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Useful Approximations  for  the Directivity and 
Beamwidth of Large  Scanning 

Dolph-Chebyshev Arrays 
CHARLES J.  DRANE, JR., MEMBER, IEEE 

Abstract-Approximate but accurate formulas are presented in a closed 
form that  makes possible an easy examination and computation of directivity 
and beamwidth for  large scanning Dolph-Chebyshev arrays.  Array length, 
number  of elements, spacing of the elements, sidelobe level, and angle of 
scan are parameters. Element spacings less than a/;! are included. Compari- 
sons between exact and approximate theory are presented in a graphical form 
that  illustrates the lower limits of array size for which the approximations 
are valid. 

The maximum directivity for Chebyshev arrays is in principle limited, 
regardless of array size. Values of maximum directivity, and the  particular 
array designs required to achieve them, are given for several fixed array 
lengths. The directivity-beamwidth product is evaluated over a wide range of 
sidelobe levels and array lengths, and the region over  which this product is 
essentially constant is specified. In the interests of achieving joint minimiza- 
tion of beamwidth and maximization of directivity, the particular Chebyshev 
design such that  the directivity-beamwidth ratio is maximized is determined. 

T 
INTRODUCTION 

HE Dolph-Chebyshev array is an optimally designed 
linear array of uniformly spaced isotropic antenna ele- 
ments. This design, among all linear arrays of isotropic 

elements equal in number and spacing, is optimum  in the 
following sense. The beamwidth of its radiation pattern is 
minimum for a specified sidelobe level; alternatively, the 
sidelobe level  of its radiation  pattern is minimum for a 
specified beamwidth. Ever  since Dolph [ l ]  introduced this 
design, numerous attempts [2] have  been made to simplify 
the calculation of the array excitation coefficients  needed to 
produce its radiation pattern. This author [3] has recently 
obtained a  rather simple approximate representation by 
means  of  which  these calculations can be  simplified for 
spacings that include even the superdirective region. One of 
the purposes of the present paper is to introduce approxi- 
mate representations for directivity  and^ beamwidth for 
large Dolph-Chebyshev arrays  that may  be  used  for scan- 
ning purposes. (It should be recalled [4], however, that the 
particular design that is optimum at broadside will not 
generally  be so when its pattern is electronically scanned to 
some other direction.) 

function of the sidelobe level, interelement spacing, and 
array length. The results are shown to be consistent with 
Elliott's observation [ 5 ]  that the directivity of a  Dolph 
pattern of  given sidelobe level does not increase indefinitely 
with array length, but instead asymptotically approaches 
a limit that is 3 dB greater than  the value of the sidelobe level. 

_ _ I  DIRECTIVITY 
For symmetric arrays of 2N+ 1 elements, broadside 

operation yields the following expression for directivity 

PR2 D =  (1) 
{:Ti(. cos $ + b)d$ ' 

where R is the sidelobe voltage ratio, p is 27cd/A, d being the 
interelement spacing, $ is p sin 0, 8 being the direction of 
radiation measured from broadside, and TN(z) is the 
Chebyshev polynomial in z of degree N .  For spacings 
d 2 4 2 ,  DuHamel[6] has shown that 

zo + 1 zo - 1 a=- 
2 

9 b=-, 
2 (2) 

where TN(zo) = R. Solving  for zo yields 

ZO = cash - cosh-' R 9 G ) (3) 
since R > 1. It is clear that zo > 1 and that a + b = zo. 

We now consider the quantity (a cos $ + b), which is illus- 
trated in Fig. 1. Let $o be that value of $ such that 
(a cos $ + b) = 1. For large N and moderate R it  is  clear that ., 
zo will  be only  slightly larger than 1, and hence that $o will 
be rather small. 

