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Abstract: Array scanning method (ASM) is employed to study the input impedance and radiation pattern of a two-
dimensional periodic leaky-wave antenna (LWA). The antenna consists of a narrow horizontal strip dipole of arbitrary
length underneath a two-dimensional (2D) periodic screen of metallic patches, which acts as a partially reflective
surface (PRS), and backed by a ground plane. First, the Green’s function in the presence of the 2D array of metallic
patches is calculated by means of the ASM and then the current distribution and input impedance of the source dipole
are calculated through the electric field integral equation and method of moments. The far-field pattern is computed
using the reciprocity theorem. Compared to the Hertzian dipole, which is the only type of source that has been
considered in the literature, the resonant dipole substantially improves the performance of periodic LWA in terms of
radiated power, efficiency and bandwidth. Numerical results are given for a resonant dipole over the frequency range
of 60–70 GHz and compared with those obtained from commercial softwares, FEKO® and Ansys HFSS®, showing an
excellent agreement with considerable improvement in terms of memory usage and computational speed.
1 Introduction

Leaky-wave antennas (LWAs) are a class of travelling wave antennas
capable of producing narrow beams that can be scanned with
frequency [1]. The radiation mechanism of LWAs is based on the
existence of a guided wave with complex propagation constant
that loses energy to space waves as it travels along the structure.
The phase constant controls the scan angle, while the attenuation
constant controls the beamwidth [2]. Planar LWAs have attracted
more attention because of their low profile, low cost, ease of
fabrication and seamless integration with printed circuits.

From the geometry viewpoint, LWAs are divided into two types:
non-periodic structures such as long slots on waveguide walls [1]
and periodic structures such as periodic holes in a waveguide wall
[1, 3] or periodically loaded planar transmission lines. Planar
LWAs can also be classified as one-dimensional (1D) or
two-dimensional (2D) structures. In 1D LWA a travelling wave
with a constant direction radiates, while in 2D LWA a radial
cylindrical wave leaks into space. Recently, 2D periodic LWAs
have attracted considerable attention because of their capability to
produce a pencil beam at broadside as well as a narrow conical
beam at other angles [4–6].

Previous studies of 2D periodic LWAs such as [2, 4–7] and 2D
uniform planar LWAs such as [8–10] have mainly focused on
computing the far-field radiation pattern by proper application of
reciprocity theorem. There is hardly any published data available
on the input impedance except for a few experimental results [11].
Furthermore, in 2D periodic LWAs, the excitation is usually
considered to be a Hertzian electric or magnetic dipole and
resonant antennas have not been explored [2–6, 12].

In this paper, the input impedance as well as the radiation pattern
of 2D periodic LWAs that are excited by a resonant dipole are
investigated. A brute-force and time-consuming method to obtain
the antenna characteristics is to solve a sufficiently large but finite
problem which is obtained by truncating the infinite periodic
structure after a sufficiently large number of periods. However, in
this paper, a highly efficient technique is presented which takes
advantage of periodicity of the medium in which the source dipole
is embedded by employing the array scanning method (ASM)
[12–15]. First, the Green’s function of the periodic leaky-wave
structure is found using the ASM. Next, the current distribution
and input impedance of the dipole antenna are calculated and,
finally, the far field pattern of the LWA is obtained by invoking
the reciprocity theorem. The above steps involve different types of
electric field integral equations (EFIEs) that are solved using the
method of moments (MoM). Full-wave numerical analysis of 2D
periodic LWAs has not been reported previously in literature. Even
the brute-force method mentioned above has not been
implemented although it can be carried out by commercial
electromagnetic solvers and it will be used for verification of
numerical results in this paper.
2 Formulation

The 2D periodic LWA consists of a 2D array of metallic rectangular
patches, which acts as a partially reflective surface (PRS), printed on
a grounded dielectric slab as shown in Fig. 1. The periods of printed
patches are px and py along the x and y directions, respectively. Each
patch has the width of wp and the length of lp. The height of substrate
layer is h and its dielectric constant is ɛr. A narrow strip dipole with
length of ls and width of ws located at the height of zs < h excites the
leaky wave in the periodic structure. A small gap of width wg exists
between the two arms of the dipole on which a delta-gap voltage
source is applied.

