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Abstract—A new technique for rapid calculation of the Green’s
functions in a rectangular cavity is presented. The method is based
on a best polynomial approximation in three dimensions, which
is implemented through a fast cosine transform. Generating the
required samples for polynomial modeling is greatly accelerated
through Ewald summation technique. To validate the efficiency of
the resulting Chebyshev series for the potential Green’s functions,
a surface integral-equation (SIE) formulation is used to compute
the resonant frequency of conductor loaded cavity resonators. The
new scheme is proved to be considerably faster than Ewald trans-
form in filling the method of moments (MoM) matrix. A SIE with
the MoM can now be efficiently used for electromagnetic analysis
and optimization of conductor or dielectric loaded resonators and
filters with rectangular enclosures.

Index Terms—Chebyshev polynomial approximation, Green’s
function, rectangular cavity, surface integral equation (SIE).

I. INTRODUCTION

SURFACE integral-equation (SIE) technique with the
method of moments (MoM) is a versatile and efficient

method for electromagnetic analysis of arbitrarily shaped
dielectric and metallic objects, but the slow convergence of the
relevant Green’s functions inside a rectangular enclosure makes
it very difficult, if not impossible, for this method to be applied
for the analysis of shielded objects. Different convergence
acceleration schemes have been utilized in effort to apply an
SIE MoM for shielded structures. These applications have been
mostly restricted to electromagnetic compatibility (EMC)/elec-
tromagnetic interference (EMI) studies including wire antennas
and septums inside rectangular enclosures [1]. In [2]–[4], an
asymptotic extraction method was used to calculate the field
coupling to cavities or rectangular waveguides via coaxial
probes. Usually in those cases, only one or two components
of the Green’s functions are required, and since the number
of unknowns is relatively small, conventional convergence
acceleration techniques lead to a fairly efficient solution. The
Ewald summation technique has proven to be a very effective
tool for rapid calculation of potential Green’s functions in
periodic structures, as well as cavities and waveguides [5]–[8].
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Theoretically, this method yields the highest possible overall
convergence rate among series acceleration techniques for
rectangular cavity Green’s function, but has only been used by
few researchers [1].

In [9], the Ewald transform was used to accelerate the
convergence of the quasi-static part of the Green’s function in
a boundary integral formulation to analyze waveguide filters.
Using SIE MoM for full-wave analysis of metallic or dielectric
loaded cavity resonators and filters, though appealing at first
sight, has not been implemented successfully so far due to
computational complexity of the pertinent Green’s functions,
rendering the method to be very inefficient compared to the
finite-element or mode-matching techniques. It will be shown
in this paper that, even after using the Ewald method, it will not
be feasible to use the integral-equation technique for full-wave
analysis or direct optimization of these structures.

In this paper, a new scheme for very fast computation of the
Green’s functions in a rectangular box is introduced, which is
based on a Chebyshev polynomial approximation of the vector
and scalar potentials. This polynomial modeling process needs
to be repeated for each frequency. Using a fast cosine transform
(FCT) for polynomial approximation combined with the Ewald
acceleration method for generating the required samples makes
this process extremely fast so that its computational overhead
is negligible. During the Chebyshev approximation process, the
source is located at the origin, and the singularity of the function
is extracted. An interesting feature of this approach is that, after
evaluating the polynomial model eight times, corresponding to
locations of the source and its seven immediate images, all com-
ponents of the electric and magnetic vector and scalar potentials
are calculated simultaneously for an arbitrary source location
without further call to the polynomial model.

For validation and comparison purposes, both the Ewald
method and new polynomial model are used in an SIE–MoM
formulation in order to find the resonant frequency of some
commonly used conductor loaded cavity resonators. This
includes a cavity loaded with a metallic disk and a combline
cavity resonator. Our new approach reduces the matrix filling
time in a full-wave SIE–MoM solution by an average factor of
30 compared to Ewald transform without loss of accuracy. With
a drastic reduction in computational time while maintaining
high accuracy, it is now feasible to use the integral-equation
technique and MoM for direct optimization of structures made
of dielectric or metallic objects inside rectangular cavities.
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II. THEORY

In a rectangular cavity uniformly filled with a homogeneous
material with a dielectric constant of , there are three com-
ponents for each of the electric and magnetic vector
potential Green’s functions

(1)

as well as two scalar potentials corresponding to electric
and magnetic sources. In the following sections, is chosen
for demonstration of the method. Other components are treated
in an identical manner.

