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Abstract—The relationship between the phase of the reflection
coefficient and the surface-wave bandgap in planar artificial mag-
netic conductors (AMCs) is investigated. The periodic surface of
the AMC is modeled as a surface impedance and the plane-wave re-
flection coefficients and the supported surface waves are obtained
by this model. Next, the connection between the phase of the re-
flection coefficient in the fast-wave region and the occurrence of
bandgap in the slow-wave region is demonstrated. Theoretical re-
sults are verified numerically for two typical AMCs.

Index Terms—Artificial magnetic conductors (AMCs), electro-
magnetic-bandgap (EBG) structures, periodic surfaces, reflection
phase.

I. INTRODUCTION

A RTIFICIAL magnetic conductors (AMCs) are designed
to mimic the behavior of perfect magnetic conductors.

Therefore, an AMC surface should reflect electromagnetic
waves without any phase change in the electric field. A
well-known realization of AMC consists of a planar periodic
structure printed on a grounded dielectric substrate [1], [2].
This realization is able to exhibit exact in-phase reflection at
discrete frequencies that are closely related to the resonances
within the periodic surface [1]. The frequency range at which
the reflection phase is between 90 (or 45 ) is often called
the in-phase reflection band or AMC bandwidth.

The periodic structure that comprises the AMC could also
be engineered to achieve an electromagnetic bandgap (EBG)
to suppress surface waves at certain frequency bands. The sur-
face-wave bandgap (SW-BG) of AMCs may overlap with their
in-phase reflection band. This property would make the AMC
very suitable for antenna applications [1], [2]. A well-known
AMC surface that was proposed by Sievenpiper et al., possesses
such property [1].

The Sievenpiper’s AMC is composed of metallic patches
(square or hexagonal) periodically printed on a grounded
dielectric slab where each patch has a grounding via. In [3], it
was shown that, for a specific set of parameters, the in-phase
reflection band of a Sievenpiper’s AMC coincides with the
SW-BG. However, further research has shown that the SW-BG
and the in-phase reflection band are not necessarily correlated
in a general Sievenpiper surface [4], [5]. In [6], it has been
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shown that in Sievenpiper’s AMC, the period-to-thickness ratio
plays an important role in overlapping of the SW-BG with the
in-phase reflection band.

The ambiguous relation between SW-BG and in-phase re-
flection band has also been investigated in other AMC struc-
tures. In [7], an AMC surface is studied that is composed of
square-shaped metallic patches with no vias and it is shown
that as the period increases, the in-phase reflection band shifts
to higher frequencies, while the SW-BG moves to lower fre-
quencies. In [8], a transmission line network model is proposed
for periodic patches printed on a grounded slab and a proce-
dure is presented to find the dispersion equation of the surface-
and leaky-wave modes from the plane-wave reflection data. The
homogenization process used in [8] leads to an equivalent ad-
mittance for the periodic surface whose poles and zeros are de-
rived from the reflection data in the fast-wave region. In this
paper, we utilize an idea similar to [8]; however, the reflection
data is used to develop a surface impedance model that replaces
the entire multilayer periodic structure. This model is then used
to demonstrate the connection between the phase of reflection
coefficient and SW-BG for a general AMC. Despite similari-
ties between this paper and [8], there are notable differences in
scope, computational effort, and applicability that will be dis-
cussed in Section VI.

This paper is organized as follows. Section II provides the
definition of the equivalent surface impedance and the homog-
enization process of the periodic structure. It also presents the
relationship between the surface impedance and the reflection
coefficient. In Section III, the analytical form of the disper-
sion equation is derived using the equivalent surface impedance
model. Section IV provides a more in-depth analysis of the dis-
persion equations for TE and TM modes and the relationship be-
tween these equations and the phase of the reflection coefficient
is derived. To establish the relationship between the margins of
the forbidden band in the slow-wave region and the reflection
phase in the fast-wave region, two bandgap tracking curves are
introduced. On each curve the surface reactance is equal to those
on the edges of the bandgap. In Section V, numerical results for
two AMC structures, with and without metallic vias, are pre-
sented. Both periodic structures have a triangular lattice with
hexagonal patches. Finally, Section VI provides the concluding
remarks and more discussions on the practical aspects of the
method.

