Chapter 2

Bessel Functions

2.1 Bessel, Neumann, and Hankel Functions: $J_{n}(x), N_{n}(x), H_{n}^{(1)}(x), H_{n}^{(2)}(x)$

Bessel functions are solutions of the following differential equation:

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0 \tag{2.1}
\end{equation*}
$$

which is called the Bessel's differential equation. This is a second order differential equation and has two linearly independent solutions. Any two of the following functions are linearly independent solutions of (2.1)

$$
\begin{equation*}
J_{\nu}(x) \quad N_{\nu}(x) \quad H_{\nu}^{(1)}(x) \quad H_{\nu}^{(2)}(x) \tag{2.2}
\end{equation*}
$$

Thus, the general solution for (2.1) can be written as a linear combination of any two of the above functions. Usually the general solution is written as one of these forms:

$$
\begin{equation*}
A J_{\nu}(x)+B N_{\nu}(x) \quad A H_{\nu}^{(1)}(x)+B H_{\nu}^{(2)}(x) \tag{2.3}
\end{equation*}
$$

When ν is not an integer $(\nu \neq n) J_{\nu}$ and $J_{-\nu}$ are also linearly independent solutions of (2.1), however, we usually never use $J_{-\nu}$. The Neumann function is related to J_{ν} and $J_{-\nu}$:

$$
\begin{align*}
& N_{\nu}(x)=\frac{\cos \nu \pi J_{\nu}(x)-J_{-\nu}(x)}{\sin \nu \pi} \tag{2.4}\\
& N_{n}(x)=\lim _{\nu \rightarrow n} \frac{\cos \nu \pi J_{\nu}(x)-J_{-\nu}(x)}{\sin \nu \pi} \tag{2.5}
\end{align*}
$$

and Hankel functions of the first and second kind are related to Bessel and Neumann functions:

$$
\begin{align*}
& H_{\nu}^{(1)}(x)=J_{\nu}(x)+j N_{\nu}(x) \tag{2.6}\\
& H_{\nu}^{(2)}(x)=J_{\nu}(x)-j N_{\nu}(x) \tag{2.7}
\end{align*}
$$

With a variable transformation $x=\kappa \rho$ equation (2.1) can be transformed into:

$$
\begin{equation*}
\rho^{2} y^{\prime \prime}+\rho y^{\prime}+\left(\kappa^{2} \rho^{2}-\nu^{2}\right) y=0 \tag{2.8}
\end{equation*}
$$

whose independent solutions are $J_{\nu}(\kappa \rho)$ and $N_{\nu}(\kappa \rho)$. When $\nu=n$ is an integer J_{n} and J_{-n} are not independent anymore and we have:

$$
\begin{array}{lc}
J_{-n}(x)=(-1)^{n} J_{n}(x) & N_{-n}(x)=(-1)^{n} N_{n}(x) \\
J_{n}(-x)=(-1)^{n} J_{n}(x) & N_{n}(-x)=(-1)^{n}\left[2 j J_{n}(x)+N_{n}(x)\right] \tag{2.9}
\end{array}
$$

Plots of the first three Bessel functions are shown in Fig. 2.1 and the first three Neumann functions are shown in Fig. 2.2

Figure 2.1: Bessel functions of the first kind

2.1.1 Small and Large Argument Approximations

Small Argument Limit $|x| \ll 1$

$$
\begin{align*}
J_{n}(x) & \approx \frac{1}{n!}\left(\frac{x}{2}\right)^{n} \tag{2.10}\\
N_{n}(x) & \approx-\frac{(n-1)!}{\pi}\left(\frac{2}{x}\right)^{n} \quad n \neq 0 \tag{2.11}\\
Y_{0}(x) & \approx \frac{2}{\pi} \ln \frac{\gamma x}{2} \quad \gamma=1.78107241799 \ldots \text { Euler's constant } \tag{2.12}
\end{align*}
$$

Large Argument Limit $|x| \gg 1$

$$
\begin{align*}
& J_{n}(x) \approx \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{\pi}{4}-\frac{n \pi}{2}\right) \tag{2.13}\\
& N_{n}(x) \approx \sqrt{\frac{2}{\pi x}} \sin \left(x-\frac{\pi}{4}-\frac{n \pi}{2}\right) \tag{2.14}
\end{align*}
$$

2.1.2 Orthogonality Relationships and Fourier-Bessel Expansions

Bessel equation (2.8) can be written in the following form:

$$
\begin{equation*}
\left(\rho y^{\prime}\right)^{\prime}+\left(\kappa^{2} \rho-\frac{n^{2}}{\rho}\right) y=0 \tag{2.15}
\end{equation*}
$$

If you compare (2.15) with (1.5), you can see that it is a Sturm-Liouville equation with $p(\rho)=\rho, q(\rho)=-\frac{n^{2}}{\rho}$, $w(\rho)=\rho$, and $\lambda=\kappa^{2}$. With appropriate boundary conditions on a finite interval such as $\rho \in[a, b]$ we can have a Sturm-Liouville eigenvalue problem (regular if $a>0$ and irregular if $a=0$). Therefore, all the properties of Sturm-Liouville eigenfunctions and eigenvalues will be applicable to this equation. Here we only consider two irregular cases [?].

