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Abstract— In this paper, aspects of a consensus based dis-

tributed optimization method are studied. The method is

applied to approximate the solution of a multi-variate Linear-

Quadratic (LQ) optimal control problem via distributed de-

cision makers. The decision makers are constrained in terms

of the pattern of local computation and information exchange,

as a mechanism for managing the corresponding overheads.

Feasibility (i.e., constraints satisfaction by the approximated

solutions), convergence, and optimality of the method are

proved. Convergence to the solution of finite horizon LQ

optimal control problem is illustrated for a system with six

interacting linear time invariant subsystems. For this system,

trade-offs between approximation error (i.e. performance loss

relative to the optimal solution) and the patterns used to

constrain information exchange and computation, are also

illustrated.

I. INTRODUCTION

A. Motivation and Background

In many emerging large scale systems, dynamical behavior
can be modeled by n distributed interacting linear time
invariant subsystems of the form [1]

Si : xi[k + 1] = Aixi[k] +Biui[k] + vi[k],

i = 1, 2, ..., n, k ∈ {0, 1, 2, ..., N − 1},
(1)

where xi is the state variable of the ith subsystem, ui is the
decision variable of the ith subsystem, and

vi[k] =
n�

j=1,j �=i

Mijxj [k] +Nijuj [k] (2)

is the interacting variable that summarizes the effect of other
subsystems on Si. For the system (1) we are interested
in solving the following Linear-Quadratic (LQ) constrained
optimization problem subject to the dynamics of subsystems
and operational constraints xi[k] ∈ Xi and ui[k] ∈ Gi, where
Xi is a closed convex subset of the real Euclidean space with
dimension ni > 0 (i.e., Xi ⊂ Rni ) modeling the constraint
set on the ith state variable, and Gi is a closed convex subset
of Rmi modeling the time invariant constraint set on the ith
decision variable. That is,

min
u

�
J(x[0], u1, ..., un), xi[k] ∈ Xi, ui[k] ∈ Gi, ∀i, k

�
,

J(x[0], u1, ..., un)

=̇
n�

i=1

N−1�

k=0

||xi[k]− x
d
i ||2Q + ||ui[k]||2R, (3)
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where x[0] =̇ (x�
1[0] . . . x

�
n[0] )

� is the vector of
initial states, xd

i are the desired values for the state variables
(desired set points) and Q ≥ 0, R > 0 are weighting
matrices.

Problem (1)-(3) involves (
�n

i=1 mi) × N decision
variables. Techniques involving one decision maker
responsible for computing all ui (referred to henceforth as
centralized optimization techniques) have been developed in
the literature to solve such above optimization problems [2].
However, in large scale systems,

�n
i=1 mi is very large. In

general, as the number of decision variables n increases,
the complexity of the centralized optimization techniques
increases significantly in terms of the computational
complexity (e.g., computational complexity ∼O(n6)).
Consequently, centralized optimization techniques may not
be able to provide a feasible solution for large scale systems
within a desired time period.

A simple way to deal with the computational scalability
problem just described is to use one decision maker for each
subsystem decision variable. Each decision maker uses fixed
values for the decision variables of all other subsystems,
thereby yielding a collection of smaller optimization
problems that can be solved in parallel. But this means
decision makers will have to exchange information in order
to approximate the optimal solution. This can happen in an
iterative fashion, leading to the question of convergence.
Improvements in computational scalability can be achieved
in this way when the complexity associated with information
exchange scales more slowly than that of the optimization
problems with problem dimension. To manage the overheads
associated with exchange of information between decision
makers, one approach is to group decision makers into
neighborhoods (see Fig. 1). Exchange of information
between decision makers within a neighborhood can
occur after each time their decision variables are updated,
whereas exchange of information between neighborhoods is
limited to be less frequent. This gives rise to two specific
questions: (i) How should decision makers be grouped into
neighborhoods? (ii) What are the trade-offs between size
of neighborhoods, convergence rate, frequency of exchange
of information between neighborhoods, and approximation
error (i.e., performance loss relative to the optimal solution)?

The work in this paper is based on the consensus based
optimization technique of [3], which approximates the
solution of a centralized finite horizon optimal control
problem by distributed decision makers. In particular,
the consensus based optimization technique works as
follows: Within a neighborhood, each decision maker
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Fig. 1. Two-level architecture for exchanging information between dis-
tributed decision makers.
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Fig. 2. The time-frame for inner and outer iterates updates and commu-
nication. Red lines represent inner iterate communication and updates and
blue lines represent outer iterate updates and communication.

frequently updates its decision variable and shares the
updated variable with all other neighboring decision makers.
This intra-neighborhood update and communication is
referred as an inner iterate. In addition to inner iterates,
updates of decision variables from other neighborhoods
are received periodically. These are referred to as outer
iterates. Between outer iterates, distributed decision makers
continue to compute and refine the local approximation of
the optimal solution, with fixed values for decision variables
from outside the neighborhood. These inner-outer iterates
continue until consensus is reached between distributed
decision makers on the value of the optimal cost. As each
inner iterate involves parallel computation and a smaller
optimization problem at each decision maker compared
to that of centralized single decision maker optimization
techniques, the above approach may yield a computationally
tractable solution within a desired time period T (see Fig. 2).