For spacings satisfying 7c Ip I 27c- t+b0, where we note 
that p = 7c corresponds to d = ,412 and p = 27c corresponds to 
d = A, (1) becomes 

PR2 D =  (4) 
J0" cosh2 [ N  cosh-' (a COS $ + b)] d$ + cos2 [ N  COS-, (a COS $ + b)] d$ 

These approximation formulas are then used to examine, As recently reported [7], for large N it can be shown that 
for example, extrema1 properties of the directivity as a 

J0" cosh2 [ N  cosh- (a COS $ + b)] d$ -- Z$O i1(2N$,,), ( 5 )  
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Hanscom  Field,  Bedford,  Mass. where I ,  is the modified  Bessel function of the first kind, of 
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cos J, 

Fig. 1. Plot of the  quantity (a cos !/I + b )  versus cos !/I. 

4pR2 
D -  

4(n - $ 0 )  + n$o11(2N$o) + 4 s” cosh2 [N cosh-l (a COS $ + b)] d$ * 

2 a - * o  

order 1, and In (8), as in (6), for fixed  R (or equivalently N I ) ~ )  we again 
observe  the  property that the maximum directivity 2R2 is [io cos2 [N COS-’ (a COS $ + b)] d$ - - ( p  - $o). 

1  approached  as we let N increase without limit. We have 
2 thus seen that this property quite generally exists  for all 

spacings between  half wavelength  and full wavelength. 

to (6),  we ultimately obtain for (8) the result 
For reasonably large arrays (say, N ’ lo) the directivity Applying  asymptotic  techniques similar to those leading 

can  then be approximately represented by 

From the foregoing, it is clear that as N increases without 
limit, a approaches unity, and b approaches zero, and  hence 
t,b0 approaches zero. Again, for large N, it has  been  shown 
[7] that 

ZO - cash $o. 

Reference to (3) indicates then  that 

N$, - cosh-’  R. (7) 

So for a fixed R, the second  term in the denominator of (6) 
tends to vanish  with increasing N, showing  that for any 
spacing in the assumed  range the directivity of a  Chebyshev 
array  has the limiting value of 2R2,  a result that is in precise 
agreement with the previously mentioned result of Elliott 
[5]. This gain limitation (not  apparent in uniformly illu- 
minated arrays, for example) is  of no serious practical conse- 
quence, even  for rather large arrays. 

For interelement spacings such  that 2rc - $,, I p I 2 x ,  it 
follows quite similarly (see Fig. 1) that 

where P=42rc- p ) N o  and Q(P), proportional  to  an  incom- 
plete error  function,  has  the following rational function ap- 
proximation [8] 

for  which 

x = I + , [  2N$, ] B  d m  
and 

a, = 0.34802 
a2 = -0.09588 
a3 = 0.74786 
p = 0.33267. 

Referring again to Fig. 1 we can see how  approximate 
representations of directivity for spacings greater than full 
wavelength are  obtained in terms of results already pre- 
sented; however,  such spacings are  not ordinarily of great 
interest, since they  introduce grating lobes. 
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For the so-called "superdirective" region of element spac- 
ings  less than half wavelength (to be specific, we shall con- 
sider the region n>p>t,b0), it has been shown [6] that the 
quantities a and b of (1) are 

zo + 1 z,cosp + 1 
1 - cosp' 1 - cos p 

a =  -. b = -  

Let $' be that value of $ such that 

* (10) 

 COS$+ b = - 1. 

Use of (10) demonstrates  that t,hl =p. The formulation of 
directivity given by (6) can, therefore, be extended, with a 
slight modification, to include the superdirective region. 
Thus, 

4pR2 D -  

( 3 .  

(1 1) 
m - $0)  + "$Oil 2Nll/olsin - 

As for the optimum normalized spacing p, for broadside 
operation other studies [9] have shown that directivity in- 
creases somewhat linearly with spacing, and then after 
reaching a peak at  just  short of full-wavelength spacing, 
rather  abruptly decreases (as grating lobes begin to  appear) 
to a value at full wavelength that is equal to  that at half 
wavelength. Close examination of (6) and (8) indicates that 
this peak usually occurs within the p-region for  which (6) 
is valid, and very near the end of that region if N is reason- 
ably large. 

