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On the Use of Entire-Domain Basis Functions in Galerkin
Methods Applied to Certain Integral Equations for

Wire Antennas With the Approximate Kernel

George Fikioris and Asimina Michalopoulou

Abstract—When the approximate kernel is used, Hallén’s integral equa-
tion for the current distribution on a center-driven, straight-wire antenna
does not have a solution. This is true for at least two types of feed: the delta-
function generator and the frill generator. For the case of subsectional basis
functions in Galerkin’s method, recent papers have shown that the main
associated difficulty is the unavoidable appearance of oscillations near the
center and/or the ends of the antenna. In this paper, we investigate the na-
ture of the difficulties for the case of entire-domain, cosine basis functions.
We find that the difficulties are similar to those of the subsectional case,
something that we had not expected beforehand. In particular, undesirable
oscillations appear when the number of basis functions is greater than a
number dependent on the length-to-radius ratio, giving one a simple rule
for choosing the number of basis functions so as to yield smooth solutions.
We also compare results to “true” solutions, study the separate but impor-
tant effects of roundoff, and give extensions to equations of the Pocklington
type.

Index Terms—Antenna feeds, antenna theory, Galerkin method, integral
equations, wire antennas.

I. INTRODUCTION

The accurate determination of currents on wire antennas has been a
fundamental electromagnetic compatibility (EMC) problem for many
years [1]–[5]. The preferred method of approach is the solution of
integral equations of the Hallén or Pocklington type, which apply to a
variety of EMC-related wire antenna problems [6]–[9]. In the present
paper, we discuss Hallén’s equation (HE) and Pocklington’s equation
(PE) for the simple case of the straight, center-driven wire of length
2h. The unknown is the current I(z), and HE and PE are to be solved
together with the condition I(±h) = 0.

The aforementioned equations are used with (at least) two types of
feed, the delta-function generator (DFG) and the frill generator (FG)
(we specifically refer to the “magnetic FG” discussed in [10] and [11]),
and two types of kernel, the exact and the approximate (or reduced)
kernel. Although a number of recent papers [3], [12]–[14] describe
accurate and efficient methods of using the more complicated exact
kernel, the simpler approximate kernel is used in standard modern
antenna and EMC textbooks [4], [10], [15], standard antenna analysis
software such as the Numerical Electromagnetics Code (NEC) [16], not
to mention a large number of recent research papers. Thus, although
the approximate kernel often gives good results, it is important to
thoroughly understand the difficulties associated with its use.

With the approximate kernel, it has been pointed out [12], [17], [18]
that the integral equations are ill-posed. Furthermore, for HE, and
in both the DFG and the FG cases, it has been shown in [19] (also
see [20]) and [11] that the corresponding equations—(1) and (7)—
have no solutions, something not mentioned in many recent textbooks.
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In this paper, we examine consequences associated with the afore-
mentioned mathematical properties for the case where a sufficiently
large number of entire-domain basis functions is used in Galerkin’s
method. We specifically consider cosines for HE and cosines that
vanish at z = ±h for PE, but we believe that our conclusions carry
over to other entire-domain basis functions. The present paper supple-
ments [11] and [21], which, for the case of subsectional basis functions,
show that the main consequence is the appearance of rapid oscillations
near z = ±h. For the DFG case [21], but not for the FG case [11],
there are also oscillations near the driving point z = 0.

Here, perhaps surprisingly, we find oscillating effects quite similar to
the case of subsectional basis functions, and indicate how to recognize
and avoid them. We stress that the aforementioned oscillating effects
are not due to roundoff errors, and we discuss the latter effects sepa-
rately. The distinction is important because effects due to roundoff can
possibly be avoided by using computers with longer word lengths, but
the aforementioned oscillating effects occur even for arbitrarily large
word lengths and cannot be avoided by more powerful computers. As
in [11] and [21], and as long as the approximate kernel is used, we
believe that many of our conclusions carry over to integral equations
for more complicated types of antennas (e.g., arrays of wire antennas,
curved-wire antennas).

An e−iω t time dependence is assumed, where ω = kc = 2πc/λ. V
denotes the driving voltage, a the wire radius, b is the outer radius
of the FG, and ζ0 = 376.73 Ω. Some of the results herein have been
presented previously in [22].