In addition to [3], other examples of work that use
consensus include [4] - [8]. Average consensus problems are
considered in [4],[5] primarily from the perspective of con-
vergence to the arithmetic mean of a quantity. On the other
hand, similar to [3] the references [6]-[8] present distributed
optimization methods, which approximate the solution of an
optimal control problem; and focus on optimal performance.
However, [3] suffers from the following drawbacks: There
are no proofs for feasibility, convergence, and optimality
of the technique presented in [3]; the example provided in
[3] does not illustrate convergence to the optimal solution;
and [3] does not present a method for decomposing the
system into neighborhoods (a decomposition is assumed).
Also, it does not study trade-offs between convergence rate,

frequency of exchange of information between neighbor-
hoods, and approximation error. Meanwhile, the techniques
presented in [6], [7] may not be suitable for large scale sys-
tems, as these involve excessive communication overheads
associated with exchange of information between decision
makers. Moreover, the technique presented in [8] may not be
suitable for some applications because (in general) it involves
non-convex optimization problems at distributed decision
makers (even when the original problem is convex), resulting
in high computation overheads for the decision makers.

B. Paper Contributions

This paper aims to further develop the results of [3]
by presenting a consensus based distributed optimization
method suitable for large scale systems, which approximates
the solution of a finite horizon optimal control problem via
distributed decision makers. To achieve this goal, a simple
method for decomposing the system into interacting neigh-
borhoods with specified size is proposed, and mathematical
proofs for feasibility, convergence, and optimality of the
method are provided. Suitable measures for analyzing the
performance of the consensus based optimization method are
presented. As an example the convergence of the method
to the solution of optimal control problem for the system
(1) with six interacting subsystems subject to the LQ finite
horizon cost functional (3) is illustrated. Trade-offs between
approximation error (i.e. performance loss) and the afore-
mentioned information pattern providing a handle for the
management of communication and computation overheads
are also studied.

C. Paper Organization

The paper is organized as follows: Section II presents
the problem formulation. A consensus based distributed
optimization method is presented in Section III. In Section
IV, feasibility, convergence, and optimality of the method are
demonstrated. In Section V, an application of the method
to the LQ optimal control problem is presented, followed
by a summary of the main contributions of the paper and
directions for future research in Section VI.

II. PROBLEM FORMULATION

Throughout the paper the following conventions are used:
σmax(·) denotes the largest singular value, σmin(·) the
smallest singular value, while � denotes the transpose of a
vector/matrix. In denotes the identity matrix with dimension
n × n and “=̇” means “by definition equals”. Rn is the n

dimensional real Euclidean space and “≡” means “equivalent
to”.

It is assumed throughout that the decision maker associ-
ated with subsystem Si, as described by (1), has knowledge
of all initial states, {xi[0]}ni=1, and the cost functional (3)
rewritten in terms of the initial states and decision variables.

Remark 2.1: i) From conditions Q ≥ 0, R > 0, it easily
follows that the quadratic cost functional (3) is a strictly
convex function of the decision variables over the finite
horizon N .



ii) As Xi ⊂ Rni , i ∈ {1, 2, ..., n}, are closed convex sets,
their Cartesian product X1 × X2 × ... × Xn ⊂

�n
i=1 R

ni is
a closed convex set [9]. Hence, as affine functions preserve
closedness and convexity of sets [9], the closed convex state
constraints set Xi on the linear time invariant dynamics (1)
impose additional constraints on the decision variables. In
particular, for each i ∈ {1, ..., n}, ui ∈ Hi(x(0)), where
Hi(x(0)) is a closed convex subset of Rmi . Therefore, for
each i the set of control constraints for the LQ optimization
problem (3) is (ui ∈)Ui, where Ui =̇ Gi ∩Hi(x(0)), which
is a closed convex subset of Rmi .

III. DESIGN METHODOLOGY OF THE CONSENSUS BASED
DISTRIBUTED OPTIMIZATION METHOD

Consider the following constrained optimization problem:

min
u

J(u1, ..., un), ui ∈ Ui,

where the cost functional J > 0 is strictly convex over the
finite horizon N , Ui is a closed convex subset of Rmi , and
argminui

J(u1, ..., un) ∈ RmiN .
In order to solve the above optimization problem, a

consensus based distributed optimization method is pre-
sented which uses the two-level architecture of Fig. 1 for
exchanging information. The design methodology for this
method involves two steps, namely, 1) decomposition, and
2) optimization, as will be described in this section.

A. Decomposition

In control and/or optimization of distributed systems with
a large number of interacting subsystems, it has long been
recognized [10] that a significant conceptual insight and
numerical simplification can be gained by grouping strongly
coupled subsystems into neighborhoods, solving the problem
for neighborhoods independently, and resolving subsequently
the effects of interaction between neighborhoods to get the
overall solution. There are different ways for constructing
these neighborhoods, such as the nested epsilon decom-
position method ([10], Chapter 7). The idea behind this
decomposition is to associate a graph with a given system,
disconnect the edges corresponding to interconnections with
strength smaller than a predefined threshold �, and identify
the disconnected subgraphs, as neighborhoods. Therefore,
such decomposition methods do not provide or allow the
specification of bounds on the size of neighborhoods. How-
ever, in the optimization method considered in this paper it
is important to be able to prescribe the size of neighborhoods
during the decomposition process, as the size of neighbor-
hoods is limited by the available communication bandwidth
and induced transmission delay. Such a freedom can not be
provided by the available decomposition methods. Therefore,
in this section a simple decomposition method is presented
for the system (1), which clusters subsystems into disjoint
interacting neighborhoods with specified size.