The formalism for directivity as represented by (6),  (9), 
and (1 1) can be  simplified further. First of all,  for the region 
for  which (6) is valid,  (7) holds, and thereby 

2R2 

1 + ~ Z1(2 cosh-'  R)  cosh-l R 
D -  

iT 
. (64  

2PN 
For the region 271 - t,b0 I p I 271, for  which (9) is applicable, 

use of (7) yields 

2R2 
D -  

)* 

2L 

(12) 
1 + - 11(2 cosh-' R)  cosh-'  R 

and 

D -  2R2 
i" 

1 + - 11(2 cosh-' R) cosh-'  R sin - P 
2L 2 

. (13) 

From (12), we see that the directivity is independent of 
element spacing for 71 I p I271 - The variation of D with 
R for several fixed array lengths is shown in Fig. 2. 

A most significant deduction to be drawn from (13) is that 
the maximum attainable directivity is 2R2, even  in the super- 
directive region. For a given array length L and sidelobe 
ratio R, this maximum value is approached as the spacing 
decreases and the number of elements increases; so in this 
limited sense the Chebyshev array can be made superdirec- 
tive relative to the directivity of an array of identical length 
and sidelobe level, but larger spacing. 

Calculations of directivity performed on the basis of the 
approximate results in (6a), (9a), and ( l la )  are compared in 
Fig. 3 with exact results based on  a  formulation by Brown 
and  Sharp [lo]. For all practical purposes, one incurs no sig- 
nificant loss in accuracy when using the approximate re- 
sults. Because of the  asymptotic  nature of the approxima- 
tions, one expects good agreement for large values of N ,  but 
the curves show that agreement is good for  values as small 
as N = 10. 

Sample calculations made by using the approximate ex- 
pression for D in terms of the array length in  (12), are pre- 
sented in Fig. 4 where they are  compared with the exact 
values [ 101 and values obtained from an  approximation by 
Elliott [5]. Equation (12) has  the  advantage of being simpler 
than  other such approximations while providing good com- 
putational accuracy. 

Equations (12) and (13)  for directivity can be simplified 

- 2R2 

For the superdirective region, it has been shown [7] that 

N'o % cosh-' R, 
P sin - 
2 

holding fo,r arbitrarily small values of p .  (It is important to 
note here that in this region t+b0 is a function of p.) It is then 
true  that (11) can be approximated by 

2R2 
D -  - e ( l la )  

1 + ~ 1,(2 cosh-' R) cosh-'  R sin E / L  

2 0  2 
It is sometimes useful to have the directivity expressed in 

terms of the length L of the array, here defined to be 2Nd. 
Equations (6a) and ( l la )  become,  respectively, 

further to yield 

2R2 
D -  (14) 

L 

and, for the superdirective region, 

Calculations based on (12) and (14)  were ,compared for 
R =  100 and R =  10. The results using  (14) are almost 
identical to those of Elliott shown in Fig. 4. 

The directivity as expressed by (14)  is somewhat like 
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Fig. 
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2. The  variation of directivity  with  sidelobe  ratio 
for 6 x 4  array length. 
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Fig. 3. Comparison  between  approximate  and  exact 
values of directivity; R =  100 .  
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4. Comparison  between  exact and  approximate  values of directivity. 

vproximate values  are  those  derived in this paper  and those of 

Hansen’s result [l 1 ] for  the  Taylor “ideal” space factor, a 
pattern equivalent to  that of the  Dolph-Chebyshev  array, 
whose corresponding  continuous  aperture  distribution 
represents an approximation  to  the envelope of the excita- 
tion coefficients  of a large Chebyshev array. 

DIRECTIVITY AND SCANNING 
We  now consider the  Dolph-Chebyshev  array subjected 

to electronic scan, the directivity now  being  given by 

where a is the  uniform progressive phase shift  between  ele- 
ments and is equal to p sin eo, 8, being the direction in 
which the main  beam is pointing when the radiation pattern 
is scanned. 