A. Image Series Representation

Consider an infinitesimal -directed electric dipole located
inside a homogenous rectangular cavity. Fig. 1 shows a basic
cell of the source and its immediate images due to the adjacent
walls of the cavity. The complete set of images is obtained by
repeating the basic cell with a period of in space
where , , and are the dimensions of the cavity along the -,

-, and -directions, respectively. The magnetic vector potential
for this distribution of sources is as follows:

(2a)

(2b)

is the wavenumber inside the box and is
1 or 1 corresponding to the relative orientation of the source

and its images in the basic cell. In Fig. 1, the orientation of each
dipole is represented by a sign from which the value of
is obtained. It can be shown that , ,
and , where is the location of the obser-
vation point and is the position of the th dipole in
the basic cell of images shown in Fig. 1. Components of the po-
tential Green’s functions only differ in their corresponding
coefficients, i.e., the only difference among them is the orienta-
tion of basic images of the source. Equation (2a) can be written
in the following form:

(3)

in which

(4a)

(4b)

Fig. 1. Basic cell of images. This cell is repeated with a period of 2a�2b�2c.

It can be shown that is an even function of , , and
. It is also a periodic function with a spatial period of ( , ,
) and is evenly symmetric with respect to , , and

planes as follows:

(5)
In the proposed scheme, is approximated by a fi-

nite series of Chebyshev polynomials. The main advantage of
writing in the form of (3) is that, instead of a six variable
function, as in (2a), one has to deal with a three-variable func-
tion, which is more appropriate for modeling purposes. Another
major advantage of the above approach is that, after an appro-
priate model for is obtained, all the components of
vector and scalar potentials are calculated through an equation
identical to (3) with the only difference being the signs,
i.e., the eight terms in (3) are evaluated only once.

B. Extraction of Singularity

is singular at
for . Those singularities that fall into
the range of approximation must be removed before any
modeling by polynomials is carried out. Since the source
and observation points are allowed to be anywhere in-
side the box, (3) indicates that we only need to consider

for polynomial
modeling because is an even function. There are
only eight singular points on the corners of the above region
in space, which must be subtracted. These simple
terms will be added back to the final polynomial model when
the Green’s function is used in an SIE–MoM formulation. Any
singular term in (4a) can be written in the following form after
subtracting its singular part:

(6)

where vanishes within the approximation region.
The remaining term in parentheses is continuous at , but
its derivative is discontinuous at this point, i.e., it is not an en-
tirely smooth function. Since the convergence of the Chebyshev
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polynomial series will suffer significantly from the above dis-
continuity, a second term is extracted to remove the singularity
in the first derivative as follows:

(7)

Similar terms are subtracted from all singular terms corre-
sponding to in (4a). Finally, the following
function will be approximated by a series of Chebyshev
polynomials:

(8)
Note that is no longer an even function, but it is

still symmetric with respect to , , and planes

(9)

C. Best Polynomial Approximation

Approximation of functions of several variables known as
best polynomial product approximation or product Chebyshev
approximation have been studied by numerous authors [10],
[11]. In this paper, starting from the orthogonality of Cheby-
shev polynomials, it is shown that the best polynomial approxi-
mation of a multivariate function can be easily obtained through
FCT. in (8) is approximated by a series of Chebyshev
polynomial products in the following form:

(10)

where is the Chebyshev polynomial of order and ,
, and are

(11)

Normalized variables defined in (11) are limited to ,
which is the proper range for Chebyshev polynomials over
which they are orthogonal. Using (9), it can be shown that

is a symmetric function over with respect
to all three normalized variables. Therefore, in (10), all the
odd-order coefficients are zero and the series contains only
polynomials of even order

(12)

For an approximation of order , there are only
coefficients. They are obtained

after using the orthogonality of the Chebyshev polynomials over
as follows:

(13)

in which when and when . After
changing the variables to , , and ,
(13) takes the following form:

(14)

for , , and .
For each of the integration variables, the integrand in (14) is an
analytic function in , which is also periodic with a period
of . The trapezoidal quadrature rule is well known in achieving
spectral accuracy for such integrands. Using a trapezoidal rule
for numerical integration, (14) is reduced to

(15a)

(15b)

(15c)

Equation (15a) is a three-dimensional (3-D) discrete cosine
transform of . , , and are one less than the number
of samples along each of the normalized coordinates and they
must be an integer power of two in order to use the fastest FCT
algorithm. Equation (15a) is numerically implemented using
three levels of one-dimensional (1-D) FCTs corresponding to
each of the summations. At each level, a number of 1-D FCTs
are performed in parallel on different rows of a 3-D matrix
of data. After each level of transforms is completed, only the
elements of even order in the resulting sequence are retained.
Odd-order elements are all zero and will be discarded so that
no unnecessary FCTs are performed in the next level.

An interesting property of product Chebyshev approximation
is that the series can be simply truncated to obtain the best ap-
proximation of the original function over a lower order mani-
fold of orthogonal polynomials. Therefore, if the order of ap-
proximating a polynomial along the dimension is chosen to
be , the sequence obtained from FCT in this direction will
be truncated at , and after its odd-order elements are re-
moved, only elements, instead of the entire
terms, will be restored. Similar truncation takes place in the
other two directions. In practice, it was observed that usually

is more than enough for accurate sam-
pling of the Green’s function in conductor loaded resonators
and leads to a highly accurate poly-
nomial model in these applications.



BORJI AND SAFAVI-NAEINI: RAPID CALCULATION OF GREEN’S FUNCTION IN RECTANGULAR ENCLOSURE 1727

For each pair of arbitrary source and observation points, the
series in (12) is evaluated through an algorithm due to Clenshaw
[12], [13] specialized for Chebyshev polynomial series. This
algorithm takes advantage of the recurrence relations between
Chebyshev functions and involves a minimum number of math-
ematical operations. Another interesting property of Chebyshev
polynomials is the following identity:

(16)

The above identity means that mathematical complexity
of an even series made of
is equal to the complexity of the series that only contains

and the computational time is
further reduced by a factor of two.

D. Sampling the Green’s Function

The Ewald sum technique is employed to evaluate the samples
of the Green’s function required for polynomial modeling. These
samples are given by (15b) and the Ewald method is applied to
(4a) to calculate (8) as quickly as possible. Final expressions
for (4a) after applying the Ewald transform are the following:

(17a)

(17b)

(17c)

(17d)

is the splitting parameter in the Ewald method and a good
estimate for its optimum value is found in [14]. A number
of practical issues in numerical implementation of the above
expressions were addressed by the authors in [8]. They include
an expression for the residue after extracting the singularity, as
required by (8), and replacement of the complex error function
with a special real valued quadrature formula, which further
enhances the speed of calculations. Using the Ewald method
enables the polynomial modeling to be very fast so that its
computational time at each frequency is negligible compared
to the time required for the matrix filling in MoM.

III. SIE–MOM FORMULATION

In order to verify the efficiency and accuracy of the product
polynomial model for the Green’s function developed in Sec-
tion II, it is used in an SIE formulation to find the resonant fre-
quencies of some conductor loaded cavity resonators. Two types
of resonators are considered: a cavity loaded with a metallic
disc, as shown in Fig. 2, and a combline cavity resonator, as
shown in Fig. 3.

Fig. 2. Cavity loaded with a perfectly conducting disk.

Fig. 3. Combline resonator.

Fig. 4. RWG basis function ~f (~r).