Interaction Strength Decomposition Method: Consider the
system (1), where the ith subsystem is affected by other sub-
systems via the interacting variable of (2). The z-transform

of the state of subsystem Si is given by

Xi(z) = (zIni −Ai)
−1

BiUi(z)

+
n�

j �=i

(zIni −Ai)
−1

MijXj(z)

+
n�

j �=i

(zIni −Ai)
−1

NijUj(z),

so that the transfer function from input U(z) =
(U �

1(z) . . . U
�
n(z) )

� to state X(z) =
(X �

1(z) . . . X
�
n(z) )

� for the large scale system
is given by

G(z) = V
−1(z)W (z),

where V (z)=̇[Vij(z)] with

Vij(z)=̇

�
Ini , when i = j

−(zIni −Ai)−1
Mij , otherwise

and W (z)=̇[Wij(z)] with

Wij(z)=̇

�
(zIni −Ai)−1

Bi, when i = j

(zIni −Ai)−1
Nij , otherwise.

Lots of control systems have low bandwidth. Therefore,
the DC parts of decision signals of other subsystems have
the most effect on a given subsystem. Therefore, in the
decomposition method presented in this section, the DC gain
of the transfer function from input to state is considered,
which is given by

G(z)|z=1 =





E1 E12 . . . E1n

E21 E2 . . . E2n

.

.

.

En1 En2 . . . En




, Eij ∈ Rni×mj .

Then, the Interaction Strength (IS) is defined as follows:

ISij =̇






0, if i = j

σmax(Eij)
σmin(Ei)

, if σmin(Ei) �= 0 and i �= j

σmax(Eij)
γ , if σmin(Ei) = 0 and i �= j

where γ is a fixed very small positive scalar. Subsequently,
the normalized interaction strength ISNij is defined as

ISNij =̇ round
�

ISij

ISmin

�
, ISmin =̇ min

{i,j;ISij>0}
ISij .

The interaction between subsystems may be summarized
by a matrix, called interaction strength matrix, with el-
ements/entries ISNij . Using this matrix, subsystems are
clustered into neighborhoods with specified size such that
subsystems within a neighborhood have the largest total
interaction strength. The steps involved in this clustering are
illustrated in the following examples.

Example 3.1: Consider a system with six scalar subsys-
tems of the form (1). The aggregated system is described as
follows:

x[k + 1] = Ax[k] +Bu[k], (4)



Subsystems S1 S2 S3 S4 S5 S6

S1 0 36 226 3 245 82
S2 37 0 21 29 49 27
S3 20 12 0 22 182 70
S4 93 55 63 0 148 39
S5 53 31 151 13 0 67
S6 106 62 73 1 185 0

TABLE I
THE INTERACTION MATRIX ASSOCIATED WITH THE SYSTEM (4).

(1, 2) = 73 (1, 3) = 246 (1, 4) = 96 (1, 5) = 298
(1, 6) = 188 (2, 3) = 33 (2, 4) = 84 (2, 5) = 80
(2, 6) = 89 (3, 4) = 85 (3, 5) = 333 (3, 6) = 143
(4, 5) = 161 (4, 6) = 40 (5, 6) = 252 (5, 6) = 252

TABLE II
THE SW PAIRS CORRESPONDING TO THE INTERACTION MATRIX OF

TABLE I.

x[k] = (x1[k] x2[k] x3[k] x4[k] x5[k] x6[k] )
�
,

u[k] = (u1[k] u2[k] u3[k] u4[k] u5[k] u6[k] )
�
,

A = (a1|a2|a3|a4|a5|a6),

a1 =





1.7049
0.2328
0.1213
−0.3836
−0.1148
−0.5148




, a2 =





−0.0049
1.4672
−0.1213
0.3836
0.1148
0.5148




,

a3 =





−0.9082
−0.0213
0.7311
0.1393
−0.6754
0.0246




, a4 =





−0.2732
−0.4127
0.0955
1.2061
0.007
−0.143




,

a5 =





0.5496
−0.4861
0.5566
0.132
2.3762
0.4762




, a6 =





−0.2756
0.5709
−0.4652
0.198

−0.4357
1.5143




,

B = diag(1.7,−1, 1.5,−1.2, 1.9, 0.86).

The interaction matrix associated with this system is shown
in Table I. Suppose that we are interested in decomposing
the system (4) into three neighborhoods of size two. To do
so, we compute the Strength Weights (SWs) for each pair of
different subsystems, which are defined as follows:

SW (ij) =̇ ISNij + ISNji, i �= j.