II. REFLECTION FROM AN AMC SURFACE

Reflection from a uniform planar surface occurs in specular
direction and if the state of polarization is preserved after the re-
flection, properties of the reflected field are described by a scalar
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reflection coefficient, but if the state of polarization changes
after the reflection, a dyadic reflection coefficient must be used
to describe the reflected field

(1)

where stands for the ratio of TE reflected electric field
to the TM incident electric field and so on.

The reflected field from a planar periodic surface may con-
tain several space harmonics each propagating in a different
direction with the main beam always in the specular direction.
At a given frequency, if the period is small enough, reflection
only occurs in the specular direction and a dyadic reflection
coefficient such as (1) can be used to describe the propagating
reflected wave. In this section, some important properties of
reflection from an AMC surface are highlighted. The AMC
surface is then approximated by a uniform, but anisotropic
impedance surface and the dyadic reflection coefficient of this
surface is derived, which is used to model the reflection from
AMC surface under single mode operation.

A. Reflection Properties of an AMC Surface

Let us consider an AMC surface on the – plane illuminated
by a plane wave given by

(2)

where is the tangential propagation vector of the incident field
and is the position vector on the – plane. Due to
the periodic nature of the AMC surface, all Floquet harmonics
are excited by the incident field. Hence, any component of the
scattered field can be represented by a Floquet expansion [9]

(3)

where and are the amplitude and the tangen-
tial propagation vector of th space harmonic and

. For the general spatial unit cell
shown in Fig. 1(a), is given by

(4)

where denotes the tangential propagation vector of the
th Floquet harmonic and and are reciprocal lattice

vectors. The reciprocal lattice vectors are obtained from the
unit cell vectors of and and satisfy the orthogonality
condition ( is the Kronecker delta function)
for . As a result, is perpendicular to for
and the magnitude of is determined by

(5)

where is the angle between and . In Fig. 1(b), the re-
ciprocal lattice vectors associated with the lattice vectors of
Fig. 1(a) are shown.

Fig. 1. (a) General unit cell of an AMC surface. (b) Reciprocal lattice vectors of
the unit cell in spectral domain. (c) Radiating regions of specular mode,���� ��,
which is the light cone and the radiating regions of ��� ��th harmonic, ���� ��.
At the frequency � , ���� �� meets ���� ��, which means ��� ��th harmonic
becomes radiating.

The total field is a superposition of the incident field
and the scattered field ( ). Therefore, for one of
the Floquet harmonics of , the tangential propagation vector
must be equal to that of the incident field. For simplicity, let

, and as a result, the Floquet harmonic of
is reflected in the specular direction and is called specular

harmonic.
For a given AMC surface, if the operating frequency is low

enough such that all Floquet harmonics other than the specular
one are evanescent and decay exponentially away from the sur-
face, then, as far as the specular harmonic is concerned, the
AMC can be replaced by a uniform surface that reproduces the
same specular reflection.

Let be the minimum frequency below which all Floquet
harmonics, except the specular one, are evanescent in the di-
rection. To determine this frequency, it is convenient to use the
diagram of radiating regions. The so-called radiating region for

th space harmonic, which is denoted by , is basi-
cally the light cone shifted by the vector in recip-
rocal space. A typical diagram of radiating regions is shown in
Fig. 1(c). For the specular harmonic, , thus always
lies inside the light cone denoted by in Fig. 1(c) and
it is always radiating. When the light cone or intersects
with the nearest radiating region denoted by in Fig. 1(c),
the th space harmonic becomes radiating. The frequency
at which the light cone meets the nearest radiating region is de-
noted by . Using the geometry of Fig. 1(c), the frequency

is readily obtained

(6)

where is the velocity of light in air. The magnitude of and
are calculated using (5) and their angles are shown in Fig. 1(b).
Hence, (6) could be written as

(7)
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Fig. 2. Surface impedance plane, which models an AMC surface. The incident
and reflected plane waves and the surface wave in the �–� plane are shown.

where must be chosen to minimize to ensure that for
frequencies below all space harmonics, except the specular
one, are evanescent.

B. Dyadic Reflection Coefficient

Once the AMC is approximated by a uniform surface, the
dyadic reflection coefficient can be determined by the surface
impedance concept. In other words, we can replace the AMC
surface under single mode operation with an equivalent dyadic
surface impedance. Consider the surface of an AMC, as shown
in Fig. 2. The surface impedance in -space is a dyad that relates
the tangential components of the magnetic field to those of the
electric field at the surface [10]

(8)
where and are tangential propagation constants along
and directions in Fig. 2 and the field components belong to
the zeroth-order space harmonic. Note that in Fig. 2, and are
not necessarily in the direction of reciprocal lattice vectors. In
fact, represents an arbitrary direction within the Brillouin zone,
and at the same time, determines the direction of the plane-wave
illuminating the structure, i.e., the plane of incidence is the –
plane. Thus, if is the wave vector of the incident plane wave,
then is in the direction of and .