2.1 EFIE for the dipole

Assume J s is the current distribution on the surface of the strip
dipole. The boundary condition requires

−ẑ × Ei
∣∣
S = ẑ × Es

D(J s)
∣∣
S + ẑ × Es

PRS(J s)
∣∣
S (1)

in which S is the surface of the strip dipole and Ei is the electric field
of the delta-gap voltage source. Es

D is the scattered electric field from
J s in the absence of 2D array of metallic patches and Es

PRS is the
scattered field from the 2D array when excited by J s. Using the
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Fig. 1 Periodic LWA structure excited by a strip dipole beneath the periodic
array of patches. The ground plane at the back is not shown here. The strip
dipole is excited by a delta-gap voltage source

a 3D view
b Side view
appropriate Green’s functions, the above equation can be written in
the following form which presents an integral equation for J s

Es
D = −jv�G

d

A x, y, z = zs, x
′, y′, z′ = zs

( )∗J s

−∇ Kd
w x, y, z = zs, x

′, y′, z′ = zs
( )∗∇ · J s

( )
(2)

Es
PRS = �G

PRS

EJ x, y, z = zs, x′, y′, z′ = zs
( )∗J s (3)

in which the asterisk is a shorthand notation for surface convolution
integral:

G∗J =
∫
S′
G r, r′
( )

.J r′
( )

dS′ (4)

�G
d

A and Kd
w are the vector magnetic potential and scalar electric

potential Green’s functions of the grounded dielectric substrate in

the absence of the periodic screen as shown in Fig. 2. �G
PRS

EJ is the
dyadic Green’s function of the electric field in the presence of the
2D array of patches which is basically equal to the electric field
that is caused only by the induced currents on the 2D array when
excited by a Hertzian dipole located at (x′, y′, zs) as shown in

Fig. 3. Note that �G
PRS

EJ does not include the electric field of the
Fig. 2 Structure for calculation of �G
d

A and Kd
w . The Hertzian dipole is in (x′,

y′, zs) and observation point is at (x, y, zs)
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Hertzian dipole itself which is represented by the first term on the
right-hand side of (1).

To solve (1) via the MoM, J s is expanded by triangular Rao-
Wilton-Glisson (RWG) basis functions [16]

J s r′
( ) = ∑N

n=1

Inf n r′
( )

(5)

where In are the unknown coefficients and f n are the RWG basis
functions which are defined on pairs of triangular subdomains
[16]. Since all induced currents in this problem are horizontal,

only Gd,xx
A component of �G

d

A, which is equal to Gd,yy
A , and GPRS,xx

EJ ,

GPRS,xy
EJ , GPRS,yx

EJ and GPRS,yy
EJ components of �G

PRS

EJ are needed.
Using the Galerkin procedure for testing the integral equation, the
following matrix equation is obtained

Z[ ]N×N I[ ]N = E[ ]N (6)

Zmn = jv

∫ ∫
SmSn

Gd
A r, r′
( )

f m r( ) · f n r′
( )

dS′ dS

−
∫
Sm

∇ · f m r( )
∫
Sn

Kd
w r, r′
( )∇′ · f n r′

( )
dS′ dS

−
∫
Sm

∫
Sn

f m r( ) · �GPRS

EJ r, r′
( ) · f n r′

( )
dS′ dS (7)

Em =
∫
Sm

Ei(r) · f m(r) dS (8)

in which Gd
A W Gd,xx

A and Sm is the domain of mth basis function. The
kernels of the above integrals for m = n are singular and must be
treated with care. This singularity is extracted and analytically
integrated by formulas given in [17] and then added back to the
remaining regular part.