First consider (2.15) on the interval $0 \leq \rho \leq b$ with boundary condition $y(b)=0$. This is an irregular problem and we have to impose an extra condition at $\rho \rightarrow 0$ in order to have orthogonal eigenfunctions. This extra condition is that the solution and its derivative must be bounded as $\rho \rightarrow 0$. Since $N_{n}(\kappa \rho) \rightarrow-\infty$ as $\rho \rightarrow 0$, therefore, we can not have $N_{n}(\kappa \rho)$ in our solution. Consequently, eigenfunctions must be in the form of $J_{n}(\kappa \rho)$ and since $y(b)=0$ we obtain the eigenvalues:

$$
\begin{equation*}
J_{n}(\kappa b)=0 \Longrightarrow \kappa_{m}=\frac{\nu_{n m}}{b} \Longrightarrow \lambda_{m}=\left(\kappa_{m}\right)^{2}=\left(\frac{\nu_{n m}}{b}\right)^{2} \tag{2.16}
\end{equation*}
$$

Figure 2.2: Bessel functions of the second kind
in which $\nu_{n m}$ is the $m^{\text {th }}$ root of the Bessel function $J_{n}(x)=0$, i.e. $J_{n}\left(\nu_{n m}\right)=0$. These eigenvalues are all real and have all the properties that we explained for Sturm-Liouville problem. We have the following orthogonality property over the interval $[0, b]$ with respect to weight function $w(\rho)=\rho$:

$$
\int_{0}^{b} J_{n}\left(\frac{\nu_{n m}}{b} \rho\right) J_{n}\left(\frac{\nu_{n k}}{b} \rho\right) \rho d \rho= \begin{cases}0, & m \neq k \tag{2.17}\\ \frac{b^{2}}{2}\left[J_{n+1}\left(\nu_{n m}\right)\right]^{2}, & m=k\end{cases}
$$

Any piecewise continuous function $f(\rho)$ for which $f(b)=0$ and is defined on the interval $[0, b]$ can be expanded in a series of above eigenfunctions:

$$
\begin{equation*}
f(\rho)=\sum_{m=1}^{\infty} A_{m} J_{n}\left(\frac{\nu_{n m}}{b} \rho\right) \tag{2.18}
\end{equation*}
$$

in which the coefficients A_{m} are obtained by using the orthogonality property (2.17)

$$
\begin{equation*}
A_{m}=\frac{2}{b^{2}\left[J_{n+1}\left(\nu_{n m}\right)\right]^{2}} \int_{0}^{b} f(\rho) J_{n}\left(\frac{\nu_{n m}}{b} \rho\right) \rho d \rho \tag{2.19}
\end{equation*}
$$

Expression (2.18) is called the Fourier-Bessel series expansion of $f(\rho)$.
As another case, consider (2.15) on the interval $0 \leq \rho \leq b$ with boundary condition $y^{\prime}(b)=0$. This is an irregular problem and we have to impose an extra condition at $\rho \rightarrow 0$ in order to have orthogonal eigenfunctions. This extra condition is that the solution and its derivative must be bounded as $\rho \rightarrow 0$. Since $N_{n}(\kappa \rho) \rightarrow \infty$ as $\rho \rightarrow 0$, therefore, we can not have $N_{n}(\kappa \rho)$ in our solution. Consequently, eigenfunctions must be in the form of $J_{n}(\kappa \rho)$ and since $y^{\prime}(b)=0$ we obtain the eigenvalues:

$$
\begin{equation*}
J_{n}^{\prime}(\kappa b)=\left.\frac{d J_{n}(\kappa \rho)}{d \rho}\right|_{\rho=b}=0 \Longrightarrow \kappa_{m}=\frac{\nu_{n m}^{\prime}}{b} \Longrightarrow \lambda_{m}=\left(\kappa_{m}\right)^{2}=\left(\frac{\nu_{n m}^{\prime}}{b}\right)^{2} \tag{2.20}
\end{equation*}
$$

in which $\nu_{n m}^{\prime}$ is the $m^{\text {th }}$ root of the derivative of Bessel function $J_{n}^{\prime}(x)=0$, i.e. $J_{n}^{\prime}\left(\nu_{n m}^{\prime}\right)=0$. We have the following orthogonality property over the interval $[0, b]$ with respect to weight function $w(\rho)=\rho$:

$$
\int_{0}^{b} J_{n}\left(\frac{\nu_{n m}^{\prime}}{b} \rho\right) J_{n}\left(\frac{\nu_{n k}^{\prime}}{b} \rho\right) \rho d \rho= \begin{cases}0, & m \neq k \tag{2.21}\\ \frac{b^{2}}{2}\left(1-\frac{n^{2}}{\nu_{n m}^{\prime 2}}\right)\left[J_{n}\left(\nu_{n m}^{\prime}\right)\right]^{2}, & m=k\end{cases}
$$