II. HALLÉN’S EQUATION

HE is [11, eq. (3)], [21, eq. (1)]∫ h

−h

K(z − z ′)I(z ′) dz ′ = f1 (z) + C cos kz, −h < z < h (1)

where
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is the approximate kernel, C is a constant to be determined from
I(±h) = 0, and
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For the two feeds considered here, HE does not have a solution: to
be precise, for the DFG case, (1) can admit no solution I(z) belonging
to L1 (−h, h) [19], while for the FG case, (1) can admit no continuous
solution I(z) [11].

For either generator, our numerical method consists of writing
I(z) = I (1) (z) + CI (2) (z), where I (1) (z) satisfies (1) with the right-
hand side (RHS) of (1) replaced by f1 (z), while I (2) (z) satisfies (1)
with its RHS replaced by cos kz. We then solve for I (1) (z) and
I (2) (z) using Galerkin’s method with basis functions cos (nπz/h),
n = 0, 1, . . . , N . This leads to two (N + 1) × (N + 1) systems of
equations for the basis function coefficients I

(1)
n and I

(2)
n . Once the

two systems are solved, we determine C from

C ∼= −
∑N

n =0 (−1)n I
(1)
n∑N

n =0 (−1)n I
(2)
n

(5)
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Fig. 1. (Top) Re{I(z)/V } and (bottom) Im{I(z)/V } as calculated by
the numerical method of Section II (in amperes per volt). HE/DFG com-
bination; h/λ = 0.25, a/λ = 0.01, and N = 40. The value at z = 0 is
I(0)/V = (7.8 − j2.7) mS.

and the final approximate solution that vanishes at z = ±h is

I(z) ∼=
N∑

n =0

In cos
(

nπz

h

)
=

N∑
n =0

[
I (1)

n + CI (2)
n

]
cos
(

nπz

h

)
.

(6)
Fig. 1 shows I(z)/V for the DFG case with N = 40, h/λ = 0.25,

and a/λ = 0.01, so that h/a = 25. The most striking abnormal behav-
ior is the appearance of rapid oscillations in the imaginary part. These
oscillations occur everywhere along the antenna and their amplitudes
increase as one moves toward z = 0, where the DFG is located. The
real part also oscillates, but the amplitudes are smaller and increase
near the endpoints z = ±h. Both Re{I(z)} and Im{I(z)} behave in a
manner not dissimilar to the case where subdomain basis functions are
used; compare Fig. 1 to [21, Figs. 1 and 2]: the effects of the DFG are
more pronounced in its immediate vicinity, and so are the effects of the
endpoints. Also, oscillations near the DFG occur only in the imaginary
part.

If (1) were a solvable integral equation, then In would approach
zero for increasing n (for sufficiently large N , at least), which is
not the case: as seen in Fig. 2, Re{In /V } appear to oscillate about
zero, whereas Im{In /V } eventually grow in magnitude. The behav-
ior of Re{In /V } is associated with the oscillations near z = ±h in
Re{I(z)/V }, whereas the behavior of Im{In /V } is associated with
the more abnormal oscillations near z = 0 in Im{I(z)/V }.

By varying h/λ, a/λ, and N , we found that the point n after which
the Im{In /V } grow depends on the important parameter h/a, not on
h/λ or a/λ separately. In fact, we roughly estimated n to be around
0.6h/a (=15 in Figs. 1 and 2), and N must be chosen smaller than
this to avoid oscillations. For sufficiently large h/a, this always leads
to smooth solutions. As has been pointed out in a slightly different
context [11], however, such a “flexibility” in choosing N still does not
help determine the optimal value of N .

Fig. 3 is similar to Fig. 1, but for the FG. As with subdomain basis
functions [11], no oscillations occur near z = 0. This can be explained
by the analytical study [11] of the antenna of infinite length, which

Fig. 2. Basis function coefficients (top) Re{In /V } and (bottom) Im{In /V }
as calculated by the numerical method of Section II (in amperes per volt).
HE/DFG combination; h/λ = 0.25, a/λ = 0.01, and N = 40.