An electric-field mixed potential integral equation (MPIE) is
employed, which is well known for its more stable and robust
solution with less singular kernel. The surface current on the
metallic object inside the cavity is expanded in terms of well-
known RWG basis functions [15], shown in Fig. 4, as follows:

(18)

Since the cavity is closed and there is no excitation field, the
tangential component of the electric field generated by the above
current must be zero over the surface of the conductor inside
cavity

(19)

is the surface charge density and and
are the magnetic vector potential and scalar electric potential,

respectively. Following the Galerkin procedure for solving the

aborji
Sticky Note
Numerator must be 1It's a typo. The results are correct.
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integral equation, (19) is tested by the same RWG basis func-
tions and the final expressions for the MoM matrix elements
are obtained as follows:

(20a)

(20b)

(20c)

is the area of the th basis function, which consists of two
triangles [15]. Note that (20a) leads to an eigenvalue problem
from which the resonant frequency is found by looking at the
eigenvalue of the coefficient matrix that has the lowest magni-
tude. At resonance, this eigenvalue will become zero and the
corresponding eigenvector is proportional to the modal surface
current on the resonator. It is worth mentioning that the matrix
of coefficients in (20a) is real valued and symmetric, which re-
duces the time for eigenvalue computations considerably.

In order to evaluate the efficiency of the new method for
Green’s function calculations, both the Ewald sum technique
[8] and Chebyshev polynomial model are used in the MoM
formulation. In both cases, the singularity of the Green’s function
must be extracted when the source and observation triangles
coincide. As stated in Section II-B, the Green’s function shows
a discontinuous derivative even after the singularity is
extracted. Therefore, similar to (7), another term is also extracted
to remove the singularity in the first derivative before any
numerical integration. As a result, (20b) and (20c) will take
the following form:

(21a)

(21b)

(21c)

is used to turn the singularity extraction “on” and “off”
according to the relative locations of the source and observation
triangles, i.e., , when the source and observation triangles
overlap, and when the two triangles are separate.
The first terms in (21a) and (21b) are easily integrated using
quadrature formulas specialized for triangular domains [16],
[17]. Decomposition of integrals, as shown in (21), helps to
reduce the matrix filling time significantly because the smooth
kernels allow us to use low-order quadrature rules with no

TABLE I
COMPARISON BETWEEN THE EWALD METHOD AND THE NEW SCHEME

loss of accuracy. Only a three-point quadrature was used to
calculate each of the integrals. Inner integrals of in
(21c) are carried out analytically using formulas given in [18]
and [19], and the outer integrals are calculated numerically
using the same quadrature rules.

IV. NUMERICAL RESULTS

Numerical experiments were carried out on an AMD Athlon
XP processor with 2.2-GHz clock frequency. All programs are
written in C and compiled with a GNU C compiler.

A. Green’s Function Calculations

To compare the accuracy and computational speed of the
new polynomial model with that of the Ewald sum technique,
potential Green’s functions were calculated at 80 000 points
inside a rectangular cavity using both methods. Dimensions
of the cavity are mm, mm, and mm,
and the source is located at mm, mm, and

mm. Observation points are chosen over two grids
of 200 200 points on and planes. Frequency
is fixed at 2.0 GHz and the cavity is uniformly filled with a
homogeneous material with a dielectric constant of . The
results are reported in Table I. The calculated error is the
maximum relative difference between the Chebyshev series
model and the Ewald method over the entire 80 000 points
for all components of . Polynomials of higher degrees are
needed to keep the maximum error at an acceptable level
when the dielectric constant of the material inside the box
is increased. Note that the new scheme is up to 20 times
faster than the Ewald method and, with a higher level of
acceptable error, the new scheme can be made even faster. In
all cases, 32 sample points were taken in each of the three
spatial directions . Reducing the number
of samples down to 20 would not make any difference in
accuracy of the final polynomial series, but the time required
for Chebyshev modeling is at its minimum when the number
of samples is an integer power of two. At lower frequencies
or low dielectric constants, one can choose 16 samples in each
direction with no loss of accuracy and highest computational
speed.

A 3-D plot of is shown in Fig. 5, in which only the first
term of (21c) is subtracted [similar to (6)]. The discontinuity
in the first derivative is evident at the center of the plot where
the source is located. This effect is more profound at higher fre-
quencies or higher dielectric constants. In Fig. 6, both terms of
(21c) are subtracted and the Green’s function is smooth enough
to be integrated with a low-order quadrature with high accuracy.
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Fig. 5. 3-D plot of (G )=(� ) � (1)=(4�R).

Fig. 6. 3-D plot of (G )=(� )� (1=4�)((1=R� k =2)R).