When the impedance surface in Fig. 2 is illuminated by a time
harmonic plane wave, a specular reflection occurs. It was shown
in [10] that the tensor of the reflection coefficient is readily de-
termined from the surface impedance tensor using the fol-
lowing expression:

(9)

in which

(10)

where is the intrinsic impedance of free space and is the
angle of incidence.

III. SUPPORTED SURFACE WAVES BY AN AMC SURFACE

In this section, the uniform surface impedance model that was
described in Section II is employed to investigate the surface
waves supported by the structure. The dispersion equation of
surface waves associated with the surface impedance of Fig. 2 is
determined by solving source-free Maxwell equations with the
boundary condition given in (8). The Maxwell’s curl equations
in the spectral domain are

(11)

(12)

where means the determinant of . Let us only consider
the guided waves along the direction, and as a result,

or equivalently . Eliminating the components in
(11) and (12), we obtain the following two linearly independent
equations:

(13)
where is the free-space wavenumber. The set of equations in
(13) must be solved using the boundary condition given by (8),
which results in the dispersion equation

(14)

To obtain the complete dispersion diagram of the AMC sur-
face, one should change the tangential propagation vector

within the irreducible Brillouin zone and find the solution
for in (14). However, in most practical cases, for bandgap
determination it is sufficient to move on the edge of the irre-
ducible Brillouin zone.

Since the AMC surface is a periodic structure, its dispersion
equation is a periodic function of lateral propagation constant
[9]; however, the dispersion equation of the equivalent surface
impedance given in (14) does not have this property. When the
periodic surface is modeled by a homogeneous surface, the field
distribution over the AMC surface is approximated by the dom-
inant Floquet harmonic (or the specular harmonic). This model
fails to predict the dispersion behavior inside the bandgaps be-
cause a bandgap is a contribution of at least two Floquet har-
monics, which form a standing-wave pattern [9]. Hence, the sur-
face impedance model is only able to predict the approximate
dispersion behavior outside the bandgap.
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IV. RELATION BETWEEN REFLECTION PHASE AND

SW-BG IN AMC SURFACES

Once the reflection coefficients and dispersion diagram along
the direction are obtained, the relation between the reflection
phase and SW-BG in AMCs can be investigated.

For simplicity, it is assumed that the reflected wave has the
same state of polarization as the incident wave, i.e., the AMC
surface creates no cross polarization. Fortunately, most widely
used AMC structures cause a very small change in the polar-
ization of incident wave when (or in Fig. 2) is parallel to
one of the principal lattice vectors. This means and

are negligible in most cases. From (9), we can find
in terms of

(15)

where is the unit matrix. The diagonal elements of are

(16)

which vanish if and are zero. Furthermore,
and are purely imaginary for pas-

sive and lossless structures [10]. Under these conditions, (9) is
reduced to

(17)

and (14) results in two separate equations

(18)

(19)

where (18) determines the TM polarized surface waves and (19)
determines the TE polarized surface waves in the slow-wave
region.

The surface reactances and are func-
tions of tangential propagation constant and frequency .
Since the AMC surface is passive and lossless, its surface re-
actance satisfies the Foster reactance theorem [8]. As a result,

and can be represented by rational functions of fre-
quency with interlaced poles and zeros, therefore, they assume
all values from to as frequency changes. Furthermore,

Fig. 3. Typical TM dispersion diagram of an AMC surface. The frequency band
�� � � � is the TM SW-BG. The curves � and � are the bandgap tracking
curves. At the point that � crosses the light line (indicated by a circle), the
reflection phase is always 0 . At all points on the curve � in fast-wave region
the reflection phase is always 180 .

they can be approximated by rational functions of with no real
poles, as was shown in [10].

Using (17), one can calculate and as a func-
tion of incident angle , or equivalently, as a function of tangen-
tial propagation constant in the fast-wave region
where the value of varies from 0 at normal incidence
to at grazing incidence . In other words, the be-
havior of the surface impedance for fast waves is de-
termined by the reflection characteristics of the structure. How-
ever, in (18) and (19), the behavior of the surface impedance for
slow waves is needed to obtain the supported surface
waves. This is achieved by analytic continuation of the surface
reactance functions into the slow-wave region [8].