It is  well known [5] that directivity is independent of 
scan angle for an interelement spacing that is  half  wave- 
length (or any integral multiple thereof). We  now demon- 
strate  that this remains  true for spacings between  half 
wavelength and full  wavelength  for the Chebyshev array, if 
we restrict our consideration to scanned arrays having only 
one  main  beam in the visible region. Under these restric- 
tions, the range of scan is  specified as follows. Additional 
main  beams will occur when t,b = & 2n, that is, there will be 
no  additional beams when 

- - + [sin eo/ < - 1 and/or - + lsin 6,l > 1, 
2n 2n: 
P P 

the more restrictive of which  implies that 

2n 

or  that 

p + la1 < 2n. 
After comparing (1) and (16) and considering the ap- 

proximations leading to (6) for the directivity, we  see from 
inspection of Fig. 1 that  the directivity will  be unchanged 
with scanning  provided 

p + la1 I 211 - * o ,  

but  that this will not generally be true for the region 
2n - $o I p + la1 5 2n. As  we have already seen, t+b0 is  usually 
a very small quantity. Thus,  the  independence we wanted to 
establish has been proven to exist  for almost all -spacings 
between  half and full  wavelength. This unusual  behavior of 
the Dolph-Chebyshev design  is  intuitively reasonable in 
view  of the characteristic uniformity of the sidelobe struc- 
ture of the design [ 113. 

BEAMWIDTH 
The  half-power  points of the radiation pattern  are seen 

[6] to occur  for  such values of t,h that 

T,(u COS $ + b) = R / d ,  
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a cos $ = cosh - cosh-I - [.: ( 3 1 -  b. 

Although beamwidth can be determined from this closed- 
form expression, beamwidth for large N can also be ap- 
proximated by an algebraic expression valid  for  all element 
spacings. This facilitates easy calculation of the half-power 
beamwidth in terms of the sidelobe level and  array length. 

For reasonably large values of R and N ,  it can easily be 
shown that 

cos * z 1 - A(!!)’( 8u N 1 + ; E)? 
and  that  the corresponding polar angle is 

In terms of array length L, and sidelobe level S in  dB,  with 
S = 20 log R, the half-power beamwidth (BW) is  given  by 

Note  that the beamwidth varies inversely  with the square 
root of a, which  is an exponential increasing function with 
decreasing spacing from half wavelength. For large arrays 
of spacing greater  than or equal  to half  wavelength u z  1, 
and the half-power beamwidth becomes 

BW z 0.18 ( S  + 4.52)”’. 
L (19) 

Fig. 6 .  

SIDELGBE VOLTAGE RATD 

Fig. 5 .  Dependence of half-power beamwidth on sidelobe ratio 
and relative array length. 

The result as  stated by  (19)  is similar to a somewhat more 
complicated approximation introduced earlier by Stegen 
[12]. It is also noteworthy that like the directivity for this 
case, the beamwidth is independent of the  actual element 
spacing for sufficiently large N .  Evaluations of the  beam- 
width according to (19) are presented in Fig. 5. In Fig. 6 
these results are  compared with Elliott’s approximation  [5] 
and the corresponding exact results. 

Some discussion of these results is in order.  The expres- 
sion for BW in  (19) has several distinct advantages. It is 
much simpler in form hence easier to evaluate than  other 
such expressions. Fig. 6 shows that its numerical accuracy 
is more  than sufficient for any practical purpose. Although 
Elliott’s approximate  formula  contains  the expected prop- 
erty of  yielding a finite limiting value of beamwidth as S 
becomes arbitrarily small for an  array of fixed length, (19) 
provides not only this information but is also extremely 
accurate even for  rather large values of S (or R) that  are of 
practical concern. For example, beamwidth computations 
for S=60 dB (or R= 1000) compared extremely well with 
the exact computation even for  rather small arrays, the 
deviations being for the most part of no practical conse- 
quence. 

20 - 

lo \ 

x U O T T  
... EXACT 
- AWtOXIMATE 

.M t 1 I 

5 m  100 
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Kxw) 

Comparison between the exact values and two approximate 
forms  for  the  beamwidth. 

BEAMWIDTH AND SCANNING 
For the scanning situation with the main beam pointing 

in the direction e,, 
t+b = p(sin 6 - sin e,). 

