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ABSTRACT: Many existing numerical techniques used to analyze wire
antennas assume the current distribution on the wire to be one-dimen-
sional (1D). This assumption imposes geometric constraints on the ratio
of the wire radius to the discretized antenna segment length. Moreover,
many kernel approximations are so inaccurate that higher-order basis
functions for wire modeling are unthinkable. More accurate kernel mod-
els are possible, but generally result in infinite series or require compli-
cated integration rules. This work presents a new generalized approach
to the modelling of cylindrical wire antennas. The method is not
plagued by the aforementioned geometric restrictions and can be ex-
tended to model the higher-order behavior of wires. The numerical re-
sults show the method to be both stable and robust. © 2006 Wiley Peri-
odicals, Inc. Microwave Opt Technol Lett 48: 740–744, 2006; Published
online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/
mop.21461
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1. INTRODUCTION

Wire scatterers are among the most studied topics in computational
electromagnetics, since the unknown is essentially one dimen-
sional (1D): by definition, a wire is much larger in one dimension
than in the other two [1–13]. Classic techniques for analyzing these
structures rely on the method of moments (MoM) to solve the
electric-field integral equation (EFIE) [14]. Wire techniques are
distinguished from other MoM-based analyses in that they assume
that the current may be modeled as flowing in only one direction—
along the wire.

The oldest wire-scattering analysis technique assumes a fila-
mentary current. Because the field radiated by a filament cannot be
integrated, the basis and testing functions are displaced by the
radius of the wire. This “thin-wire approximation” imposes a strict
restriction on the length-to-radius ratio of the discretized antenna
segment. Moreover, since the reduced kernel approximation is
inherently low-order, it precludes the use of higher-order basis
functions. This difficulty can be profound, especially when the
wires are included in a more complex model incorporating high-
order discretized surfaces. Nonetheless, these techniques have
been used to accurately model wire-based and wire-meshed struc-
tures [15, 16].

Subsequent research has proposed an infinite-series expansion
approach to model a cylindrical wire kernel with constant and
linear current distribution [17–19]. Since this work models a
cylindrical wire kernel, it is not as constrained by the thin-wire
condition. (Of course, in failing to account for either azimuthal
currents or variations, it must still be somewhat limited. This
limitation, however, is in keeping with the distinction between
wires and general surfaces.) Similarly, a variant of the Duffy
transform can be used to extract the singularity from the 2D
cylindrical kernel [20]. Both of these approaches are a vast im-
provement over the thin wire technique, but both seem to over-
complicate what appears at first glance to be a simple 1D problem.

Figure 7 Measured antenna gain of the proposed antenna
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This work proposes a new accurate and simple approach for the
modeling of cylindrical wire antennas. Section 2 introduces a
technique for evaluating the fields due to a constant current cylin-
drical antenna. This technique will then be extended to model
linear distribution current using the Method of Moments (MoM).
In section 3, the accuracy and validity of the proposed technique
are proven by comparison with the reduced-kernel approach and
experimental results.

2. FORMULATION

This section discusses the formulation of the problem at hand.
Subsection 2.1. presents the new method for integrating the sin-
gular wire kernel. The method of moments (MoM) implementation
of this approach is covered in subsection 2.2.

2.1. Wire Antennas
The cylindrical wire segment under consideration is illustrated in
Figure 1. The wire is aligned along the z-axis. The radius of the
wire is a and the length of the segment is �. The surface current
density Jz is assumed to be azimuthally invariant. The magnetic
vector potential for this antenna is given by [19]:

Az��, z� �
�

4� �
��/ 2

�/ 2

I� z�� K��, z � z��dz�. (1)

The cylindrical wire kernel K(�, z � z�) is expressed as

K��, z � z�� �
1

2� �
��

� e�j�R���,�,z�z��

R���, �, z � z��
d�. (2)

The term R�(�, �, z � z�) is the distance between the source point
(a, ��, z�) and the field point (�, ��, z), and is given by

R���, �, z � z�� � �� z � z��2 � �2 � a2 � 2�a cos �, (3)

where the source point is (a, ��, z�), the field point is (�, ��, z),
and � � �� � ��. In the subsequent discussion, where the
dependence of a function is clear from the context, it will be
omitted.

For a constant current distribution I( z�) � I0, Eq. (1) becomes
simply

Az
0��, z� �

�I0

4� �
���/ 2�

�/ 2 �
��

� e�j�R�

2�R�
d�dz�. (4)

If the observation point is not on the wire, the integral is not
singular and can be easily integrated by a host of methods. On the
other hand, special care is required when � � a, so this case will
be assumed for the remainder of this section. When � � a, the
integrand in Eq. (4) has a singularity that can be extracted by
rewriting the equation as follows:
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0�a, z� �

�I0

4� � 1

2� �
���/ 2�

�/ 2 �
��

� 1

R��a, �, z � z��
d�dz�

I1
0� z�

�
1

2� �
���/ 2�

�/ 2 �
��

� e�j�R��a,�,z�z�� � 1

R��a, �, z � z��
d�dz�� . (5)

I2
0� z�.