A. TM Case

Consider the dispersion diagram of a typical EBG surface for
TM surface waves, as shown in Fig. 3. A surface-wave mode
emerges from the light line at frequency , while the diagram
for the lowest order mode reaches its maximum at frequency

somewhere in the slow-wave region. The frequency band be-
tween and is an SW-BG. This behavior is typical in the
so-called mushroom-type structures (patches with vias), but is
not usually observed in uniplanar EBGs. A thorough review of
published data reveals, however, that the dispersion curves of
most conventional EBG/AMC/PBG structures typically show a
maximum at the corner of Brillouin zone (at point X or M) and
the minimum point always occurs on the light line. The peak has
also been observed between points M and for some multilayer
uniplanar structures. In mushroom-type structures, however, the
peak of the dispersion curve of the fundamental mode occurs
between and X corners of the Brillouin zone after which the
mode becomes a backward wave or left handed [11]. A similar
peak also occurs between and M points. Even for these struc-
tures the dispersion curves of higher order modes show the typ-
ical maxima at X or M points. In any case, the location of this
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peak does not change anything in the method presented
here. Let denote the value of surface reactance at frequency

( or ) on the two edges of the bandgap, then according
to (18), we can write

(20)

where and is the tangential propaga-
tion constant of the supported surface wave at frequency . Let

denote the locus of the points on the – plane
(for ) where the surface reactance
equals . We call a bandgap tracking curve. Analytic
properties of surface reactance function, which were mentioned
before, ensure that is an analytic curve in the – plane.
These two curves are shown in Fig. 3. The idea is to find these
two curves by just a few simulations of the reflection coefficient
of the structure under plane-wave illumination. Extrapolation of
these curves into the slow-wave region would provide us infor-
mation on the SW-BG. The phase of reflection coefficient for
all points located on the two bandgap tracking curves can be
obtained from (17) when

(21)

The points at the two extreme edges of the bandgap
(in the slow-wave region) and the points where the reflection
phase is given by (21) (within the fast-wave region) lie on the
same bandgap tracking curve . From (20), it can be concluded
that and . Therefore,
at all points on , the surface reactance is a constant nega-
tive value and at the point crosses the light line ,
there is in-phase reflection . At all points on

, in the fast-wave region, the surface reactance is zero and
.

B. TE Case

For the TE case, the typical dispersion diagram shown in
Fig. 4 is considered. The “typical” behavior was explained in
Section IV-A. The frequency band of is the passband
of TE surface waves. Hence, outside this frequency band is the
TE bandgap. From (19), the top and bottom edges of the TE
bandgap denoted by are solutions of the fol-
lowing equation:

(22)

The phase of the reflection coefficient for all the points at which
is obtained from (17),

(23)

Similar to the TM case, there is an analytic bandgap tracking
curve denoted by in Fig. 4 that passes through the edge of
surface-wave passband at in the slow-wave region and
the reflection phase on this curve is given by (23) in the fast-
wave region. Furthermore, from (22), it can be concluded that

Fig. 4. Typical TE dispersion diagram of an AMC surface. The frequency band
outside of �� � � � is TE bandgap. The curves � and � are the bandgap
tracking curves. At the point that � crosses the light line (indicated by a square
symbol), the reflection phase is always�180 . On the curve� in the fast-wave
region, the reflection phase is always 0 .

and . As a result,
at all points on , the surface reactance is a constant negative
value and at the point crosses the light line , the
reflection phase is 180 . On the other hand, , in the fast-
wave region, is the locus of all points where is 0 .

C. Determination of Bandgap Tracking Curves

For conventional AMC structures, which are usually made of
metallic patches printed on grounded dielectric substrates with
or without grounding vias, the procedure for determination of
bandgap tracking curves can be summarized as follows.

1) The point is determined by carrying out dis-
persion analysis of the periodic structure within the fre-
quency range of along the edges of
the irreducible Brillouin zone. Following the discussion
on the typical location of in EBG structures (see
Section IV-A), the dispersion analysis is only needed
on one edge of the Brillouin zone. Only a few points
of the dispersion diagram of the lowest order mode are
required to find .

2) The value of surface reactance at point is de-
termined using (20) for TM mode or (22) for TE mode.