In terms of the series expansion for sin 6, it also follows that 

1 + 5! (84 + BOO3 + e;e2 + e@ + e;) - . . . . 1 
If we let t+b be the value that corresponds to the half-power 
beamwidth, we have 

BW = 2(e - e,) 
and, for large N ,  

For spacings greater than or equal to half wavelength, this 
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and (1 9) yield I -I 

2 DIRECTIVITY 

a 
a 

OPTIMUM DIRECTIVITY 
In Fig. 2 it is notable  that the rise in directivity to a maxi- 

mum is rather  sharp, particularly for the larger arrays; 
however, for increasingly higher sidelobe ratios than  that 
ratio at which maximum directivity occurs, the decline in 
directivity is rather moderate. 

From (12) the condition  for maximum directivity is 

. cash- ' R. 

Note  that R,, the solution of (21), is indeed a function of 
the relative length of the  array (which  is apparent in the 
graphs of Fig. 2). This information is graphically portrayed 
in Fig. 7. If one considers the asymptotic expansions for 
the various terms in  (21),  which ultimately yield 

and  notes  that In  R,  is a more slowly varying quantity  than 
R, itself, the reason for the straight-line variation shown in 
Fig. 7 is quite  apparent. 

The maximum directivity D M  corresponding to RM can 
thus be  expressed as 

by using  (12),  (22), and asymptotic expressions for cosh- ' R 
and 1,(2 cosh-' R). It is of particular interest to compare 
D M  with the directivity of a uniformly illuminated array of 
the same number of elements. The latter directivity is equal 
to the  number of elements, for arrays whose uniform element 
spacings are some integral multiple of half a wavelength; 
this value represents the maximum directivity for all arrays 
of such spacing. Pritchard [13] has shown that maximum 
directivity for spacings between a half and a full wavelength 
is achieved if the illumination is nearly uniform. (This 
agrees with the results of Tseng and Cheng [14]  for broad- 
side operation, where perturbations of the element spacings 
and excitations yield only small increases from the direc- 
tivity of a uniform array. But, they have also shown that 
rather significant increases can occur for off-broadside 
operation; in particular, at endfire the increase is consider- 
able, but this can sometimes be at the expense of having the 
usual supergain characteristics of complicated feeding re- 
quirements and low radiation efficiency.) Furthermore, for 
large uniform arrays the directivity can be written in terms 
of the  array length as  2L/i, where, throughout this paper, 

0 
I- 

t 
c_ 

t 
t 2 

a 
i- 
U 

W 
W 
i- 
a 
-I 
0 w 
W 

0 
m 
-I 
W 

v) 
0 

R E L A T I V E  LENGTH OF A R R A Y  ( L / i )  
Fig. 7. The variation with relative array length of maximum directivity 

(D,), the sidelobe level (R,) at which D ,  occurs, and  that sidelobe 
level (RN) at which maximum directivity-beamwidth ratio ( D p W )  
occurs. 

length L is defined to be 2Nd for an array of 2N + 1 elements 
at a spacing d. By (22) and (23), this comparison takes the 
form 

Computations of D M .  i/2L are presented in Fig. 7 for a 
wide range of array lengths. (Use of (12) to  compute D M  

yields results that  compare within 1 percent for  all array 
lengths considered.) In Fig. 7, D ,  compares quite favorably 
with the maximum directivity as manifested by a uniform 
array over the entire range of lengths considered. The afore- 
mentioned slow variation of  In  R, with R, in the region of 
interest, as applied to (24), helps to explain this fact. 