These are computed in Table II. By inspection, it follows
that the pair (3, 5) has the largest total interaction strength
followed by the disjoint pair (1, 6). Therefore, we decompose
the system (4), as follows: N1 = {S3, S5}, N2 = {S1, S6},
and N3 = {S2, S4}. Alternatively, suppose that we are inter-
ested in decomposing the system (4) into two neighborhoods
of size three. To do so, we compute the SWs for each triple
combination of different subsystems, defined as

SW (ijk) =̇ ISNij + ISNik + ISNji + ISNjk

(1, 2, 3) = 352 (1, 2, 4) = 253 (1, 2, 5) = 451
(1, 2, 6) = 350 (1, 3, 4) = 427 (1, 3, 5) = 877
(1, 3, 6) = 577 (1, 4, 5) = 555 (1, 4, 6) = 324
(1, 5, 6) = 738 (2, 3, 4) = 202 (2, 3, 5) = 446
(2, 3, 6) = 265 (2, 4, 5) = 325 (2, 4, 6) = 213
(2, 5, 6) = 421 (3, 4, 5) = 579 (3, 4, 6) = 268
(3, 5, 6) = 728 (4, 5, 6) = 453 (4, 5, 6) = 453

TABLE III
THE SWS FOR TRIPLE COMBINATIONS OF DIFFERENT SUBSYSTEMS OF

THE SYSTEM (4).

+ISNki + ISNkj , i �= j �= k.

These are computed In Table III. By inspection, it follows
that the triple combination (1, 3, 5) has the largest total
interaction strength. Therefore, we decompose the system
(4), as follows: N1 = {S1, S3, S5}, and N2 = {S2, S4, S6}.

Remark 3.2: The above decomposition clusters subsys-
tems into neighborhoods on the basis of interaction strength.
Consequently, subsystems in a particular neighborhood are
less affected by decision variables of subsystems in other
neighborhoods.

B. Optimization

Now, consider the two-level architecture of Fig. 1. Suppose
that the interaction strength decomposition method decom-
poses the system (1) with n interacting subsystems S1, S2,
... , Sn, into q disjoint interacting neighborhoods N1 ,..., Nq ,
with specified size. Without loss of generality, for notational
simplicity, let the neighborhoods have the same size and
suppose the indexing is such that N1 = {S1,1, ..., S1,g}≡
{S1, ..., Sg}, N2 = {S2,1, ..., S2,g}≡ {Sg+1, ..., S2g}, ... ,
Nm = {Sm,1, ..., Sm,g}≡ {S(m−1)g+1, ..., Smg}, ... , and
Nq = {Sq,1, ..., Sq,g}≡ {S(q−1)g+1, ..., Sn}, where Sm,l is
the lth subsystem in the mth neighborhood. Subsequently,
the decision variable of the subsystem Sm,l is denoted by
um,l, its corresponding control constraint set by Um,l and
the cost functional by J(u1,1, ..., um−1,g, um,1, ..., uq,g).

After the above decomposition, decision variables um,l,
m ∈ {1, ..., q}, l ∈ {1, ..., g}, are produced using the follow-
ing consensus based optimization technique. This technique
was first presented in [3] for the two-neighborhoods case
each with two subsystems.

The consensus based optimization technique involves
outer iterate updates and communication between neighbor-
hoods; and between every two successive outer iterates, a
sequence of inner iterate communication between subsystems
within a neighborhood and inner iterate updates, according
to the following steps.

• Initialization: The information exchange between
neighborhoods at outer iterate t makes it possible for
subsystem Sm,l to initialize its local decision variables
as h

0
j,r =̇ u

t
j,r, ∀j ∈ {1, ..., q}, ∀r ∈ {1, ..., g}, where

u
0
j,r ∈ Uj,r are chosen arbitrarily at t = 0.

• Inner Iterate: Then, subsystem Sm,l performs p̄ inner
iterates, as follows:
For each inner iterate p ∈ {0, 1, ..., p̄−1}, it first updates



its decision variable via

h
p+1
m,l = πm,lh

∗
m,l + (1− πm,l)h

p
m,l, (5)

where πm,l are chosen subject to

πm,l > 0,
g�

l=1

πm,l = 1,

and

h
∗
m,l =̇ argminhm,l∈Um,l

J(h0
1,1, ..., h

0
m−1,g, h

p
m,1,

..., hm,l, ..., h
p
m,g, h

0
m+1,1, ..., h

0
q,g). (6)

Then, it trades its updated decision variable, hp+1
m,l , with

all other subsystems in its neighborhood.
• Outer Iterate: After p̄ inner iterates, there is an outer

iterate update at subsystem Sm,l, as follows:

u
t+1
m,l = λmh

p̄
m,l + (1− λm)ut

m,l, (7)

where λm are chosen subject to

λm > 0,
q�

m=1

λm = 1.

Then, there is an outer iterate communication, in which
the updated decision variables, ut+1

j,r , j ∈ {1, ..., q}, r ∈
{1, ..., g}, are shared between all neighborhoods; and
subsequently, between all subsystems.

IV. FEASIBILITY, CONVERGENCE, AND OPTIMALITY
RESULTS

In this section, it is shown that given a feasible initial-
ization (i.e., u

0
m,l ∈ Um,l, m ∈ {1, ..., q}, l ∈ {1, ..., g}),

the iterates (7) are feasible (i.e., u
t
m,l ∈ Um,l, t ∈

{0, 1, 2, 3, ...}), the cost functional is strictly non-increasing
for each outer iterate (and so converges as t → ∞), and
the iterates (ut

1,1, ..., u
t
q,g) converges to the optimal solution

(u∗
1,1, ..., u

∗
q,g). Note that as J and the control constraint

sets are convex, there exists a unique optimal solution
(u∗

1,1, ..., u
∗
q,g). Feasibility and convergence properties are

shown for the general strictly convex finite horizon cost
functional J(u1,1, ..., uq,g); however, for the optimality it is
also assumed that the cost functional is quadratic, i.e.,

J(u1,1, ..., uq,g) =
N−1�

k=0





u1,1[k]
.

