−1 = F−1(η2R−1), where F−1(.) is
the inverse function of F (.). Subsequently, the index
of the sub-interval that includes X0 (e.g., γj0 where
j0 ∈ {0, 1, ..., 2R − 1}) is encoded into R bits and
transmitted to the decoder through the packet erasure
channel (see Fig. 2). If the decoder receives this R bits
successfully, it identifies the index of the sub-interval
where X0 lives in; and the value of this index is chosen
as X̂0 (e.g., γj0 where j0 ∈ {0, 1, ..., 2R − 1}). But, if
erasure occurs, then X̂0 = 0. Hence, for this time instant,
the decoding error is bounded above by

|X0 − X̂0| ≤ V0 = M0L0;

M0 =

{
1
2R
, Pr(M0 = 1

2R
) = 1− α

1, Pr(M0 = 1) = α
(3)

At the time instant t = 1, using feedback acknowl-
edgment, the encoder can compute X̂0; and therefore,
it encodes X1 − F (X̂0) − BU0. To encode this signal,
the interval [−L1, L1] is computed by the encoder and
decoder as follows:

|X1 − ˆ̃X1| = |X1 − F (X̂0)−BU0|
= |F (X0) +BU0 − F (X̂0)−BU0|
= |F (X0)− F (X̂0)|

≤M0
|F (L0)− F (−L0)|

2

.
= L1 (4)
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Fig. 2. Equal sized, non-overlapping sub-intervals for encoding with
R = 2.

Then, similar to the previous case, encoder and decoder
partition the interval [F (−L1 +F (X̂0) +BU0), F (L1 +
F (X̂0) + BU0)] into 2R equal sized, non-overlapping
sub-intervals and the inverse of the center of each sub-
interval is chosen as the index of that interval. When
the encoder observes the signal X1−F (X̂0)−BU0, the
index of the sub-interval that includes X1 − F (X̂0) −
BU0 (e.g., γj1 where j1 ∈ {0, 1, ..., 2R−1}) is encoded
into R bits and transmitted to the decoder through the
packet erasure channel. Then, the decoder constructs X̂1

as follows:

X̂1 =

{
γj1, Pr(M1 = 1

2R
) = 1− α

F (X̂0) +BU0, Pr(M1 = 1) = α
(5)

Therefore, for this case, the decoding error is bounded
above by

|X1 − X̂1| ≤ V1 = M1L1;

M1 =

{
1
2R
, Pr(M1 = 1

2R
) = 1− α

1, Pr(M1 = 1) = α
(6)

Similarly, for the rest of time instants t > 1, the
encoder encodes Xt − F (X̂t−1) − BUt−1. To encode
this signal the interval [−Lt, Lt] is chosen as follows:

|Xt − ˆ̃Xt| = |Xt − F (X̂t−1)−BUt−1)|
= |F (Xt−1) +BUt−1 − F (X̂t−1)−BUt−1|
= |F (Xt−1)− F (X̂t−1)|

≤Mt−1
|F (Lt−1 + ∆t−2)− F (−Lt−1 + ∆t−2)|

2

.
= Lt;

Mt−1 =

{
1
2R
, Pr(Mt−1 = 1

2R
) = 1− α

1, Pr(Mt−1 = 1) = α
(7)

where ∆t−2
.
= F (X̂t−2) +BUt−2.

Then, the encoder and decoder partition the interval
[F (−Lt + F (X̂t−1) + BUt−1), F (Lt + F (X̂t−1) +
BUt−1)] into 2R equal sized, non-overlapping sub-
intervals and the inverse of the center of each sub-
interval is chosen as the index of that interval. When the
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Fig. 3. Critical points and critical intervals.

encoder observes the signal Xt−F (X̂t−1)−BUt−1, the
index of the sub-interval that includes Xt −F (X̂t−1)−
BUt−1 (e.g., γjt) is encoded into R bits and transmitted
to the decoder through the packet erasure channel. Then
the decoder constructs X̂t as below:

X̂t =

{
γjt, Pr(Mt−1 = 1

2R
) = 1− α

F (X̂t−1) +BUt−1, Pr(Mt−1 = 1) = α
(8)

By following a similar procedure, as described above,
the sequence X̂0, X̂1, X̂2, ... are constructed at the de-
coder.

