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Abstract

Ewald summation technique has been proven to be a highly efficient method for rapid calculation of
the potential Green’s functions in rectangular cavities. It is known that in addition to potential Green’s
functions, curl of the vector potential Green’s function is also needed when applying the mixed potential
integral equation method to dielectric objects. In this paper the Ewald sum technique is applied for rapid
calculation of these components of the dyadic Green’s functions. Several numerical implementation issues
including the extraction of singularity when using the Ewald summation method are also addressed for the
first time, leading to further enhancement in computational speed, accuracy, and numerical stability.

I. INTRODUCTION

The integral equation technique with method of moments is a potentially efficient method for EM
analysis of shielded dielectric and metallic objects. In particular, mixed potential surface integral equation
approach is known to be more advantageous but the slow convergence of the relevant Green’s functions
inside rectangular enclosure is the major obstacle in applying this method for shielded objects. The Ewald
summation technique has proven to be a very effective tool for rapid calculation of potential Green's functions
in periodic structures as well as cavities and waveguides [1,2]. In this paper the Ewald method is applied to
calculate the gradient of the components of vector potential Green's functions inside a rectangular cavity.
These components of the dyadic Green’s functions are needed when applying the MPIE technique to shielded
dielectric objects. Extraction of the singular terms in the Green’s functions and expressions for the residue
terms are also reported. It is also shown that using a numerical quadrature instead of calculating the
complex error function further enhances the computational speed. Finally, a substantial loss of accuracy at
very high frequencies is observed and a remedy for this problem is also presented.

11. THEORY
A. Vector Potential Function and Its Curl
Mathematical derivations related to the Ewald method for potential Green’s functions are presented in
the literature [1,2] and here we use the final expressions in [2]. Note that throughout this paper, all physical
ditnensions are normalized to the free-space wavelength, )\,. After applying the Ewald sum technique,
every component of the scalar or vector potential Green’s functions in a rectangular cavity is cast into two
exponentially convergent series and can be represented in the following general form (2]:
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1 + G2 is the component of the Green’s function. f(R) is given by:
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f(R) = (2)
I is the splitting parameter and we replace Ao E by E throughout this article. The only differences among
the 8 different components of the potential functions are gmnp(, y, z) and coefficients A;. guuy is a modal
function and always appears as a product of sine and cosine terms and A; is +1 or -1 representing the sign
of the source and its images. As an example, gmap for GE* component is the following:
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Gmnp(T.y, 2) = cos
Ai coefficients for G57 ave given in (2] and X;, ¥;, and Z; also appear in [2].

The electric and magnetic vector potentials inside the cavity are both diagonal dyadics. To calculate
the electric field due to a magnetic current or the magnetic field due to an electric current., the curl of the
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vector potential Green's functions are needed. Additionally, ¥V x é 4 J can be expanded in the following
form:
U xGa-J=VCF x Jei + VCY x Jyj+ VCF x J.2 (4)

therefore in the solution of MPIE via MoM, one needs to calculate the partial derivatives of different
components of the potential Green’s dyads. This can be done by taking the gradient of Eq. 1 with negligible
effect on its convergence:
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d
— f(Ri,mnp) is obtained after some mathematical effort:
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Finally VR; mnp is expanded in the following form:
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in which 9%i = +1,8% = 41, and 8% < 41,

B. Exztraction of Singular Term

When the source and field points coincide, the Green'’s function becomes singular. For potential functions
this singularity is of lR type similar to free space. To extract this singularity one can add and subtract a %
term so that G = G1+(G2 — ;) + 5 in which Ro = (= =)2 + (y ~ y)? + (z -~ 2)° and G represents
any component of the potential Green’s functions. Note that ﬁ can be integrated analytically over the
linear basis functions in MoM and the remaining part has a finite value at Ro — 0 and the objective
here is to calculate this finite value. It is evident from Eq. 1 that the only singular term appears in Eq. 1b
when m = n = p = i = 0. If one separates this term the remaining series are all regular with finite value
everywhere. After some mathematical manipulations, the following expression is obtained:
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in which Im [er fe(jo)] = —72; Iy et di. In fact, the Taylor series expansion of f(Rp) around the origin is:
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In Eq. 5 the only singular term correspounds to m = n = p = i = 0 in Eq. 5b and it is in the form of E‘y. After
0

some mathematical efforts the following expression is obtained for the Taylor series expansion of ﬁJ(R)
around the origin:
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or equivalently, limg,_o (ﬁlf(kg) + ?t}’!) = —2¢,w2. Therefore,
H