After solving (6), the input impedance of the dipole antenna is
calculated by dividing the source voltage, which is assumed to be
1 V, by the total current passing through the width of the dipole at
the location of the delta gap source.

2.2 Green’s functions of the grounded dielectric slab
without the periodic screen

As mentioned before, Gd
A and Kd

w are the Green’s functions for the
magnetic vector potential and the scalar electric potential of a
grounded dielectric slab in the absence of periodic array as shown
in Fig. 2. Spatial forms of these Green’s functions are usually
derived by inverse Fourier transforms of their spectral domain
representations which is finally written in the form of Sommerfeld
integrals [18]. The integrand of Sommerfeld integrals always
suffers from slow decay and oscillatory behaviour and various
techniques have been proposed in the literature for efficient
computation of these integrals [18–20]. However, in this paper, we
propose an alternative method based on the ASM instead of
Sommerfeld integrals to compute the spatial forms of Gd

A and Kd
w

which can be easily extended to an arbitrary multilayer structure.
Fig. 3 Structure for calculation of �G
PRS

EJ . The Hertzian dipole that excites
the 2D array of patches is at (x′, y′, zs) and the observation point is at (x,
y, zs)
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ASM is basically an analytical method to synthesise the field of an
aperiodic source (such as a single-point source) from spectral
integration of the field of an infinite phased array of periodic
sources. Employing the concept of ASM, the current of a single
dipole can be expressed by currents of a 2D phased array of
dipoles [21]:

J i,d = px py
2p( )2

∫p/ px
−p/ px

∫p/ py
−p/ py

J i,PA kx, ky

( )
dkx dky (9)

J i,d represents a single-point source at (x′, y′, z′), while J i,PA

represents an infinite phased array of sources located at (x′ +mpx,
y′ + npy, z′) with m, n = 0, ± 1, ± 2, … as shown in Fig. 4. kx and ky
are the phase shifts between adjacent elements along x and y
directions, respectively. Using (9) and linearity of Maxwell’s
equations, the Green’s function of a single-point source can be
expressed by a spectral superposition of the corresponding Green’s
function of infinite phased arrays with varying phase shifts

Gd
A r, r′
( ) = px py

2p( )2
∫p/ px
−p/ px

∫p/ py
−p/ py

GPA
A r, r′, kx, ky
( )

dkx dky (10)

On the other hand, the Green’s function of a 2D periodic structure
is given by [22]

GPA
A r, r′, kx, ky
( )

=
∑1

m=−1

∑1
n=−1

G̃
PA
A kr,mn, z, z

′
( )

× e−jkxm x−x′( ) e−jkyn y−y′( )
(11)

in which kxm = kx + 2mπ/px, kyn = ky + 2nπ/py and

kr,mn =
										
k2xm + k2yn

√
. The spectral quantity G̃

PA
A can be found in

closed form using the equivalent transverse transmission line
model [23]. Similar equations also hold for Kd

w.
The double series in (11) converges very slowly when z = z′. A

very efficient method to calculate this series is to extract the
Fig. 4 Current distributions in ASM integral

a J i,PA is an infinite phased array of point sources located at (x′ +mpx, y′ + npy, z′)
b J i,d is a single source at (x′, y′, z′)
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asymptotic part of G̃
PA
A kr,mn, z, z

′
( )

for large m, n and then add it
back in the form of Ewald summation [22]. We may call this
technique Kummer decomposition-Ewald method. Moreover, for
further improvement of computational efficiency, Gd

A and Kd
w are

computed and saved at discrete points of a uniform grid and then
interpolated using spline method to find their values at other
observation points [24]. Note that only a 2D interpolation based
on variables Δx = x− x′ and Δy = y− y′ is sufficient.