3) A few points of each bandgap tracking curve ( and
) in a visible or fast-wave region must be deter-

mined using plane-wave reflection analysis. To find
these curves, the phase of the reflection coefficient for a
number of plane waves within the same frequency range

and for a few angles of incidence between
and are calculated using full-wave

numerical simulations. For the TM mode, those points
for which the phase of reflection is 180 and those for
which the reflection phase is given by (21) are extracted
from the above data set. These two sets of points lie on

and curves, respectively. The process for the TE
mode is similar, except that the reflection phase of 0
and (23) must be used.
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Fig. 5. (a) AMC surface proposed by Sievenpiper et al. [1] is composed of
hexagonal metallic patches in a triangular lattice. The unit cell of this surface is
the rhombus with � � ��� mm. The separation between the hexagonal patches
is 0.15 mm and each patch is connected to the ground plane with a metallic via
of 0.36-mm diameter. The dielectric substrate with � � ��� and thickness of
1.6 mm was considered. (b) Shaded area shows the irreducible Brillouin zone.

Fig. 6. Dispersion diagram of TM surface waves in � �� direction and the
bandgap tracking curves for the AMC surface in Fig. 5. The points at which
the reflection phase is given by (21) are indicated by triangles � � �
�� � �� � �� � �� 	. Small squares and circle represent points with reflection
phase of 180 and 0 , respectively.

4) A polynomial curve-fitting procedure is applied to the
discrete points obtained in 3) in order to obtain an ap-
proximate analytic form of the bandgap tracking curves
in the – plane.

V. NUMERICAL VERIFICATION

In this section, the predicted relations between the reflection
phase and SW-BG are examined for two well-known AMC sur-
faces. The first example is the surface that was proposed by
Sievenpiper et al. in [1]. The geometry and physical parameters
of this AMC surface are shown in Fig. 5(a). The second example
is the same structure when the grounding vias are removed. The
surface impedance model and our predictions are valid up to the
frequency . From (7), that is associated with the unit
cell geometry in Fig. 5 is GHz. In the first case,
the point occurs between the points and on the edge
of the Brillouin zone, while in the second example, it occurs at
point . Therefore, for both structures, the relationship was in-
vestigated on the edge of the Brillouin zone that is shown
in Fig. 5(b). A full-wave analysis was performed for five angles
of plane-wave incidence
along with a frequency sweep at each incident angle.

Fig. 7. Dispersion diagram of TE surface waves in � � � direction and
the bandgap tracking curves for the AMC surface in Fig. 5. The points
at which the reflection phase is given by (23) are indicated by triangles
� � � �

� ��

� ��
�� ��
�� 	. Small square and circles
represent points with reflection phase of �180 and 0 , respectively.

Fig. 8. Dispersion diagram of TM surface waves and the bandgap tracking
curves for the structure in Fig. 5 when the vias are removed. The points at which
the reflection phase is given by (21) are indicated by triangles � � �
�� � ���� � ��� � ���� 	. Small squares and circle represent points with re-
flection phase of 180 and 0 , respectively.

The results for TM and TE waves in the first example are pre-
sented in Figs. 6 and 7, respectively. For the TM case, second-
order polynomials were used for interpolation and extrapolation
of bandgap tracking curves. For the TE case, third-order polyno-
mials were employed. One may have to use higher order poly-
nomials for structures with high angular instability where the
reflection phase changes rapidly with the angle of incidence. To
improve the accuracy when extrapolating inside the slow-
wave region, the point is included in the polynomial
curve-fitting procedure. When the vias are removed, the results
for TM and TE waves are shown in Figs. 8 and 9, respectively.
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Fig. 9. Dispersion diagram of TE surface waves and the bandgap tracking
curves for the structure in Fig. 5 when the vias are removed. The points
at which the reflection phase is given by (23) are indicated by triangles
� � � ����� ������ ������� ���	
�� �. Small square and
circles represent points with reflection phase of �180 and 0 , respectively.

In this case, second-order polynomials were used for curve fit-
ting.

Above results show that, for TE modes, removing the vias
only shifts the second bandgap towards higher frequencies,
but the shape of bandgap tracking curves (especially ), and
thus, the angular behavior of the structure remain relatively
unchanged. However, for TM modes, removing the vias has
a significant effect on the bandgap tracking curves and the
dispersion diagram. A prominent change is that the backward
wave in Fig. 6 is disappeared in Fig. 8.

