
Fast Convergent Green's Fiinction in a Rectangular Enclosure 

Aiiiir Borji' and S.S;tfavi-Naeini 

Emailr amirBmazuiel1. uwaterloo. ca. Fiu: (51 9)746-Y077 
Department of ECE. Uniiiersity of Waterloo, Wiiterloo. Ontario, Cnnnda N2L 3G1 

Abst rac t  

Ewald summation technique has been proven to be a highly efficient mcthod for rapid calculation of 
the potential Green's functions i n  rectangular cavities. I t  is kiiown that t u  addition to potential Green's 
functions, curl of the vector potential Green's function is also needed wlicn applying the rnixed potential 
Integral equation method to dielectric objects. In this paper the Ewald sum technique is applied for rapid 
calculation of these components of the dyadic Green's functions. Several n u m e i d  implementation issues 
including the extraction of singularity when using the Ewalci $uminntioii inethod are a h  addressed for lhe 
first time, leading to further enhancement i n  computational speed, accuracy, and numerical stability. 

I INTIIODUCTION 
The integral equation technique with method of moments is a potentially efficient method for Eh1 

analysis of shielded dielectric and metallic objects. In particular, mixed potential surface mtegral equation 
approach is known to  be more advantageous but the slow convergence of the relevant Green's iunctmis 
inside rectangular enclosure is the major obstacle in applying this method for shielded objects. The Ewald 
summation technique has proven to be R very eRective tool foi- rapid calculation of potential Green's functions 
in pcr~odtc structures m well as cawties and waveguides [I,'L]. In this paper the Ewald method I S  applirrl to 

calculate the gradient of the cornponents of vector putcntlal Green's functions inside a rectangular cavity 
These components of the dyadic Green's functions are needed when applying the MPIE technique to shielded 
dielectric objects. Extraction of the singular t e r m  i n  the Grecn's functions and expressions lor the iesidue 
terms are a h  reported. I t  is also shown that using a numerical quadrature ins ted  of  calculating the 
complex error function further  enhance^ the computational speed. Finally, a substantial loss of accuracy at 
very high frequencies is observed and a remedy far this problem is also piesented. 

11. TIIEORI' 
A Vector Potential Function and I t s  Curl 

Mathematical derivations related to the Ewald method for potential Green's functions are presented in 
t lw literaturc [1.2] and liere we use the final expresions in 121, Note that throughout thzs paper-. all physical 
dzrnenszons am noi-mnlned to the free-space wovelength, A,. After applying the F:walrl sum technique, 
every component of the scalar or vector potential Grecn's functions in a rectangular cavity is cast into two 
exponentially convergent series and c m  be represented i u  the following general form 121 

C = CI + 6 2  is the conipunent of the Green's function. / ( R )  is given by 

E is the splitting paranieter r 7 ~ 1  "'e rrplacr X,E by E throughout thrs artrcle. The only diITmcnces among 
llie 8 rlrKerent cotuporients of the pntentinl f u i i c l ~ m s  are gm,lp(z, y .  z )  atid coeflicieiits A, g,,,,,,, is n modd 
function and always appears 17s R pioduct <>f sine and cosine terms and A, is + I  or - I representing the sign 
<,i the source arid its images. As :in exanqdr, glnnp for Cf component is the f o l l o w ~ n ~  

:I, coefficients for C;= are given in [Z] and X,,  
The electric and magvietic vector potentials inside the cavity are botli diagonal r ly :~ Ia .s .  To calculate 

1 1 ~  electric field due to a magnetic current nr the magnetic field due to an electric current.. the curl of the 

and 2. also appear 1x1 121. 
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vector potential Green's functions are needed. Additionally, V x 
form: 

. .f can be expanded in the following 

v x 5,. .f= VG;= x J , ~ + v G ~  x J ~ ~ + v G ~  x ~ , i  (4) 

therefore in the  solution of MPlE via MOM, one needs to  calculate the  partial derivatives of different 
components of the  potential Green's dyads. This can be done by taking the  gradient of Eq. 1 with negligible 
e f f x t  on its convergence: 

As an  example VgmnP(z,y. z )  for C y  is equal to: 

2 J(R, ,mnp) is obtained after some mathematical effort: 
d R  

Finally VR,,,,, is expanded in the following form: 

aX,X.+2mai+  aY . Y I + % b .  aZ Z - + 2 p e .  
V R ~ , ~ " P  = ay Ri,mnp Y +  

in which % = &l,% = kl, and 2 = -fl 

B. Eztmction of Singular Tenn 
When the source and field points coincide, the Green's function becomes singular. For potential functions 

this singularity is of 
term so tha t  G = GI + (G2 - L) + in which & = J(z - z')2 + (y - y')2 + ( z  - zl)i and G represents 

any component of the potential Green's functions. Note that & can be integrated analytically over the  
linear basis functions in MOM and the remaining part has a finite value at Ro -+ 0 and the objective 
here is t o  calculate this finite value. It is evident from Eq. 1 that  the only singular term appears in Eq. I b  
when m = n = p = i = 0. If one separates this term the remaining series are all regular with finite value 
everywhere. After some mathematical manipulations, the following expression is obtained: 

type similar to  free space. To extract this singularity one can add and subtract a 