2.3 Calculation of the dyadic Green’s function of the
periodic screen

As explained in Section 2.1, �G
PRS

EJ · Ĵ is the electric field that is
caused only by the induced currents on the 2D array of patches
when excited by a Ĵ -directed Hertzian dipole located at (x′, y′, zs)
and does not include the electric field of the Hertzian dipole itself.
Again we use a method based on ASM, similar to the one
presented in Section 2.2, to find the necessary components of
�G
PRS

EJ numerically. Assume a phased array of x-directed dipoles is
placed on z′ = zs plane with the same periods of px and py. The
following expression can be written based the concept of ASM

GPRS,xx
EJ r, r′

( ) = px py
2p( )2∫p/ px

−p/ px

∫p/ py
−p/ py

GPRS,xx,PA
EJ r, r′, kx, ky

( )
dkx dky

(12)

GPRS,xx,PA
EJ is the x component of the electric field that is caused by the

induced currents on the 2D patch array (located on z = h plane) when
excited by a x-directed phased array of dipoles (located on z = zs
plane) excluding the electric field of the phased array itself. Since
this problem is a periodic one, we only need to find the induced
current on the patch in one unit cell. This is accomplished by
finding the induced current on the metallic patch through an EFIE
and then calculating the electric field produced by this induced
current using the well-known periodic Green’s function. The EFIE
for the single patch in the unit cell is obtained as follows

−ẑ × EPA
∣∣
patch = ẑ × EPRS

∣∣
patch (13)

EPA = −jv�G
PA

A (x, y, z = h, x′, y′, z′ = zs) ·Ĵ
− ∇∇KPA

w (x, y, z = h, x′, y′, z′ = zs)
( )

·Ĵ (14)

EPRS = −jv�G
PA

A x, y, z = h, x′, y′, z′ = h
( )∗Jpatch

−∇ KPA
w x, y, z = h, x′, y′, z′ = h

( )∗∇ · Jpatch

( )
(15)

Again, by expanding the induced current on the patch Jpatch with
RWG basis functions and solving the EFIE of (13) via Galerkin
method, the unknown coefficients of Jpatch are obtained. Now the
electric field at (x, y, zs) due to the induced currents on the 2D
array can be calculated as follows

EPRS
s = −jv�G

PA

A x, y, z = zs, x′, y′, z′ = h
( )∗Jpatch

−∇ KPA
w x, y, z = zs, x′, y′, z′ = h

( )∗∇ · Jpatch

( )
(16)

If Ĵ = x̂ then

GPRS,xx,PA
EJ = EPRS

s,x (17)

GPRS,yx,PA
EJ = EPRS

s,y (18)

The above procedure must be repeated with a phase array of
ŷ-directed dipoles to find GPRS,xy,PA

EJ and GPRS,yy,PA
EJ . As can be seen
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Fig. 5 Input impedance of the strip dipole for two values of strip width
when zs = h/2 and ls = 1.6 mm. FEKO and HFSS results are shown by lines
and numerical results of the proposed method are shown by symbols

a Resistance
b Reactance
in (14)–(16), GPA
A and KPA

w for three different situations must be

calculated through (11). Spectral domain Green’s functions G̃
PA
A

and K̃
PA
w are given in Appendix I.

2.4 Far-field calculation

The reciprocity theorem can be employed to calculate the far-field
pattern of the antenna. This method has been previously reported
in [4] in connection with Hertzian dipole excitation of the periodic
leaky-wave structure. A test dipole is placed at far zone of the
antenna in û (f̂ ) direction to measure the radiated Ef

u Ef
w

( )
. The

û-directed (f̂ -directed) test dipole generates a TM (TE) polarised
plane wave that illuminates the 2D periodic structure including the
substrate and ground plane but in the absence of the strip dipole
whose actual surface current density J s was calculated by solving
the matrix equation of (6) in Section 2.1. Now from the reciprocity
theorem, we can evaluate the radiated field of the LWA as follows