Let ΓMax
.
= maxX,Y ∈[−L0,L0]

|F (X)−F (Y )|
|X−Y | and

Γt
.
= |F (Lt+F (X̂t−1)+BUt−1)−F (−Lt+F (X̂t−1)+BUt−1)|

2Lt
.

Now, we must show that the above coding scheme results
in almost sure asymptotic state tracking. This result is
shown in the following proposition.

Proposition 3.1: Consider the control system of Fig.
1 described by the dynamics system (1) over the packet
erasure channel with erasure probability α and feedback
acknowledgment, as described earlier. Suppose that the
transmission rate R satisfies the following inequality:

(1− α)R > max{0, log2 ΓMax} (9)

Then, using the proposed encoding and decoding
scheme, we have almost sure asymptotic state tracking
in the form of X̂t → Xt, P-a.s.; or equivalently,
Pr(limt→∞ ‖Xt − X̂t‖ = 0) = 1.

Proof: : It follows from the strong law of large
numbers [18]. Due to the page limitation, the detailed
proof is omitted.

For the non-monotone case, let us refer to the collec-
tion of the extremum points and F (a) and F (b), where
X ∈ [a, b] as the critical points of the function F (X)
(see Fig. 3). Now, we have the following corollary that
extends the previous result to non-monotone function
F (X):

Corollary 3.2: For the non-monotone function F (X),
we consider the intervals between each critical point and
call them critical intervals. Then, by applying the similar

procedure as described above to each critical interval and
by adding some extra bits to the transmitted packet for
identification of the critical interval where Xt is located
on, it can be shown that the almost sure asymptotic state
tracking is achieved.

Remark 3.3: By following a similar procedure, the
above results are extended to the vector function F (X).

Now in the following Proposition, we show that the
proposed coding scheme combined by the controller
Ut = −B′(BB′)−1(F (X̂t) − Rt+1) result in the ref-
erence tracking.

Proposition 3.4: Controller with the following struc-
ture Ut = −B′(BB′)−1(F (X̂t) − Rt+1) results in
almost sure reference tracking of the system (1).

Proof: From (1) we have Xt+1 = F (Xt) −
(BB′)(BB′)−1(F (X̂t) − Rt+1) = F (Xt) − F (X̂t) +
Rt+1. Now, as X̂t → Xt for t → ∞, P-a.s., F (Xt) −
F (X̂t) +Rt+1 → Rt+1, P-a.s.; and therefore, reference
tracking (and hence stability for Rt = 0) is achieved.
This completes the proof.

IV. SIMULATION RESULTS

In this section, for the purpose of illustration, we
apply the proposed encoder, decoder and controller to
the nonlinear dynamics of miniature drones, autonomous
road vehicles and autonomous under water vehicles that
can be modeled by the unicycle model [17]. The dynam-
ics of each miniature drones, autonomous road vehicles
and autonomous under water vehicles are described by
a 6 degrees of freedom model. However, the vehicles
dynamics can be handled by local control loops, which
results in a kinematic unicycle model, as follows [17]:

ẋ(t) = v(t) cos(φ(t))
ẏ(t) = v(t) sin(φ(t))

φ̇(t) = u(t)
(10)

where x(t), y(t) are the position vector, φ(t) the heading
angle, and the control inputs are the vehicle forward
velocity v(t) and the turning rate u(t). The state vector
of the system is X(t) =

[
x(t) y(t) φ(t)

]′
and the

input vector is U(t) =
[
v(t) u(t)

]′
. The discrete time

equivalent model is described by (11), where T is the
sampling period. xt+1 = xt + Tvt cos(φt)

yt+1 = yt + Tvt sin(φt)
φt+1 = φt + Tut

(11)

In this model xt, yt, φt, vt and ut are the discrete time
equivalent signals of x(t), y(t), φ(t), v(t) and u(t),
respectively. Note that for this model, the state vector

is Xt =
[
xt yt φt

]′ .
=
[
x
(1)
t x

(2)
t x

(3)
t

]′
.