.

.

uq,g[k]





�

H





u1,1[k]
.

.

.

uq,g[k]




, H > 0.

We start this section with a feasibility result.

Lemma 4.1: (Feasibility) Given above strictly convex fi-
nite horizon cost functional, J , convex control constraint
sets, Um,l (m ∈ {1, ..., q}, l ∈ {1, ..., g}), and a feasible
initialization, the inner and outer iterates (5) and (7) are
feasible.

Proof: By assumption, the initialization, h
0
m,l = u

0
m,l

(m ∈ {1, ..., q}, l ∈ {1, ..., g}) is feasible. Since U1,1, ..., Uq,g

are convex, the convex combination (5) with p = 0 implies
that (h1

1,1, ..., h
1
q,g) is feasible. Feasibility for p ∈ {1, ..., p̄}

follows similarly by induction. Now as u
0
m,l and h

p̄
m,l are

feasible, the convex combination (7) with t = 0 implies that
(u1

m,l, ..., u
1
m,l) is feasible. Subsequently, the feasibility for

t > 1 and each p ∈ {1, ..., p̄} between every two successive
outer iterates follows similarly.

Next we show the convergence of the cost functional, J ,
under the solution (7).

Lemma 4.2: (Convergence) Given a feasible initializa-
tion, the strictly convex finite horizon cost functional
J(ut

1,1, ..., u
t
q,g) is non-increasing at each outer iterate t ∈

{0, 1, 2, 3, ...} and converges as t → ∞.
Proof: For each t ∈ {0, 1, 2, 3, ...}, the cost functional

satisfies the following:

J(ut+1
1,1 , ..., u

t+1
q,g )

= J

�
λ1(h

p̄
1,1, ..., h

p̄
1,g, u

t
2,1, ..., u

t
q,g) + ...

+λm(ut
1, ..., u

t
m−1,g, h

p̄
m,1, ..., h

p̄
m,g, u

t
m+1,1, ..., u

t
q,g)

+...+ λq(u
t
1, ..., u

t
q−1,g, h

p̄
q,1, ..., h

p̄
q,g)

�

< λ1J(h
p̄
1,1, ..., h

p̄
1,g, u

t
2,1, ..., u

t
q,g) + ...

+λmJ(ut
1, ..., u

t
m−1,g, h

p̄
m,1, ..., h

p̄
m,g, u

t
m+1,1, ..., u

t
q,g)

+...+ λqJ(u
t
1, ..., u

t
q−1,g, h

p̄
q,1, ..., h

p̄
q,g), (8)

where the equality follows from (7), and the inequality
follows from the strict convexity of the cost functional. Now,
define

Jm =̇ J(ut
1,1, ..., u

t
m−1,g, h

p̄
m,1, ..., h

p̄
m,g, u

t
m+1,1, ...,

u
t
q,g), m ∈ {1, 2, ..., q}.

Then, Jm satisfies the following bound

Jm

= J

�
u
t
1, ..., u

t
m−1,g, πm,1(h

∗
m,1, h

p̄−1
m,2 , ..., h

p̄−1
m,g ) + ...

+πm,g(h
p̄−1
m,1 , ..., h

p̄−1
m,g−1, h

∗
m,g), u

t
m+1,1, ..., u

t
q,g

�

< πm,1J(u
t
1, ..., u

t
m−1,g, h

∗
m,1, h

p̄−1
m,2 , ..., h

p̄−1
m,g ,

u
t
m+1,1, ..., u

t
q,g) + ...

+πm,gJ(u
t
1, ..., u

t
m−1,g, h

p̄−1
m,1 , ..., h

p̄−1
m,g−1, h

∗
m,g,

u
t
m+1,1, ..., u

t
q,g)

≤
� g�

l=1

πm,l

�
J(ut

1, ..., u
t
m−1,g, h

p̄−1
m,1 , ..., h

p̄−1
m,g ,

u
t
m+1,1, ..., u

t
q,g)

= J(ut
1, ..., u

t
m−1,g, h

p̄−1
m,1 , ..., h

p̄−1
m,g , u

t
m+1,1, ..., u

t
q,g),

where h
∗
m,1, h

∗
m,2, ...h

∗
m,g have been generated at inner

iterate p̄, the first equality follows from (5) for p = p̄,
the first inequality follows from the strict convexity of the
cost functional, the second inequality follows from the fact
that the cost functional J for h

∗
m,l is not greater than J

for hp̄−1
m,l , and the second equality follows from the fact that



�g
l=1 πm,l = 1. By following a similar argument, it can be

shown for m ∈ {1, 2, ..., q} that

Jm < J(ut
1, ..., u

t
m−1,g, h

p̄−1
m,1 , ..., h

p̄−1
m,g , u

t
m+1,1, ..., u

t
q,g)

< J(ut
1, ..., u

t
m−1,g, h

p̄−2
m,1 , ..., h

p̄−2
m,g , u

t
m+1,1, ..., u

t
q,g)

< ... < J(ut
1,1, ..., u

t
q,g). (9)

Consequently, from (8), (9) it follows that

J(ut+1
1,1 , ..., u

t+1
q,g ) <

� q�

m=1

λm

�
J(ut

1,1, ..., u
t
q,g)

= J(ut
1,1, ..., u

t
q,g).