Fig. 3. Same as Fig. 1 but with the FG with b/a = 2.3 instead of the DFG.
The value at z = 0 is I(0)/V = (7.9 + j3.4) mS.

is governed by a solvable integral equation, so that no oscillations
occur [11]. Thus, when the length is finite, one should not expect
oscillations near the FG. Here, for large n, the Im{In /V } oscillate
about zero, as in Fig. 2 (top).

It is of interest to compare our results to “true” values. We obtained
such values for I(0)/V = G + jB by applying the method of [11]
and [21]—i.e., Galerkin’s method with pulse functions—to HE with the
exact kernel. Let us denote the number of pulse functions by 2Np + 1.
For G in the DFG case and for both G and B in the FG case, true
values (corresponding to Np = ∞) can be obtained using moderate
Np in conjunction with the convergence acceleration methods of [14].
We thus obtained G = 8.3 mS for both the DFG and the FG cases,
which is quite close to the values 7.8 and 7.9 mS in Figs. 1 and 3,
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respectively. For the FG case, we found B = 3.6 mS, which is quite
close to the value 3.4 mS of Fig. 3. For the DFG case, it is not possible
to obtain a value B corresponding to Np = ∞ because Im{I(z)/V }
is logarithmically singular at z = 0 [19], [21]. One way to make a
meaningful comparison is to choose Np = 40, so that the two systems
of equations in each method have the same size (41 × 41): we thus
obtained B = 2.1 mS, which is of the same order of magnitude as the
“mean” of the oscillating values near z = 0 in Fig. 1 (bottom).

III. EXTENSIONS TO PE

PE [11, eq. (2)], [21, eq. (42)] results from applying L = ∂2/∂z2 +
k2 to (1). For the FG case, it is shown in [11] that PE can admit no
continuous solution I(z). For the DFG case, the authors still consider
that PE has no solution1; but a precise statement of nonsolvability is
beyond the scope of this paper.

Here, we pass L inside the integral in (1), perform the resulting
differentiations as in [10], and end up with a slightly different form
than [11, eq. (2)] and [21, eq. (42)]. It is∫ h

−h

G(z − z ′)I(z ′) dz ′ = f2 (z), −h < z < h (7)

G(z) =
1
4π

exp(ikR)
R5

[
k2a2R2 + (1 − ikR)(2R2 − 3a2 )

]
R =

√
z2 + a2 (8)

f2 (z) =

{
iV kζ−1

0 δ(z), DFG case

g(z), FG case
(9)

in which g(z) was defined in (4). For the FG case, it is readily checked
that the nonsolvability arguments of [11] still hold for the form of
PE in (7). Thus, in the FG case, (7)—just like [11, eq. (2)]—has no
continuous solution.

We solve (7) numerically by directly applying Galerkin’s method
with basis functions cos [(2n − 1)πz/(2h)], n = 1, 2, . . . , N + 1. We
found very similar results, i.e., for large N, we always found oscillations
near z = ±h (in both the real and the imaginary parts, and for both the
DFG and the FG). In the DFG case, we found additional oscillations
near z = 0 in the imaginary part, but no such oscillations in the real
part. In particular, with h/λ, a/λ, and N as in Fig. 1, we obtained very
similar (but not identical) curves.

IV. CONDITION NUMBERS

We now turn to important effects separate from those shown in
Figs. 1–3. Fig. 4 shows the logarithm (to base 10) of the condition
numbers c of the (N + 1) × (N + 1) systems of Sections II and III.
Fig. 4 (which can be compared to [11, Fig. 3]) shows the following.

1) For sufficiently large N and to an excellent degree of approx-
imation, c grows exponentially, at least in the HE case. The
solution In can thus be severely affected by roundoff and numer-
ical integration errors. This is to be expected because (1) and (7)
are Fredholm integral equations of the first kind, whose kernels
K(z) and G(z) are smooth.

2) For large N , the HE system is much more ill-conditioned than
the PE system. This is simply because K(z) is smoother than
G(z)—note the fifth power of R in (8).

1Attempting to solve DFG/PE for the infinite-length antenna via Fourier
transformation does not lead to a solution because the Fourier inversion integral
for I(z) diverges exponentially. This statement can be shown as in [21], where
it is shown for DFG/HE.