Pritchard [13] called attention to the favorable com- 
parison between D M  and the overall maximum directivity 
for this nonsuperdirective medium, and he also referred to 
an empirical formula derived by Batchelder : 

d 
10 log D, X 2.94 + 9.69 log M + 9.01  log 7 5 (25) 

A 

where M is the number of array elements for this equal 
minor lobe excitation. This formula was apparently derived 
from data for relatively small numbers of elements (or  short 
arrays). Consistent with this in a sense is the fairly good 
agreement between computations based on (25) and those 
based-on (12) (evaluated at R=R,)  for  small arrays; the 
comparison is progressively  worse as the arrays increase in 
length. For the superdirective region, (15) will show that 
R, must  satisfy 
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R2 sin - P 
In  2R + 0.25 2 

1 =  
J r n  1 +hR2&sinf  In  2R ' 

L 2 

where we note  that R M  is now a function of both length and 
interelement spacing. Corresponding to RM is the maximum 
directivity DM, given by 

- .  

t -  
0 L I A  

i Jn hl 2R, 
- D M  z 
2L 

(In  2R, + 0.25) Sin - P 
2 

DIRECTIVITY-BEAMWIDTH PRODUCI 

Another interesting facet of many antenna designs  is the 
constancy of the directivity-beamwidth product under cer- 
tain  conditions.  Its  advantage lies,  of course, in that once 
one of the two quantities, directivity or beamwidth, is 
specified, the  other is then easily obtained. In particular, it is 
often possible to measure beamwidth accurately, while at 
the same time it is rather difficult to measure directivity, 
especially for large arrays [ 151. Very little exists in the litera- 
ture concerning D . BW for Dolph-Chebyshev designs, 
although Stegen [15] provided some estimates valid under 
certain limited conditions. Use of  (12) and (19)  yields the 
results shown in Fig. 8. They clearly indicate that the 
directivity-beamwidth product is, in general, not even ap- 
proximately constant, particularly for large arrays of rela- 
tively lugh-sidelobe-level design. For Dolph-Chebyshev 
arrays of  all lengths (or numbers of elements), the product 
approaches  a  constant with increasing R. This constant is 
approximately 1.91 radians or 109.5 degrees. (Use of (14) 
with (19) would have  yielded the same results.) To get 
some idea of the  combinations of array length L / i  and 
mainlobe-sidelobe ratio R such that the directivity-beam- 
width product will  be equal to this constant, consider the 
following. 

In Figs. 2  and  5 the curve shapes indicate that, given any 
particular value of Lli, the product will  be constant for all 
mainlobe-sidelobe ratios larger than  a value of R  that is 
approximately R,. On the other  hand, it is clear from Fig. 8 
that, given any particular value of R, the product will be 
constant for arrays of all lengths L/i. that  are smaller than 
that length for  which R is the particular ratio required for 
maximum directivity. In  other words, reference to the line 
in Fig. 7  denoting the locus of RM corresponding to maxi- 
mum directivity DM indicates that for  all points in the 
(R, L/i.) domain  that  are above this line the directivity- 
beamwidth product will  be approximately equal to 109.5 de- 
grees. This does not hold with great precision right down to 
the line (on which the product is approximately 102 degrees) 
because of the deviation of the directivity curve from 
linearity in the immediate vicinity of D,, as seen  in Fig. 2. 
But, this is equivalent to a relatively  small region immedi- 
ately above the R, line. 

For a Dolph-Chebyshev array  that is subject to elec- 

O M 1  5 , - ; 0  ' ' ' " " '  
d 

100 1000 

SIDELOBE VOLTAGE RATIO ( R )  

Fig. 8. Variation of directivity-beamwidth product with sidelobe level 
and relative array length. 

tronic scan (restricted in degree of scan only to the extent 
that  other  major lobes do not appear), it has  been shown that 
the directivity remains unchanged for the nonsuperdirec- 
tive region. On the other  hand, it was shown that beam- 
width is proportional to sec 8, (e, is the beam-pointing 
direction measured from broadside); therefore, so also is 
the directivity-beamwidth product. 