That is, the cost J(ut
1,1, ..., u

t
q,g) is non-increasing at each

outer iterate t. Hence, the non-negative cost functional J

converges as t → ∞ by the monotone convergence theorem.
The optimality of the consensus based distributed opti-

mization method is now demonstrated.
Lemma 4.3: (Optimality) Given a feasible initialization,

strictly convex and quadratic cost J , and closed convex
control constraint sets Um,l (m ∈ {1, ..., q}, l ∈ {1, ..., g}),
the cost J(ut

1,1, ..., u
t
q,g) converges to the optimal cost

J(u∗
1,1, ..., u

∗
q,g), and the iterates (ut

1,1, ..., u
t
q,g) converge to

the unique optimal solution (u∗
1,1, ..., u

∗
q,g), as t → ∞.

Proof: From Lemma 4.2, it follows that the cost converges
to some J̄ ≥ 0. Because J is quadratic and strictly convex,
its sub level sets Lev≤b(J) are compact and bounded for
all b > 0. Therefore, all iterates belong to the compact and
bounded set Lev≤J(u0

1,1,...,u
0
q,g)

(J)∩U1,1× ...×Uq,g. Hence,
there is at least one accumulation point (ū1,1, ..., ūq,g) and
a subsequence T ⊂ {1, 2, 3, ...} such that (ut

1,1, ..., u
t
q,g)t∈T

converges to (ū1,1, ..., ūq,g) and J(ū1,1, ..., ūq,g) = J̄ .
Suppose for the purpose of contradiction that

J̄ �= J(u∗
1,1, ..., u

∗
q,g), and therefore (ū1,1, ..., ūq,g) �=

(u∗
1,1, ..., u

∗
q,g). Then, following a similar argument as the

proof of ([7], Lemma 7), it follows from the assumption
J̄ �= J(u∗

1,1, ..., u
∗
q,g) that J̄ < J̄ giving a contradiction.

Consequently, it is concluded that J̄ = J(u∗
1,1, ..., u

∗
q,g) and

therefore (ū1,1, ..., ūq,g) = (u∗
1,1, ..., u

∗
q,g). Moreover, as J

is continuous and it converges to J̄ , i.e.,

lim
t→∞

J(ut
1,1, ..., u

t
q,g) = J̄ = J(u∗

1,1, ..., u
∗
q,g),

it is concluded that the entire sequence (ut
1,1, ..., u

t
q,g) con-

fined in a compact set converges to the unique optimal
solution (u∗

1,1, ..., u
∗
q,g).

V. EXAMPLE

In this section, the proposed consensus based distributed
optimization method is applied on the LQ optimal control
problem and its satisfactory performance on this problem
is illustrated by computer simulations. To analyze the per-
formance of the consensus based distributed optimization
method, in this section the following measures are defined:

Definition 5.1: (Performance Loss) For a given number of
outer iterate updates t and p̄, the Performance Loss PLt(p̄)
(measured in percent) is defined as

PLt(p̄) =̇ 100
�
J(ut

1, ..., u
t
n)− J̄

J̄

�
,

p̄ TPL PLt(p̄) at t = TPL/p̄ Computation time (sec.)
1 453 0.99 77.63
10 820 0.95 142.34
20 1400 0.93 244.93
50 3250 0.98 564.91

TABLE IV
TRADE-OFFS BETWEEN p̄, TPL , AND COMPUTATION TIME FOR PL = 1

PERCENT AND THE TWO-NEIGHBORHOODS CASE.

p̄ TPL PLt(p̄) at t = TPL/p̄ Computation time (sec.)
1 424 0.99 74.23
10 2200 0.99 390.14
20 4320 0.98 755.36
50 10750 0.99 1885.2

TABLE V
TRADE-OFFS BETWEEN p̄, TPL , AND COMPUTATION TIME FOR PL = 1

PERCENT AND THE THREE-NEIGHBORHOODS CASE.

where J̄ is the optimal cost.

Definition 5.2: (Total Number of Iterations) For a given
p̄, Tt =̇ p̄× t is referred as the total number of iterations up
to outer iterate t.

Definition 5.3: (Total Number of Iterations for Conver-
gence) For a given performance loss PL, let t̄PL be the
smallest integer such that PLt(p̄) ≤ PL for all t ≥ t̄PL.
Then, TPL =̇ p̄ × t̄PL is referred as the total number of
iterations for convergence.

Remark 5.4: A smaller total number of iterations TPL

means that a smaller computation time is required for con-
vergence. Therefore, it is desired to keep TPL as small as
possible for a given performance loss, PL.

Now, consider the LQ optimal control problem described
earlier. From Remark 2.1 it follows that the proposed con-
sensus based distributed optimization method is directly
applicable to the LQ problem.