Ro RIB 

in which I m  [erJc(jc)]  = -5 J," et' dt .  In fact, the Taylor series expansion o f f ( & )  around the origin is: 

In Eq. 5 t h e  only singular term corresponds to m = n = p = I = 0 in E& 5 b  and it is in the form of k. After 

some mathematical efforts the following expr-ion is obtained for the Taylor series expansion of & f ( R )  
around the  origin: 

(11) - J ( R o )  = -2r,n' + 0 - + 6,R; 
R; n 

or equivalently, limR,,-O (& J(R0)  t 4) = - 2 e r r z .  Therefore, adding to E q 5 b  and subtracting 

-!L from Eq. l b  lead to smooth funcrions that have finite value everywhere and can be integrated numerically 
RO over the basis functions while the integration of above singular terms is carried out analytically. 

*U R; 
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111. NUMERICAL IMPLEhlENTATlON 
A. Complcz Error finction 

Complex error function is accurately evaluated through the algorithm presented in [3] but it is still quite 
time consuming. In this paper, a numerical quadrature on real axis is proposed to  evaluate Eq. 2. f ( R )  can 
be written in the following integral form: 

in which h(z) = e z p  (- - 2 R E z  - RZ E2 Special type of Gaussian quadra ture  presented in 

[4] can now he used to  calculate f ( R )  in Eq. 12. Weights and abscissae up  to 15 order for this type of 
quadrature are tabulated in [4]. Intensive numerical experiments showed tha t  this new approach is two 
times faster than using the complex error function directly. For distances very close to  the source point 
one might still calculate the complex error function directly for higher accuracy. 

B.  Splitting Parameter E 

> .  

This real parameter splits the computational burden between Eq. la and Eq. lb. A near optimum value 
for this parameter in 3 0  case was presented in [5]. Numerical experimenb reveal that  there is a substantial 
loss of accuracy for cases where the true wavelength X = X./d& becomes very small compared to  the cavity 
dimensions. Careful examination of the terms in Eq. 1 shows that in these cases the  exponential term in 
Eq. la can become a huge positive number for some combinations of summation indices which results in a 
very large negative value for GI while a small value for E (obtained from 151) or a large er lead to  a large 
imaginary part for the argument of the  complementary error function in Eq. l h  which results in a very large 
positive value for GZ and, subsequently, the subtraction of these two large numbers leads to a substantial 
error. The  remedy for this problem is t o  increase the  splitting parameter accordingly instead of using the  
optimum value. Here is a simple procedure proposed to  calculate an appropriate value for E auto.matically: 

1. Calculate Eopt from 151 

2. Calculate 

3. If U < A then the value chosen lor E is OK. A is an  arbitrarv Dositive constant which is chosen t o  

= 2 tr - (L + -L + -L) 
E&c ( -  4a2 4b2 4c* ) 

- .  
be A = 12. Choice of A is arbitrary ea long as e A  is not a very large number. 

E 4. If U > A then inmeax the value of E according to E = E,,c 

The above procedure ensures that the value of E is always chosen appropriately so tha t  the  desired accuracy 
is achieved at small wavelengths. Note that the larger the  value of E, the faster Eq. l b  converges and more 
terms will be needed in order for Eq. la to  converge. 

IV. NUMERICAL RES~JLTS 
All the components of the scalar and vector potential Green's functions and the gradients of the vector 

potential functions for an arbitrary rectangular cavity filled with a material of dielectric constant cy have 
been implemented and tested numerically. Note tha t  all the physical dimensions are normalized to A. for 
better numerical accuracy. As an example a cavity with dimensions 0 = 0.5, b = 0.45, and c = 0.333 filled 
with a material of er = 1.0,5.0,40.0 is considered. The  source point is located a t  z1 = 0.25, y' = 0.28, and 
I' = 0.10 while the observation point is chosen on a 2D grid of points at the  same height as the source 
I = z'. Number of field points is equal to  51 x 46 = 2346. Singular terms are also extracted and only the 
remaining series are calculated. In Fig. 1 G>= and C Y  components are plotted for the case in which the  
cavity is filled with a high dielectric constant material. Note that the singular term is going to  be treated 
separately. In Fig. 2 the derivatives of G>= which are needed in application of MPIE method t o  dielectric 
objects are plotted after extraction of singular terms. In this case the cavity is filled with a dielectric constant 
of tr = 5.0. In F ig3  the average number of terms required for each series in E q .  1 to  converge are listed for 
different components of potential Green's functions. In each cell the first row is the  average number of term8 
needed in summation of Eq. la and the second row is the number of terms needed for Eq. l b  to  converge. 
Convergence is achieved when the corresponding term in the Series is less than lo-'. 

V. CONCLUSION 
The  Ewald method was applied to  calculate the vector and scalar potential Green's function inside a 

uniformly filled rectangular cavity. The gradient of the components of vector potential Green's functions 
were also calculated. These derivatives are needed in application of the MPIE technique to  shielded dielectric 
objects. Extraction of the singular terms in the Green's functions and expressions for the residue terms were 
also reported. Several numerical imolenientation issues were addressed leadine to  further enhancement of 
the computational speed and numerical stability. 
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Fig. 3. Average number of t e r m  needed for the convergence of each series in Eq. 1 
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