DIRECTIVITY-BEAMWIDTH RATIO 

We have seen that the directivity of a Dolph-Chebyshev 
array assumes a fairly sharp maximum value for a design 
corresponding to a  particular sidelobe ratio RM. On the 
other  hand, it has been  well noted that beamwidth increases 
with decreasing sidelobes. An obvious desire would  be to 
simultaneously achieve maximum directivity and minimum 
beamwidth. However, they do not coexist for the same 
sidelobe design. An obvious (although admittedly arbi- 
trary) compromise may result from maximizing the 
quantity DIBW considered as a function of R. Earlier, 
another  approximate form for BW that is slightly more 
accurate than (19) was derived [cf. (17)]. It is 

B W t - - ( 3 + 4 - )  In 2 j. 1nR 
n L  In 2 

Use of this and (12) leads to the following condition satisfied 
by R, yielding R, corresponding to maximum DIBW : 

R 1,(2 cosh-' R) cosh-' R 
1 =  
7' 7 + Z1(2 cosh-' R) cosh-'  R (27) 

R2 - 1 2L 
1. 

+ 0.25 
In R + 0.75  In 2 

Data  on the ratio DIBW are plotted in Fig. 9 ; (12) and 
(26)  were  used in these calculations. In this figure we notice 
that  the characteristics of the curves are very similar to 
those for directivity D, rising rather sharply to a maximum 
value, followed by a gentle decline. This is natural in view  of 
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SIOELOBE VOLTAGE RATIO(R) 

Fig. 9. Variation of directivity-beamwidth  ratio  with  sidelobe level 
and  relative  array  length. 

the  moderate  taper of the beamwidth curves, as compared 
to those for directivity. 

Just  as was the case for RM, we see from (27) that R, is 
also a function of array length L/A. Solutions of (27) for a 
wide range of array lengths were obtained and  are presented 
in Fig. 7 for easy comparison with the RM values already 
obtained. For essentially the same reasons that led (21) 
to be a straight line  plot  in  Fig. 7, the curve of R, versus L / i  
is  likewise  essentially a straight line. 

SUMMARY 

We have attempted  to  provide useful approximate,  but 
nonetheless accurate formulations for the directivity and 
beamwidth of Dolph-Chebyshev  arrays  that may  be 
subject to electronic scan. We  were motivated in part by the 
fact that existing  expressions for the directivity become com- 
putationally unwieldy as the size  of the array increases 
beyond a  moderately large number of elements. The  for- 
mulas developed in this paper  are as easy to use for very 
large arraysas for the relatively small. 

Equations (6a), (9a), and (1 la) will  be more useful  when 
directivity must be determined as  a function of  element 
spacing. On  the  other  hand, (12) and (1  3) will be  of greater 
use  when the directivity needs to be known for arrays  of 
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given lengths. As for beamwidth, (18) together with  (20), 
an  approximate  form suitable for the  nonsupergain region, 
provide particularly simple  yet accurate aids to computa- 
tion whenever information as to the dependence of the 
beamwidth  on  array length, element spacing, sidelobe level, 
or beam direction, is desired. 

It  should be emphasized  that the choices made for the 
size of  some of the  parameters in the comparisons between 
exact and  approximate theory for directivity and beam- 
width  formulations were predicated on establishing lower 
limits  (for array length or number of array elements) or 
ranges (for sidelobe level) for which the approximations 
would  be valid. It is the nature of the development of the 
approximate  formulas  that they become more accurate for 
arrays  that  are larger or  contain more elements than those 
chosen for the computations. 

In the design of a  Dolph-Chebyshev  array, we have 
given the means whereby one  can select the main beam 
sidelobe ratio for which directivity is maximum. We have 
seen that this choice is  very much  a function of array length ; 
generally, the longer the array, the lower the sidelobes must 
be. The  maximum directivity that results from this choice 
compares quite favorably with  the directivity of a uni- 
formly illuminated array, the comparison being  less 
favorable the longer the array.  However,  for  an  array as 
long as 1000  wavelengths the difference is only about 1.28 
dB;  that is, the directivity of a  uniform  array of this length 
is about 33.01 dB while that of the corresponding  Cheby- 
shev array  that provides maximum directivity is 31.73  dB. 