Any piecewise continuous function $f(\rho)$ for which $f^{\prime}(b)=0$ and is defined on the interval $[0, b]$ can be expanded in a series of above eigenfunctions:

$$
\begin{equation*}
f(\rho)=\sum_{m=1}^{\infty} A_{m} J_{n}\left(\frac{\nu_{n m}^{\prime}}{b} \rho\right) \tag{2.22}
\end{equation*}
$$

in which the coefficients A_{m} are obtained by using the orthogonality property (2.21)

$$
\begin{equation*}
A_{m}=\frac{2}{b^{2}\left(1-\frac{n^{2}}{\nu_{n m}^{\prime 2}}\right)\left[J_{n}\left(\nu_{n m}^{\prime}\right)\right]^{2}} \int_{0}^{b} f(\rho) J_{n}\left(\frac{\nu_{n m}^{\prime}}{b} \rho\right) \rho d \rho \tag{2.23}
\end{equation*}
$$

If the interval is $[a, b]$ and $a>0$, then the general form of eigenfunctions would be $A_{m} J_{n}\left(\kappa_{m} \rho\right)+B_{m} N_{n}\left(\kappa_{m} \rho\right)$. The boundary conditions at $\rho=a$ and $\rho=b$ will determine the eigenvalues κ_{m} and we have similar orthogonality property between the eigenfunctions as well. However, we will not study this case further.

2.1.3 Recursion Relationships and Wronskians

Consider $Z_{n}(x)$ to be either of $J_{n}(x)$ or $N_{n}(x)$ or any linear combination of these two functions. Then, the following recursive formulas are applicable (n can be any number):

$$
\begin{align*}
Z_{n-1}(x)+Z_{n+1}(x) & =\frac{2 n}{x} Z_{n}(x) \tag{2.24}\\
Z_{n-1}(x)-Z_{n+1}(x) & =2 Z_{n}^{\prime}(x) \tag{2.25}\\
Z_{n}^{\prime}(x)+\frac{n}{x} Z_{n}(x) & =Z_{n-1}(x) \tag{2.26}\\
Z_{n}^{\prime}(x)-\frac{n}{x} Z_{n}(x) & =-Z_{n+1}(x) \tag{2.27}\\
\left(x^{n} Z_{n}(x)\right)^{\prime} & =x^{n} Z_{n-1}(x) \tag{2.28}\\
\left(x^{-n} Z_{n}(x)\right)^{\prime} & =-x^{-n} Z_{n+1}(x) \tag{2.29}
\end{align*}
$$

in particular $J_{0}^{\prime}(x)=-J_{1}(x)$. Equation (2.28) and (2.29) are very useful when integrating over Bessel functions.

$$
\begin{equation*}
J_{n}(x) Y_{n+1}(x)-J_{n+1}(x) N_{n}(x)=J_{n}^{\prime}(x) N_{n}(x)-J_{n}(x) Y_{n}^{\prime}(x)=-\frac{2}{\pi x} \tag{2.30}
\end{equation*}
$$

2.1.4 Series and Integral Relationships

$$
\begin{align*}
& \exp \left[\frac{x}{2}\left(t-\frac{1}{t}\right)\right]=\sum_{n=-\infty}^{+\infty} J_{n}(x) t^{n} \tag{2.31}\\
& e^{i x \cos \phi}=\sum_{n=-\infty}^{+\infty} i^{n} J_{n}(x) e^{i n \phi} \tag{2.32}\\
& \int Z_{n}(\alpha x) Z_{n}(\beta x) x d x=x \frac{\beta Z_{n}(\alpha x) Z_{n-1}(\beta x)-\alpha Z_{n-1}(\alpha x) Z_{n}(\beta x)}{\alpha^{2}-\beta^{2}} \tag{2.33}\\
& \int Z_{n}^{2}(\alpha x) x d x=\frac{x^{2}}{2}\left[Z_{n}^{2}(\alpha x)-Z_{n-1}(\alpha x) Z_{n+1}(\alpha x)\right] \tag{2.34}\\
& \int x^{n+1} Z_{n}(x) d x=x^{n+1} Z_{n+1}(x) \tag{2.35}\\
& J_{n}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i x \sin \beta-i n \beta} d \beta=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \beta-x \sin \beta) d \beta \tag{2.36}
\end{align*}
$$

$Z_{n}(x)$ can be any of $J_{n}(x)$ or $N_{n}(x)$ or $A J_{n}(x)+B N_{n}(x)$