TABLE II
RESULTS FOR DISK-LOADED CAVITY

B. Resonant Frequencies and SIE MoM

As stated in Section III, an SIE with a Galerkin method was
employed to calculate the resonant frequency of two types of
conductor loaded resonators shown in Fig. 2 and Fig. 3. To
verify the results obtained from the integral-equation technique,
the resonant frequencies are also computed via the High Fre-
quency Structure Simulator (HFSS), a well-known commercial
software from the Ansoft Corporation. For the combline res-
onator, measured results from [20] are also included.

In Table II, the first two resonant frequencies of a disk-loaded
cavity resonator are reported. Referring to Fig. 2, dimensions
of the structure are mm, mm, mm,

mm, and mm, and the disk is located at
the center of the cavity. Both the Ewald transform and new

Fig. 7. Smallest eigenvalue of the MoM matrix for a disk resonator.

Fig. 8. Convergence of the MoM versus the number of triangular elements.

Chebyshev series model for Green’s functions were used and
the CPU time required to fill the entire MoM matrix are
compared. The perimeter of the disk was divided into
segments both in SIE–MoM formulation and HFSS. After mesh
generation, the surface of the metallic disk was divided into
360 triangles, leading to 540 RWG basis functions. In this
test, the symmetry of the coefficient matrix was not exploited
and the entire 540 540 elements were calculated directly.
Resonant frequency was obtained by looking at the smallest
eigenvalue of the MoM matrix, which is plotted in Fig. 7
versus frequency. It is evident that the resonant frequencies
obtained from the SIE–MoM approach are highly accurate
and the computational efficiency of the new scheme is greatly
enhanced compared to that of the Ewald sum technique.

Convergence of the MoM in finding the resonant frequency
versus the number of triangular elements was also investigated,
and the results are shown in Fig. 8 and Table III. is the
number of segments on the perimeter of the disk and is the
number of segments along the thickness.

The sequence of coefficients for polynomial approximation
obtained from the FCT algorithm are in descending order and,
as stated in Section II-C, the series is truncated when the cor-
responding coefficient is less than a prescribed error tolerance.
Table IV shows the resonant frequencies obtained for different
tolerances by which the Chebyshev series are truncated. Higher
tolerance leads to lower order polynomials. The time reported
in Table III and Table IV is the total time for each frequency
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TABLE III
CONVERGENCE OF THE MOM VERSUS NUMBER OF BASIS FUNCTIONS

TABLE IV
EFFECT OF ACCURACY IN CHEBYSHEV APPROXIMATION ON

RESONANT FREQUENCY

Fig. 9. Computed and measured results for the resonant frequency of the
combline resonator. Measured results are from [20].

step, including the Chebyshev approximation, matrix filling,
and finding the eigenvalue of the matrix.

As a second example, the resonant frequency of a combline
cavity, shown in Fig. 3, was computed. The physical dimensions
are in, in, in, and in. For
mesh generation, the perimeter of the metallic post was divided
into segments with divisions along its height.
A triangular mesh with 432 elements was generated leading to
657 RWG basis functions. Resonant frequency of the dominant
mode for different lengths of the conducting post is plotted in
Fig. 9 along with the results from HFSS simulation and mea-
surements from [20]. Matrix filling takes only 12.4 s at each
frequency compared to 344 s when using the Ewald transform.

V. CONCLUSION

A novel scheme for fast computation of the Green’s functions
in a rectangular cavity has been presented. The method is based
on a Chebyshev polynomial series approximation of the Green’s
function, which is carried out using an FCT in 3-D. Samples of
the Green’s function required for the approximation are gener-
ated via the Ewald sum method.

Resonant frequency of two conductor loaded cavity res-
onators were obtained using a mixed-potential SIE formulation
in which the cavity Green’s functions were employed. Using
the new scheme for computing the Green’s functions leads to
a significant reduction in computation times compared to the
Ewald summation technique. A number of practical issues in
numerical implementation of the MoM were addressed, which
further enhance the numerical efficiency and stability of the
method.

The new approach is considered to be a major step toward
practical application of integral-equation techniques for elec-
tromagnetic analysis of arbitrary shape objects inside rectan-
gular cavities. In particular, novel structures including dielectric
or metallic resonators featuring cuts and round corners can be
investigated and optimized within a reasonable computational
time.
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