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Abstract— This paper describes a very fast
computational technique for the solution of two-
dimensional static boundary value problems within
a homogeneous rectangular enclosure with any com-
bination of perfect magnetic and electric conducting
walls. A fast convergent series representation of the
pertinent Green’s function combined with a least-
square MoM and point-matching technique leads to
a fast and reliable numerical solution. Characteris-
tic impedances of single and coupled shielded metal-
lic rods are computed as an example application of
the present method. The results are compared with
those of the finite-element method with excellent
agreement and much less CPU time.

I. Introduction

AN IMPORTANT application for the solution of
two-dimensional static boundary value prob-

lems is to evaluate the TEM properties of single or
multiple conductor transmission lines having a cir-
cular, rectangular, or elliptical inner conductor lo-
cated inside a rectangular shield, inside a trough,
or between infinite parallel planes. Here “ TEM
properties” means the self and mutual capacitances
per unit length, even and odd mode characteristic
impedances, and the field pattern. This class of
transmission line problems have been the subject of
numerous investigations [1]–[8]. This is mainly due
to their wide applications in the design of combline
and interdigital bandpass filters and directional cou-
plers. Recently a TEM approximation has been
successfully applied to the evaluation of aperture
and loop couplings within multiple coupled coaxial
cavity filters [9, 10]. In this context one needs to
calculate the characteristic impedance and the field
pattern of a circular-rectangular coaxial line with a
combination of PEC and PMC walls. Some of these
combinations are depicted in Fig. 1.
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Fig. 1. Rectangular coaxial lines with PEC or PMC walls

Different approaches have been adopted for treat-
ment of the above transmission line problems.
A numerical inversion of the Schwartz-Christoffel
transformation was employed by Costamagna et.
al. [7, 8] to find the characteristic impedance of
slab lines and concentric coaxial transmission lines.
Levy [3] used an analytical-numerical method for
coupled slab lines and the authors employed a
modified Schwartz-Christoffel transformation for a
rectangular-coaxial line [10]. Conformal mapping
approach is usually impractical for asymmetrical or
eccentric coaxial structures.

Variational technique as well as 2D integral equa-
tion method and MoM have also been applied to the
above transmission line problems in different ways
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[1, 2, 5, 6]. Cristal [2] followed an integral equation
approach using the 2D Green’s function of the un-
bounded space in which the entire boundary of the
inner and outer conductors are to be discretized.
Stracca et. al. [5] used a direct summation of the
side-wall images to calculate the Green’s function
which is cumbersome particularly when the inner
conductor is very close to the walls.

In this article a method of moments with point
matching and least square solution is introduced in
which the required Green’s function is expressed
in terms of the so-called theta functions in com-
plex plane [11]. An exponentially convergent se-
ries representation for the ϑ-function results in a
very fast, robust, and accurate numerical method
which can be applied to any transmission line struc-
ture with rectangular shield and any number of
arbitrary shaped inner conductors. Numerical re-
sults are compared with those of the finite-element
method with excellent agreement.

II. Formulation

A. Matrix Equation and Point Matching

Characteristic impedance of the TEM mode in a
lossless uniform transmission line is related to its
static capacitance per unit length through the fol-
lowing equation:

Zc =
1
vC

=
√
µε

C
(1)

where the capacitance C is equal to the total surface
charge Q per unit length on one of the conductors
when a potential difference of V = 1 is applied be-
tween the two conductors. As shown in Fig. 2 the
inner cylinder1 is replaced by a number N of line
charges qi placed on a circle of diameter d′ < d
inside the conductor surface. Upon enforcement a
constant potential boundary condition at M obser-
vation points on the surface of the inner conductor
the following matrix equation is obtained:

N∑
i=1

Gji qi = 1 j = 1, 2, . . . ,M (2)

where Gji are the values of the pertinent Green’s
function. The above approach eliminates the diffi-
culties due to the singularity of the Green’s function
and improves the numerical efficiency. The sum of
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Fig. 2. Replacement of the inner conductor with line charges

the charges qi represents the solution for the capac-
itance:

C =
Q

V
=

N∑
i=1

qi (3)

To enhance the accuracy of the discretized bound-
ary condition a sufficient number of observation
points M (M > N) are considered and Eq. 2 is
solved via a least square method. Using the ap-
propriate Green’s function the above procedure can
be applied to all cases shown in Fig. 1 as well as
trough and slab lines.