For the purpose of illustration, we apply the consensus
based distributed optimization method to the system (4)
subject to the finite horizon quadratic cost functional (3)
with the following specifications: N = 5, Q = 100.I6,
R = I6, (xd

1 = 1, xd
2 = 2, xd

3 = 3, xd
4 = 4, xd

5 = 5, xd
6 = 6),

xi[0] = 0, i ∈ {1, 2, 3, 4, 5, 6}, Xi = [−12, 12], Gi = [−6, 6],
and u

0
m,l = 0. The optimal control cost for this constraint

optimization problem is J̄ = 9370.89. The simulation
results for the above optimization problem are compared
for different decompositions of the system (4), as follows:
Two-neighborhoods decomposition: N1 = {S1,1, S1,2, S1,3}
≡ {S1, S3, S5}, N2 = {S2,1, S2,2, S2,3} ≡ {S2, S4, S6},
Three-neighborhoods decomposition: N1 = {S1,1, S1,2} ≡
{S3, S5}, N2 = {S2,1, S2,2} ≡ {S1, S6}, N3 = {S3,1, S3,2}
≡ {S2, S4}, and Six-neighborhoods decomposition: N1 =
{S1,1} ≡ {S1}, N2 = {S2,1} ≡ {S2}, N3 = {S3,1}
≡ {S3}, N4 = {S4,1} ≡ {S4}, N5 = {S5,1} ≡ {S5},
N6 = {S6,1} ≡ {S6}. For the two-neighborhoods case, we
choose in (7), (5), λ1 = λ2 = 1

2 , π1,1 = π1,2 = π1,3 = 1
3 ,

π2,1 = π2,2 = π2,3 = 1
3 , for the three-neighborhoods



p̄ TPL PLt(p̄) at t = TPL/p̄ Computation time (sec.)
1 1020 0.99 179.21
10 10200 0.99 1834.3
20 20400 0.99 3569.9
50 51000 0.99 9027.9

TABLE VI
TRADE-OFFS BETWEEN p̄, TPL , AND COMPUTATION TIME FOR PL = 1

PERCENT AND THE SIX-NEIGHBORHOODS CASE.

case, we choose λ1 = λ2 = λ3 = 1
3 , π1,1 = π1,2 = 1

2 ,
π2,1 = π2,2 = 1

2 , π3,1 = π3,2 = 1
2 , and for the six-

neighborhoods case, we choose λ1 = λ2 = ... = λ6 = 1
6 ,

π1,1 = π2,1 = ... = π6,1 = 1.
For simulation purposes, MATLAB quadprog.m solver is

used, which is interfaced via YALMIP [11] to compute the
optimal controls numerically.

It is observed that for different decompositions and dif-
ferent numbers of inner iterates before each outer iterate
p̄, the convergence to the optimal solution is achieved. A
number of trade-offs are observed. In particular, Table IV
summarizes trade-offs between p̄, TPL and computation time
(associated with the distributed decision makers processors)
for convergence of the two-neighborhoods case. Similarly,
Table V summarizes trade-offs between p̄, TPL and com-
putation time for convergence of the three-neighborhoods
case. Finally, Table VI summarizes trade-offs between p̄,
TPL and computation time for convergence of the six-
neighborhoods case. As clear from these tables for different
p̄ and different decompositions, convergence to the optimal
solution is achieved. Also, as illustrated in Fig. 3, the
required computation time to have 1 percent performance
loss (PL = 1 percent) is proportional to the total number of
iterations for convergence. Specifically, for all three cases the
required computation time equals γTPL, where γ = 0.175
is the computation time of the decision maker with the most
computational complexity. That is, TPL is a measure of
required computation time.

Fig. 4 illustrates trade-offs between TPL, p̄ and different
decompositions for PL = 1 percent and PL = 10 percent.
It is clear from this figure that (for a given decomposition)
the total number of iterations for convergence TPL increases
linearly with p̄, and for a given p̄ the corresponding total
number of iterations for convergence increases by decom-
posing the system into more neighborhoods with smaller
size. This result is expected because decomposing the sys-
tem into more neighborhoods with smaller size means less
communication for consensus between local decision makers.
Fig. 4 indicates that there is no point in decomposing the
system into neighborhoods and doing inner iterates if there
are no constraints in communication between distributed
decision makers. However, in many systems; particularly,
in large scale systems, communication is subject to limited
bandwidth and long delay due to multi-hopping. These
constraints induce excessive communication overheads and
result in very long overall computation time for producing
the optimal inputs. Therefore, to manage the overheads

associated with exchange of information between decision
makers, the system must be decomposed into neighborhoods
and inner iterates must be used, in which, as shown in Fig. 4,
this decomposition results in more iterations for convergence.
For illustration consider the following example.

Example 5.5: Suppose the inner iterate communication
overhead for each neighborhood is 1 second, the outer iterate
communication overhead is 10 seconds, and subsystems
in different neighborhoods can broadcast simultaneously
without collision (e.g., using Orthogonal Frequency Division
Multiple Access - OFDMA). Then, if the system is decom-
posed into three neighborhoods and p̄ = 10, from Table
V it follows that the total communication overhead equals
(220×10+2200×1 =) 4400 seconds and therefore the total
computation time for producing the optimal inputs equals
(390.14 + 4400 =) 4790.14 seconds. On the other hand, if
the system is not decomposed and the method of [7] is used,
it takes 950 (outer) iterates to have 1 percent performance
loss and the associated computation time is 174.126 seconds.
Therefore, for this case the total communication overhead
equals 9500 seconds and hence the total computation time
for producing the optimal inputs equals 9674.126 seconds.