1
e from Eq. 1b lead to smooth functions that have finite value everywhere and can be integrated numerically

0
over the basis functions while the integration of above singular terms is carried out analytically.
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III. NUMERICAL IMPLEMENTATION
A. Complex Error Function

Complex error function is accurately evaluated through the algorithm presented in [3] but it is still quite
time consuming. In this paper, a numerical quadrature on real axis is proposed to evaluate Eq.2. f(R) can
be written in the following integral form:
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in which h(x) = exp m —~2REz — R?E?). Special type of Gaussian quadratures presented in

[4] can now be used to calculate f(R) in Eq.12. Weights and abscissae up to 15 order for this type of
quadrature are tabulated in [4]. Intensive numerical experiments showed that this new approach is two
times faster than using the complex error function directly. For distances very close to the source point
one might still calculate the complex error function directly for higher accuracy.

B. Splitting Paranieter E

This real parameter splits the ional burden b Eq. la and Eq. 1b. A near optimum value
for this parameter in 3D case was presented in [5] Numerical expenments reveal that there is a substantial
loss of accuracy for cases where the true 1 h A= Xo//e b very small d to the cavity
di i Careful ination of the terms m Eq. 1 shows that in these cases the exponential term in
Eq. 1a can become a huge positive number for some combinations of summation indices which results in a
very large negative value for G; while a small value for E (obtained from {5]) or a large ¢, lead to a large

imaginary part for the of the ! 'y error fi ion in Eq. 1b which results in a very large
positive value for G2 and, subsequently, the subtraction of these two large numbers leads to a substantial
error. The remedy for t)us problem is to i the splitting r accordingly instead of using the

optimum value. Here is a simple procedure proposed to calculate an appropriate value for E automatically:
1. Calculate Eqpt from [5]
w2 1 1 1
2. Caleulate U= —— (& — (-5 + 5 + —5
Ezp ( (4412 442 4c? ))
3. If U < A then the value chosen for E is OK. A is an arbitrary positive constant which is chosen to
be A = 12. Choice of A is arbitrary as long as e” is not a very large number.

4. If U > A then increase the value of E according to E = Eope

The above procedure ensures that the value of E is always chosen appropriately so that the desired accuracy
is achieved at small wavelengths. Note that the larger the value of E, the faster Eq. 1b converges and more
terms will be needed in order for Eq. la to converge.

1V. NUMERICAL RESULTS

i
All the components of the scalar and vector potential Green’s functions and the gradients of the vector
potential functions for an arbitrary rectangular cavity filled with a material of dielectric constant e, have
been implemented and tested numerically. Note that all the physical dimensions are normalized to A, for
better numerical accuracy. As an example a cavity with dimensions @ = 0.5, b = 0.45, and ¢ = 0.333 filled
with a material of €, = 1.0,5.0,40.0 is considered. The source point is located at 2/ = 0.25, y’ = 0.28, and
£ 0.10 while the observation point is chosen on a 2D grid of points at the same height as the source
z = 2. Number of field points is equal to 51 X 46 = 2346. Singular terms are also extracted and only the
remaining series are calculated. In Fig.1 G%¥ and GFF components are plotted for the case in which the
cavity is filled with a high dielectric constant matenaf Note that the singular term is going to be treated
separately. In Fig. 2 the derivatives of GZ* which are needed in application of MPIE method to dielectric
objects are plotted after extraction of singular terms. In this case the cavity is filled with a dielectric constant
of €, = 5.0. In Fig3 the average number of terms required for each series in Eq.1 to converge are listed for
different components of potential Green's functions. In each cell the first row is the average number of terms
needed in summation of Eq. 1a and the second row is the number of terms needed for Eq. 1b to converge.
Convergence is achieved when the corresponding term in the series is less than 1077,

V. CONCLUSION

‘The Ewald method was applied to calculate the vector and scalar potential Green’s function inside a
uniformly filled rectangular cavity. The gradient of the components of vector potential Green’s functions
were also calculated. These derivatives are needed in application of the MPIE technique to shielded dielectric
objects. Extraction of the singular terms in the Green’s functions and expressions for the residue terms were
also reported. Several numerical implementation issues were addressed leading to further enhancement of
the computational speed and numerical stability.
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Fig. 1. (GFF — ;) and (GF — ;) with & = 40.0
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Fig. 2. Z(CF — £5) and £(GF - g5) with &r = 5.0
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Fig. 3. Average number of terms needed for the convergence of each series in Eq. 1
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