B. Green’s Function

The method of images enables us to replace all
the PEC and/or PMC walls with an infinite set of
image charges with appropriate polarity. The static
potential of the infinite periodic distribution of im-
age charges can be expressed in terms of ϑ-functions
as described in [11]. As an example, when all the
side walls are made of perfect electric conductors,
the Green’s function is:

G(z, z′) = Re{W (z, z′)}

where W (z, z′) is given by:

W (z, z′) = − 1
2π

{
ln ϑ1

(z − z′

2a
)

+ ln ϑ1

(z + z′

2a
)

− ln ϑ1

(z − z̄′

2a
) − ln ϑ1

(z + z̄′

2a
)}

(4)

in which z � x + i y is the observation point, z′ �
x′ + i y′ represents the source point, and z̄ means
the complex conjugate. The ϑ-function is given by
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the following exponentially convergent series [11]:

ϑ1(z) = 2
∞∑

m=0

q(m+ 1
2 )2 (−1)m sin[(2m + 1)π z] (5)

where q = e−π b/a. a and b are the dimensions of the
enclosure which are depicted in Fig. 2. As another
example the Green’s function for Fig. 1(a) is:

G(z, z′) = − 1
2π

Re
{
ln ϑ1

(z − z′

4a
)

+ ln ϑ1

(z + z′

4a
)

− ln ϑ1

(z − z̄′

4a
)

+ ln ϑ1

(z + z̄′

4a
)

− ln ϑ1

(z − z′ − 2a
4a

)
+ ln ϑ1

(z − z̄′ − 2a
4a

)
− ln ϑ1

(z + z′ − 2a
4a

)
+ ln ϑ1

(z + z̄′ − 2a
4a

)}

in which q = e−π b/2a. Only the first 5 terms of Eq. 5
are usually sufficient to achieve an accuracy better
than 10−5. The electric field pattern of the TEM
mode can also be obtained through the following
equation:

!E = −
(

dW

dz

)


(6)

in which the differentiation can be performed ana-
lytically [11].

III. Numerical Results

A single computer subroutine was written to treat
all possible combinations of PEC and PMC walls
for a rectangular shield as well as trough and slab
lines. Only circular inner conductor was considered
which can be located anywhere within the shield.
The numerical results are compared with those ob-
tained from “Ansoft Maxwell 2D Parameter Ex-
tractor” which is specifically designed for 2D quasi-
TEM problems.

The characteristic impedance of a rectangular
coaxial line with a PEC shield was calculated for
different values of the diameter of the inner con-
ductor and excellent agreement with finite-element
solution is observed as shown in Fig. 3.

As another example the even and odd mode char-
acteristic impedances of a coupled slab line with a
rectangular enclosure were evaluated. The geom-
etry of the structure and its even and odd mode
equivalents are shown in Fig. 4 and the correspond-
ing impedances vs. the spacing between the two
conductors are plotted in Fig. 5. Behavior of the
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Fig. 3. Characteristic impedance of rectangular coaxial line.
a = 50mm, b = 40mm
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Fig. 4. Shielded coupled slab line

even and odd mode impedances for the coupled slab
line as a function of height of the enclosure is also
shown in Fig. 6. In all different cases 60(= M) ob-
servation points were chosen to enforce the bound-
ary condition on the center conductor and the num-
ber of unknowns was N = 20. The diameter of
the fictitious surface charge d′ was chosen to be
d′ = 0.4d.

It was found that as long as a sufficient number
of observation points are chosen (typically M > 50)
the method is quite robust against the number of
unknowns and d′. For example, with M = 60 and
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Fig. 5. Even and odd mode impedances for coupled slab line
shown in Fig. 4. a = 50mm, b = 40mm, d = 15mm
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Fig. 6. Even and odd mode impedances for coupled slab line
shown in Fig. 4. a = 50mm, s = 50mm, d = 12mm

N = 20 the largest deviation of the impedance val-
ues is less than %0.1 when the diameter d′ varies
in a range of 0.2d < d′ < 0.9d. With M = 60 and
d′ = 0.4d the maximum error is less than %0.15 for
10 < N < 30. In addition to robustness and accu-
racy the present method is quite fast which is mainly
due to fast convergence of the Green’s function and
the least square solution of the matrix equation, e.g.
generating the entire plot shown in Fig. 6 which is
composed of 122 points for Zeven and Zodd takes
14sec on a Pentium III 450MHz.

IV. Conclusions

A fast and accurate numerical method for evalu-
ation of the TEM properties of homogeneous mul-
ticonductor transmission lines with rectangular en-
closure and arbitrary combination of PEC and PMC
walls was developed and verified. The characteris-

tic impedances of a single rectangular-coaxial line as
well as a coupled slab line were calculated and ex-
cellent agreement with those obtained from a finite-
element solution was observed. Robustness, accu-
racy, and computational speed of the proposed ap-
proach were also addressed. This method can be ef-
ficiently incorporated into the design and optimiza-
tion of combline and interdigital bandpass filters as
well as multiple coupled coaxial cavity filters with
a quasi-TEM approximation [9, 10].
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