Ef
u r, u, w
( ) = ∫

S
Ed
tot x

′, y′, zs
( ) · J s dx

′ dy′ (19)

in which S is the surface of the strip dipole that launches the leaky
wave. Ed

tot is the total electric field caused by the test dipole
(located at far zone) calculated at the place of the strip dipole.
Therefore, the problem is now reduced to a conventional
plane-wave scattering from a 2D periodic structure on a grounded
substrate. We can decompose Ed

tot into two components

Ed
tot = Esub

sca + EPA
sca (20)

where Esub
sca is the electric field that is generated by the incoming

plane wave in the absence of the 2D array and accounts only for
the reflection from the grounded substrate and EPA

sca is the electric
field generated by the induced currents on the metallic patches due
to the incoming plane wave. The incident field generated by the
test dipole is a plane wave given by

Ed
inc(r

′) = −jvm0
e−jk0r

4pr

( )
ejk0 î·r

′
û (21)

with î = sin u coswx̂+ sin u sinwŷ+ cos uẑ and
r′ = x′ x̂+ y′ ŷ+ z′ ẑ. Using the transverse equivalent transmission
line, transverse components of Esub

sca in (20) can be expressed as

Esub
sca,T

∣∣
z′=zs

= Ed
inc,T

∣∣
z′=h

1+ GTM

( ) sin kzzs
( )

sin kzh
( ) (22)

where the subscript T denotes transverse components, ΓTM is the
reflection coefficient for TM plane wave at the top surface of the
grounded dielectric substrate and kz is defined by

kz = k0

												
1r − sin2u

√
(23)

EPA
sca is found after calculating the induced currents on the metal

patches in the presence of the grounded substrate. To find these
induced currents, the following boundary condition is applied on
the metallic patch in one unit cell of the periodic screen

−Esub
sca,T

∣∣
patch

= EPA
sca,T

∣∣
patch

(24)

The left-hand side of (24) is given by (22) when zs is replaced by h.
The right-hand side of (24) is given by (15); however, this time Jpatch
is the unknown induced current due to the incident plane wave. After
solving the resulting EFIE with the MoM, EPA

sca in (20) (at the
location of strip dipole) can be calculated by (16).
IE
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3 Numerical results

In this section, numerical results are given for a narrow strip dipole
with the length of ls = 1.6 mm and width of ws = 0.2 mm which is
located in the middle of the dielectric layer at zs = h/2. The
substrate permittivity is ɛr = 2.2 and other parameters are as
follows: lp = 2 mm, wp = 0.2 mm, px = 0.8 mm and py = 2.1 mm.
The required substrate thickness is selected based on the design
equation given in [2]

h

l0
= 0.5												

1r − sin2u
√ (25)

which results in a substrate thickness of h = 1.68 mm in order to scan
the beam from broadside to endfire in the frequency range of 60–81
GHz.
3.1 Input impedance

Figs. 5a and b show the input resistance (Rin) and reactance (Xin) of
the antenna from 60 to 70 GHz, respectively. Rin and Xin were
calculated for two different widths of the strip ws = 0.2, 0.4 mm
whose corresponding antiresonance frequencies are fr = 63.02,
61.38 GHz, respectively. To verify the calculations, a sufficiently
large but truncated structure with 71 × 21 unit cells was simulated
in FEKO which uses the surface integral equation method.
Furthermore, a finite structure with 51 × 16 unit cells was
simulated in HFSS which uses the finite element method and
requires much more memory than FEKO. The simulated results
are also shown in Figs. 5a and b. An excellent agreement can be
seen between the proposed method and FEKO, while the presented
T Microw. Antennas Propag., 2015, Vol. 9, Iss. 14, pp. 1567–1573
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Fig. 6 Input impedance of the strip dipole for three heights of the strip zs.
FEKO results are shown by lines, while numerical results of the proposed
method are shown by symbols

a Resistance
b Reactance

Fig. 7 Input impedance of a very small dipole with ws = ls = l63/100 and
zs = h/2

Fig. 8 Input impedance of the strip dipole versus electrical length at 63 GHz
with ws = 0.2 mm and zs = h/2. l is the wavelength in the dielectric substrate at
63 GHz

Fig. 9 Resonant length versus width of strip dipole at 63 GHz for the first
parallel resonance (zs = h/2)
method is nine times faster than FEKO for an identical meshing of
conductors and the same number of frequencies. A very good
agreement is also seen with HFSS except for 0.4% frequency shift
which is due to truncating the structure with smaller number of
unit cells and different meshing.