VI. CONCLUDING REMARKS

The relationship between the reflection phase and SW-BG in
AMCs was investigated. This connection was established by in-
troducing two bandgap tracking curves in the – plane. These
curves connect the two margins of the SW-BG to the points with
certain reflection phase in the fast-wave region while the surface
reactance remains constant on each curve. A polynomial curve
fitting was employed to obtain the approximate analytic form of
the bandgap tracking curves using only a few data points gath-
ered from numerical simulations.

As mentioned at the beginning of this paper, there are notable
differences between the method presented here and that of [8].
First, the method presented in [8] was developed to calculate the
complete dispersion diagram of a frequency-selective surface
(FSS) structure (both for surface waves and leaky waves) from
the phase of reflection coefficient. However, our aim here is to
establish a relationship between the two margins of the SW-BG
in the slow-wave region and the phase of reflection coefficient
in the fast-wave region and to gain some insight as to how they
change with respect to each other. Secondly, since the method

presented in [8] tries to calculate the complete dispersion dia-
gram and also because of the type of modeling that was used (a
rigorous admittance model for the FSS), the method requires a
huge amount of computational effort. This includes the extrac-
tion of the poles and zeros of the FSS admittance from the reflec-
tion data, as well as the rotation of the admittance matrix at each
frequency with angle , which must be determined numerically
[8]. Although this method could eventually give us the infor-
mation that we are seeking in this paper, it is computationally
too excessive for our purpose. We do not need to find the whole
dispersion diagram, and with the type of modeling that we use,
the approach presented here is computationally more efficient.
Finally, the most prominent difference between the proposed
method and that of [8] is the use of a surface impedance model
for the FSS instead of the transmission line network model; in
other words, our proposed homogenization process is different.
Basically, when looking from the top, any multilayer periodic
structure can be replaced by a uniform surface impedance as
long as the frequency is below the single harmonic frequency,
as explained in Section II. Therefore, unlike the method pre-
sented in [8], the proposed technique can be equally applied to
EBG structures with or without metallic vias or even to PBG
structures where a dielectric layer contains periodic inclusions.

A key property in finding the relation between reflection
phase and bandgap is the angular stability of the AMC surface,
which affects the way the reflection phase changes by the
angle of incidence. The angular stability heavily influences the
shape of the bandgap tracking curves. Studying several types
of EBG structures (including printed dipoles and rectangular
and hexagonal patches with and without vias) showed that as
we move toward more angularly stable structures, the curve ,
which is the locus of the points with a constant reflection phase,
tends to become a horizontal straight line in the – plane.
Similarly, the curve also tends toward a horizonal line with
less variations of the reflection phase on it.

The relation between reflection phase and SW-BG can be
utilized to develop an effective methodology for designing
AMC surfaces in antenna applications where it is much more
useful if the AMC and EBG frequency bands overlap so that the
effects of surface waves are reduced. The technique presented
here provides a quick way to predict whether these two bands
overlap. This is due to the fact that in structures with high an-
gular stability, one can obtain an estimate of where the bandgap
occurs without resorting to cumbersome dispersion analysis
in the slow-wave region, which is much more costly and time
consuming than simple plane-wave reflection analysis. For TM
modes, it was observed that at the cross point between the curve

and the light line, the phase of reflection was always 0 . If
we just obtain the locus of the points for which the reflection
phase is 0 and 180 and find their cross points with the light
line, then, in an angularly stable structure, we have a very good
estimate of the bandgap without the need to do any dispersion
analysis. In other words, in such cases, we do not need to
generate the actual bandgap tracking curve . Similarly, in
the case of TE modes, it was observed that at the cross point
between the curve and the light line the phase of reflection
was always 180 . If we just obtain the locus of the points for
which the reflection phase is 0 and 180 and find their cross
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points with the light line, then we have a very good estimate of
the bandgap if the structure is angularly stable. This means we
do not need to generate the actual bandgap tracking curve .
Such plane-wave reflection simulations are very fast and we
only need to do them for a few angles of incidence and then use
the interpolation scheme to generate the curves and extrapolate
their cross points with the light line.

In this paper, it was assumed that the reflected wave from the
AMC surface had the same state of polarization as the incident
wave, i.e., the cross polarization was negligible. Although in
most AMC surfaces this assumption is valid, it is not true in
general and efforts are under way to extend the method for the
general case.
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