Therefore, the state space representation of the equiv-
alent discrete time system has the following form:xt+1

yt+1

φt+1

 =

xt + Tvt cos(φt)
yt + Tvt sin(φt)

φt

+

0
0
T

ut (12)
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Fig. 4. An autonomous vehicle with positions xt−1 and yt−1 moving
towards the desired positions r[x]t and r[y]t .

which is in the form of the system (1) with
F (Xt) =

[
xt + Tvt cos(φt) yt + Tvt sin(φt) φt

]′ .
=[

f1(Xt) f2(Xt) f3(Xt)
]′

and B =
[
0 0 T

]′
.

The autonomous vehicle must track a circle with the
center located at (xr, yr) and the radius of ρ with the
angular velocity of ωr. Therefore,

[
xt yt φt

]′
must

track the reference signal
[
r
[x]
t r

[y]
t r

[φ]
t

]′
, where

rx(t) = xr + ρ cos(ωrTt), r[y]t = yr + ρ sin(ωrTt)

and r
[φ]
t = arctan(

r
[y]
t −ŷt−1

r
[x]
t −x̂t−1

) (see Fig. 4). Note that
for the simplicity of design, we choose the forward
velocity constant and equals to v(t) = 1 m/s.
Therefore, for tracking a circle with the center located
at (2, 1) and the radius of 2, by the autonomous

vehicle, we choose Rt
.
=

[
r
[x]
t r

[y]
t r

[φ]
t

]′
=[

2 + 2 cos(0.5Tt) 1 + 2 sin(0.5Tt) arctan(
r
[y]
t −ŷt−1

r
[x]
t −x̂t−1

)

]′
as the reference signals. For simulations, we also choose
T = 0.01 sec, x0, y0 ∈ [−10, 10], φ0 ∈ [−π2 ,

π
2 ] and

α = 0.9, which indicates that 90 percent of the
transmitted packets are dropped. Also, for designing
the controller, we use the pseudo inverse of BB′ by
computing its singular values. Fig. 5 to Fig. 10 illustrate
the results of the simulations. They illustrate that the
desired tracking is achieved although 90 percent of the
transmitted packets are dropped.

To compare the performance of the proposed tech-
nique, we apply the proposed technique and the feed-
back linearization control technique of [19] (with the
linearized system of (9) and (10) of [19]) to the block
diagram of Fig. 1 with the unicycle model of (11)
as the dynamics system with the reference signals of
r
[x]
t = 0.05Tt and r

[y]
t = 0.02Tt (T = 0.01 sec) and
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Fig. 5. xt and r[x]t for α = 0.9.
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Fig. 6. yt and r[y]t for α = 0.9.

the following initial conditions: x0, y0 ∈ [−10, 10] and
φ0 ∈ [−2, 2]. The Root Sum Square Error (RSSE)
computed from the sample t = 30/T to the sample
t = 100/T (30 sec . to 100 sec .) for α = 0.5, α = 0.9
and α = 0.98 when the proposed technique is used is
shown in the following Table.

α RSSE
0.5 1.93
0.9 2.86
0.98 6.44

The following table also shows the RSSE computed
for the feedback linearization control technique of [19].

α RSSE
0.5 30.23
0.9 230.75
0.98 617.14
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Fig. 7. φt and r[φ]t for α = 0.9.
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Fig. 8. Control signal: angular velocity.

For α = 0.9 the performances of the proposed technique
and the feedback linearization technique of [19] are also
illustrated in Fig. 11 and Fig. 12, respectively. From
these tables and figures, it is clear that the proposed
technique has a better performance.

V. CONCLUSION AND DIRECTION FOR FUTURE
RESEARCH

This paper presented a new technique for state and
reference tracking of nonlinear systems by remote con-
troller over the packet erasure channel. A proper encoder,
decoder and controller for state and reference tracking of
nonlinear systems when measurements are sent through
the limited capacity erasure channel were presented.
Then, the satisfactory performance of the proposed state
and reference tracking technique was illustrated via
computer simulations by applying this technique on
the unicycle model, which represents the dynamics of
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Fig. 9. xt − yt − time diagram for α = 0.9.
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Fig. 10. xt − yt diagram for α = 0.9.

autonomous vehicles.
The proposed scheme can be applied to nonlinear sys-
tems with bounded ΓMax. For future, it is interesting to
relax this assumption.
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