The input resistance and reactance of the antenna for three different
heights of the strip dipole, zs = h/4, h/2, 3h/4, are shown in Figs. 6a
and b, respectively. Two interesting phenomena are observed in these
plots: when the dipole is located at zs = h/2 a sharp antiresonance
occurs at fr = 63.02 GHz where Rin is maximised and Xin crosses the
zero axis with negative slope. The electrical length of the dipole at
this frequency is l/2 where l is the wavelength in dielectric material.
However, when the dipole is located at zs = h/4 or 3h/4, a clear-cut
resonance does not occur but Xin remains close to zero over a wide
bandwidth (65–70 GHz), while Rin remains close to 200 Ω. This
property can be utilised to obtain a LWA which is fairly matched over
a wide bandwidth, while its main beam is scanned. As far as the
radiated power and efficiency are concerned, Fig. 6a shows that the
best place for the source is zs = h/2 where Rin can achieve a large
value at 63 GHz albeit over a small bandwidth. In the following
subsection, we will see that the antenna attains its narrowest beam at
broadside at this antiresonance frequency. HFSS results were not
included in Fig. 6 for better clarity because they showed an identical
behaviour with only a slight deviation (almost 0.4%) in frequency.

To further appreciate the significance of exciting the LWA by a
resonant dipole rather than a Hertzian dipole, the input impedance
of a very small dipole with length of l63/100 was calculated and
shown in Fig. 7. l63 is the wavelength in the dielectric substrate at
63 GHz. This small dipole exhibits an extremely small resistance
and a very large reactance over the entire bandwidth. Therefore,
the radiated power would be very small compared to the resonant
dipole and impedance matching would be extremely difficult and
only possible over a narrow bandwidth.
IET Microw. Antennas Propag., 2015, Vol. 9, Iss. 14, pp. 1567–1573
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Input impedance of the strip dipole versus its electrical length at 63
GHz is shown in Fig. 8. Here the wavelength is fixed at λ = 3.21 mm,
which is the wavelength in the dielectric substrate at 63 GHz, while ls
changes from 0 to 6.4 mm. Two parallel resonances occur at ls = 0.5l
and 1.56l, while there are two series resonances at ls = 0.31l and
1.33l where the input resistances are 11.5 and 5 Ω, respectively.
For ls =1.6 mm, if we remove the periodic screen from the top
surface, the first anti-resonance occurs at 75.4 GHz with a much
lower Q-factor, i.e. smaller reactance slope. Therefore, the periodic
screen not only creates the leaky-wave mode, it also reduces the
resonant length and bandwidth of the antenna. As we increase the
width of the strip dipole, its resonant length decreases similar to a
dipole antenna in homogeneous space. Fig. 9 shows the resonant
length versus width of strip for the first antiresonance frequency.

Variation of resonant length versus frequency is rather interesting.
Whereas in a homogeneous medium the electrical length of a dipole
1571



Fig. 10 Resonant length and peak input resistance of the strip dipole vs.
frequency for the first parallel resonance (zs = h/2 and ws = 0.2 mm)