As clear from this example there is a gain in terms of
the total computation time in decomposing the system into
neighborhoods and using inner iterates when there is an ex-
cessive communication overhead in exchange of information
between all decision makers.

Fig. 5 illustrates trade-offs between the performance loss,
PLt(p̄), the total number of iterations Tt, and different
decompositions for p̄ = 10 and p̄ = 20. As clear from
this figure for a given decomposition, the performance loss
decreases as the number of iterations increases. Also, for a
given performance loss, the number of iterations increases
by decomposing the system into more neighborhoods with
smaller size.

As shown above, there are trade-offs between the perfor-
mance loss, number of neighborhoods, number of inner and
outer iterates, and the total number of iterations for the sys-
tem (4) subject to the LQ cost (3). These trade-offs present
the accuracy of approximation of the LQ optimal control
solution by distributed decision makers for the system (4)
subject to state and control constraints as well as information
pattern.

VI. CONCLUSION

In this paper, aspects of a consensus based distributed op-
timization method were presented and studied. The method
was applied to approximate the solution of a multi-variate
LQ optimal control problem via distributed decision mak-
ers. The decision makers are constrained in terms of the
pattern of local computation and information exchange, as
a mechanism for managing the corresponding overheads.
Feasibility, convergence, and optimality of the method were
proved. Convergence to the solution of finite horizon LQ
optimal control problem was illustrated for a system with six
interacting linear time invariant subsystems. For this system,
trade-offs between approximation error (i.e. performance loss



0 500 1000 1500 2000 2500 3000 35000

200

400

600

0 2000 4000 6000 8000 10000 120000

1000

2000

co
m

pu
ta

tio
n 

tim
e 

(s
ec

.)

0 1 2 3 4 5 6
x 104

0

5000

10000

TPL !
Fig. 3. Computation time versus the total number of iterations for
convergence TPL for different decompositions and PL = 1 percent. Red:
The two-neighborhoods case. Blue: The three-neighborhoods case. Black:
The six-neighborhoods case.

0 10 20 30 40 500

2

4

6x 104

T PL

0 10 20 30 40 500

5000

10000

15000

T PL

number of inner iterates before each outer iterate
!

Fig. 4. Trade-offs between the total number of iterations for convergence
TPL and p̄ for different decompositions and PL = 1 percent (top figure)
and PL = 10 percent (bottom figure).Red: The two-neighborhoods case.
Blue: The three-neighborhoods case. Black: The six-neighborhoods case.

relative to the optimal solution) and the patterns used to
constrain information exchange and computation were illus-
trated. Future work will include computational complexity
analysis of the proposed method and its comparison with
the centralized optimization techniques.

ACKNOWLEDGMENT: This work is supported by
an Australian Research Council (ARC) Linkage Project
LP0989497.

REFERENCES

[1] M. Cantoni, E. Weyer, Y. Li, S. K. Ooi, I. Mareels, and M. Ryan,
Control of large-scale irrigation networks, Proceedings of the IEEE,
vol. 95, No. 1, pp. 75-91, January 2007.

[2] K. G. Murty, Linear Complementarity, Linear and Nonlinear Program-

ming, Sigma Series in Applied Mathematics, 1988.
[3] B. T. Stewart, J. B. Rawlings, and S. J. Wright, Hierarchical coop-

erative distributed model predictive control, 2010 American Control

Conference, Baltimore, MD, USA, June 30-July 02, 2010, pp. 3963-
3968.

100 200 300 400 500 600 700 800 900 10000

1

2

3
x 104

Tt

PL
t

100 200 300 400 500 600 700 800 900 10000

1

2

3

4 x 104

Tt

PL
t

!

Fig. 5. Trade-offs between PLt(p̄) and Tt for different decompositions
and p̄ = 10 (top figure) and p̄ = 20 (bottom figure). Red: The two-
neighborhoods case. Blue: The three-neighborhoods case. Black: The six-
neighborhoods case.

[4] R. Olfati-Saber and R. M. Murray, Consensus problems in networks
of agents with switching topology and time delays, IEEE Transactions

on Automatic Control, vol. 49, no. 9, pp. 1520-1533, Sep. 2004.
[5] R. Olfati-Saber, J. A. Fax, and R. M. Murray, Consensus and coop-

eration in networked multi-agent systems, Proceedings of the IEEE,
vol. 95, no. 1, pp. 215-233, January 2007.

[6] J. M. Maestre, D. Munoz de la Pena, E. F. Camacho, and T. Alamo,
Distributed model predictive control based on agent negotiation,
Journal of Process Control, vol. 21, pp. 685-697, 2011.

[7] B. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, and G.
Pannocchia, Cooperative distributed model predictive control, Systems

and Control Letters, vol. 59, pp. 460-469, 2010.
[8] R. R. Negenborn, Multi-agent model predictive control with applica-

tions to power networks, Ph.D. Thesis, Delft University of Technology.
[9] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge

University Press, 2004.
[10] D. D. Silijak, Decentralized Control of Complex Systems, Mathematics

in Science and Engineering, vol. 184, 1991.
[11] J. Lofberg, Yalmip: a toolbox for modeling and optimization in

MATLAB, in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004. [Online]. Available: http://users.isy.liu.se/johanl/yalmip