Fig. 4. Logarithm of 1-norm condition number c for the (N + 1) × (N + 1)
system resulting from HE (three combinations of h/λ and a/λ) and the system
resulting from PE.

3) Different values of h/λ and a/λ yield virtually the same c as long
as h/a is fixed. And smaller values of the important parameter
h/a imply much more ill-conditioning.

Because of the severity of matrix ill-conditioning, we took much care
to ensure that the results in Figs. 1–3 are free of roundoff and numerical
integration errors. To do this, we chose N not much larger than h/a,
used double-precision arithmetic, and obtained identical results using
various numerical integration and system solving routines. Thus, the
oscillations in Figs. 1–3 cannot be attributed to roundoff or numerical
integration errors; such oscillations would occur even with hypothetical
“perfect” hardware and software (i.e., a computer with an infinite word
length and error-free numerical integration routines).

V. CONCLUSION

In this paper, we applied Galerkin’s method with entire-domain,
cosine basis functions to selected integral equations with the approx-
imate kernel (the use of equations of this type remains widespread)
and observed oscillations near the endpoints (z = ±h) and/or near
the driving point (z = 0) of the wire antenna. We also examined the
separate—but very important—effects of roundoff. The present paper
supplements [11] and [21], in which subdomain basis functions were
considered. In the subdomain case, oscillations occur in the “cells” ad-
jacent to z = ±h and/or z = 0 [11], [21]. Thus, the present oscillatory
behavior resembles that occurring with subdomain basis functions.
In the present case, however, there are no adjacent cells, so we had
not expected this similarity beforehand. In any case, the undesirable
behavior that emerges from our figures for I(z)/V (Figs. 1 and 3) and
In /V (Fig. 2) is clear and instantly recognizable.
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Modeling Radiated Emissions Due to Power Bus Noise
From Circuit Boards With Attached Cables

Haixin Ke, K. Morishita, Todd Hubing, N. Kobayashi, and T. Harada

Abstract—A two-step technique for modeling the radiation from circuit
boards with attached cables is developed and applied to various board–
cable structures. The technique divides a complex source geometry into
two components. One component consists of differential-mode sources and
the pieces of the structure that contribute to the differential-mode radiation.
The other component consists of common-mode sources at cable attachment
points and the parts of the structure that play a role in the radiation due
to common-mode cable currents. The two component geometries are much
easier to model than the complete structure. This modeling approach also
provides the modeler with insight regarding the design parameters that
most influence one type of radiation or the other.

Index Terms—Balance, common-mode current, power bus noise, radi-
ated emissions.

I. INTRODUCTION

Printed circuit boards (PCBs) often have copper power and return (or
ground) planes, and the return planes are usually connected to metallic
objects such as cables or enclosures. For these types of structures, noise
voltages between the power and return planes may induce significant
common-mode currents on the attached metallic objects resulting in
unacceptable radiated emissions. Although the sources of noise are
normally on the board, the antennas are often the larger attached objects
[1], [2]. It is often desirable to model the electromagnetic coupling
between the noise on the board and the attached objects; however,
this kind of modeling can present a significant challenge for full-wave
numerical modeling techniques due to the small dimension of the board
thickness and the relatively large dimensions of the attached cables and
chassis.

One technique for simplifying this type of simulation [3] employs
the equivalence theorem and replaces the plane pair with a magnetic
current around the edges of the board. This technique works well for
calculating the differential-mode radiation directly from the plane pair,
but it is not an efficient method for determining the common-mode
voltages that drive attached cables and enclosures.

Since it is the common-mode currents induced on the cables that are
the primary concern, it can be advantageous to isolate the differential-
mode sources and focus the modeling on just those aspects of the
configuration that contribute to the common-mode currents. Techniques
that use this approach are described in [4] and [5].

Recently, a two-step modeling technique was proposed that derives
two simpler structures from the original PCB with cable/chassis attach-
ments [6]. The first structure consists of the board’s power and return
planes with the attached cables and chassis removed. The second struc-
ture includes the cables and chassis, but eliminates the power plane and
the dielectric substrate. The first structure is modeled to calculate the
differential-mode voltage distribution between the power and return
planes. The differential-mode voltages at discontinuities in the plane
pair are then converted to equivalent sources and applied to the second
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