The directivity-beamwidth product,  a useful quantity 
when one of the  two  components is known  and  the  other 
desired, or when one of the components is easily measurable 
while the  other is not, has been calculated for large  ranges  of 
sidelobe level and  array length. While it is  essentially 
constant for certain combinations of  lower  sidelobes and 
shorter  arrays, it is  generally far  from constant for higher 
sidelobes and longer arrays. Interestingly enough, it is 
nearly constant (1  02 degrees) for all conditions of sidelobe 
level and  array length such  that  maximum directivity exists. 
This is particularly useful, since one may often wish to 
design for  maximum directive gain. 

Finally, we have considered the directivity-beamwidth 
ratio.  Although  any  Dolph-Chebyshev design  yields the 
minimum  beamwidth when considered in that class  of  all 
arrays of an equal number of elements and sidelobe level, 
it was thought  to be  of interest to give  some  weight to  the 
minimization of beamwidth while at the same time  seeking 
to maximize directivity among arrays in the Dolph- 
Chebyshev class. This resulted in a choice of sidelobe level 
that is about 3.5 dB higher than  that selected  when maximi- 
zation of directivity alone is attempted. 
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Collimation of Row-and-Column 
Steered  Phased  Arrays 
BURRELL  R.  HATCHER, MEMBER, IEEE 

A bstruct-An optically fed phased array  must  be  provided  with a  means 
of  collimation as well as with a beam steering  function.  The  same phase 
shifters which  are used to  steer the beam can be lsed to collimate the beam. 
The use of  row-and-cohunn phase commands, while greatly simplifying  the 
beam  steering  function  over that required  for comma individual ele- 
ments,  precludes the attainment  of exact collimation. A consequent  phase 
error across the aperture  results  in a loss of  antenna gain. For a  given  order of 
approximation to the collimation function, the  minimization  of the gam loss is 
a valid  criterion  for  completely  specifying all the  parameters  of  the  approxi- 
mate  collimation  function. The gain loss incurred can then  be  determined. 

This paper  develops  the  equations  necessary  to  specify  any  order  of  ap- 
proximation  to  the  collimation  function and the  expression  for  the  gain loss. 
Examples  illustrate the  differences  between  first- and second-order  approxi- 
mations and the  effect  of  another  parameter WD) on the  gain L o s s  of  a  typical 
antenna system. 

INTRODUCTION 

T HE  ADVANTAGE of the optically fed phased array 
is the elimination of the hardware necessary to dis- 
tribute the energy over the radiating aperture. An 

optically fed array may be either of the reflection type or the 
lens type, resembling a reflector or a lens, respectively. 
Energy is radiated from a feed horn  (or cluster of  feed 
horns), impinges on  a surface of collecting apertures, re- 
ceives a phase shift at each element in the array,  and is 
reradiated from a surface of radiating apertures, as illus- 
trated in Fig. 1. In  a reflection-type array,  the collecting 
aperture also serves as the radiating  aperture. 
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In  addition  to steering the main beam, the element phase 
shifters must also serve to collimate the incident energy, 
that is, to convert the spherical wave incident on the array 
from the feed to a plane wave during  transmit,  and vice 
versa on receive. In a conventional corporately fed array, 
the equivalent to this function is performed by the corporate 
distribution network. 

Collimation might be performed by the use of fixed phase 
shifters in each element, or by means of a lens over the 
entire array face. However, the former is economically un- 
desirable inasmuch as the elements of the array would no 
longer be interchangeable. The  latter increases the bulk and 
weight of the array, as well as the cost, and may  limit the 
bandwidth over which the  array itself is usable. 

If each element of the  array is commanded individually, 
the collimation may  be made exact, within the limits of the 
accuracy and precision of the phase shifters. The beam 
steering function can be immensely  simplified,  however, if 
the array is commanded by rows and columns. This intro- 
duces a collimation error, but is sufficient for steering the 
beam to any angle in space. 

The  determination of the phase required at each element 
to steer the beam  is a trivial matter. It is the purpose of this 
paper  to consider the collimation function, and how it 
might be achieved in an  array which  is commanded by rows 
and columns. 

By row-and-column commands it is meant that the phase 
shifters in a given  row are commanded to a particular phase 
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as  are the phase shifters in a given column.-The total phase 