Fig. 12 H-plane pattern of the LWA for scan angles of θ = 79°, 87° that
occur at f = 80, 81 GHz, respectively
at resonance is independent of frequency (it remains equal to one
wavelength for the first antiresonance), in this periodic structure if
we increase the frequency from 60 GHz and sweep the dipole
length at each frequency step, the electrical length at first
antiresonance decreases as shown in Fig. 10. However, for
frequencies above 63.5 GHz the first parallel resonance completely
disappears and the reactance remains negative as we sweep the
dipole’s physical length. This is the frequency at which the main
beam starts to split at broadside and two narrow beams start to
appear which coincides with building up of reactive energy within
the structure.
3.2 Radiation pattern

Radiation patterns of the antenna with ls = 1.6 mm and ws = 0.2 mm
in H-plane (j = 0°) and E-plane (j = 90°) are shown in Figs. 11a
and b, respectively. As the frequency increases from 60 to 63 GHz,
the beam remains at broadside but the beamwidth decreases. Similar
behaviour was reported in [4, 5] with a Hertzian dipole excitation.
The beam scans away from broadside and splits into two narrow
beams as frequency is increased further. Radiation patterns for
scan angles of θ = 0°, 15°, 30°, 45° were obtained at f = 63, 64,
66.35, 70 GHz, respectively. When compared to the results given
Fig. 11 Radiation patterns of the LWA for scan angles of θ = 0°, 15°, 30°,
45° that occur at f = 63, 64, 66.35, 70 GHz, respectively
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by Zhao et al. [4] for a Hertzian dipole excitation, it is observed
that the radiation pattern is mainly affected by the leaky-wave
structure and the source excitation has negligible effect on the
pattern as expected.

Fig. 11b shows that the E-plane pattern has a side lobe of 10 dB
below the main beam. Furthermore, when the scan angle is
beyond 40°, the main beam in E-plane is degraded significantly.
As mentioned in [4], this degradation of E-plane pattern is due to
the TM0 surface wave that is supported by the grounded dielectric
substrate. This surface wave is primarily excited in the E-plane
direction. Similar behaviour has been reported for dielectric
superstrate LWA in [8]. The H-plane pattern is not affected by this
surface wave and the beam can be scanned to near endfire as
shown in Fig. 12. In this figure, the beam is scanned to θ = 79°,
87° for f = 80, 81 GHz, respectively.
4 Conclusions

Full-wave analysis of a 2D periodic LWA consisting of a 2D periodic
array of metallic patches on a grounded dielectric substrate excited
by a resonant strip dipole was performed using an elaborate but
computationally efficient technique in which the ASM was
employed to calculate the Green’s function of the periodic
structure under aperiodic excitation and MoM was used to
calculate the relevant surface current distributions. Finally, the far
field of the periodic LWA was calculated using the reciprocity
theorem. The input impedance of the source dipole was obtained
for different values of dipole width and height in the substrate and
the results were compared with those obtained from two
commercial EM solvers showing excellent agreement.

Resonant and anti-resonant behaviour of the strip dipole
embedded within the 2D periodic structure was demonstrated for
the first time and effects of this periodic structure on resonant
length of the dipole were investigated. It was also shown that if
the dipole is placed at zs = h/4 or 3h/4 within the substrate, it can
achieve a relatively constant near-zero reactance over a fairly large
bandwidth. Moreover, it was demonstrated that the Hertzian
dipole, which is the only excitation considered in the literature for
2D periodic LWA, is extremely reactive with nearly zero resistance
resulting in very low radiation efficiency over the entire operating
band of the LWA.
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6 Appendix

6.1 Calculation of spectral domain Green’s functions
using transmission line model

The Green’s functions of magnetic vector potential and electric
scalar potential can be found using spectral domain technique. The

transverse transmission line model is shown in Fig. 13. G̃
PA
A and
VTE
i z = zs; z

′ = zs
( ) =

YTE.
YTE
0 + jYTE tan k

({[
−j cot kzzs
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Vi is the voltage due to a 1 A parallel current source. From the
transmission line analysis, it follows that (see (28))

VTE
i z = h; z′ = zs
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in which
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Similar equations can be derived for VTM
i by replacing TE by TM in

above equations and using
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0 = v10
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