The first term in the above expression is singular when the source
and field points are the same. The term I2

0( z) is always well-
behaved and can be evaluated numerically without any special
treatment.

The singular term I1
0( z) can be rewritten by interchanging the

order of integration, applying the change of variables, and chang-
ing the azimuthal variable to 	 � �/2. After noting the symmetry
present in the 	 integration, I1

0( z) becomes

I1
0� z� �

2

� �
0

�/ 2 �
���/ 2�

�/ 2 d	dz�

R�� z � z�, 	 �
, (6)

where

R�� z � z�, 	 � � �� z � z��2 � 4a2sin2	. (7)

Applying the change in variables 
 � z� � z, separating out the
potential singularity at z � z�, and using symmetry about 
 � 0
results in the expression

I1
0��, z� �

4

� �
0

�/ 2 �
0


1 1

R��
, 	 �
d
d	

Singular at 
 � 0,	 � 0

�
2

� �
0

�/ 2 �

1�2z


1 1

R��
, 	 �
d
d	, (8)

where 2
1 � � � 2z. The nonsingular (second) integral in the
above expression can be evaluated using a numerical-quadratureFigure 1 Geometry of a cylindrical antenna segment
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technique. The 
-integration of Eq. (8) can be performed analyti-
cally, yielding [21, 22]:

4

� �
0

�/ 2 �
0


1 1

R��
, 	 �
d
d	 �

4

� �
0

�/ 2

ln�
1 � R��
1, 	��d	

� 2 ln�
1

a�. (9)

All of the terms in this expression are nonsingular, and the integral
can be evaluated numerically.

The analysis of a wire with linear current distribution I( z�) �
J0z� is analogous to the scheme used for constant current distri-
bution. The vector potential for this case is given by the following
expression:

Az
1��, z� �

�J0

4� � 1
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���/ 2�

�/ 2 �
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� z�
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d�dz�� . (10)

I2
1� z�.

The nonsingular term I1
2(�, z) can be evaluated numerically, while

the singular term I1
1(�, z) is rewritten (using transformations

similar to the above) as

I1
1� z� �
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�/ 2 �
�
1

�
1�� 


R��
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d
d	 � zI1

0� z�, (11)

where R�(
, 	 ) and 
1 retain their values from Eq. (8). Evaluating
the inner integral in this equation analytically gives [21]:

I1
1� z� �

2

� �
0

�/ 2

	���
1 � ��2 � 4a2sin2	 � �
1
2 � 4a2sin2	
d	

� zI1
0�z�. (12)

The new integral in this term can be evaluated using any standard
numerical-quadrature rule for nonsingular integrands. Thus, the
methods covered here reduce all of the integrals encountered in a
MoM implementation to integrals that can be easily and accurately
performed by Gaussian (specifically, Gauss–Legendre) integra-
tion.

2.2. Method of Moments
The results of the previous section can easily be used in a MoM
code for modeling wires. Assuming that the wire is straight and
z-directed, the EFIE for scattering from the wire is given by [23]:

Einc� z� � j�� �
z�

I� z�� K� z � z��dz� �
1

j��

d

dz �
z�

dI� z��

dz�
K� z

� z��dz�, (13)

where �, �, and � represent angular frequency, permeability, and
permittivity, respectively. To apply the MoM, the current on a wire
is approximated by a linear combination of basis functions:

I� z�� � �
n�1

N

InBn� z��, (14)

where Bn( z�) is the basis function and In is the unknown basis
function weighting coefficient associated with it. The basis func-
tions used here are given by

Bn� z�� � 	Bn
�� z�� �

z�

�n
� , z� in Sn

�

Bn
��z�� � 1 �

z�

�n
� , z� in Sn

�

0, otherwise

, (15)

where �n
� is the length of segment Sn

� and the superscript denotes
the slope of basis functions. This arrangement is illustrated in
Figure 2. Eqs. (14) and (15) are then substituted into Eq. (13),
which is subsequently multiplied by each basis function in turn and
integrated over the wire. This process yields a matrix equation
ZI � E in which the vector I contains the basis-function coeffi-
cients and vector E contains the incident-field information. (Spe-
cifically, the elements of E are just the incident field multiplied by
the basis function and integrated over the surface of the wire.) The
values of the elements of the Z matrix are computed by the
following expression:

zmn � j�� �
z1

z2

Bm� z� � �
z�

Bn� z�� K� z � z��dz�dz

�
1

j�� �
z1

z2 dBm� z�

dz
� �

z�

dBn� z��

dz�
K� z � z��dz�dz

�
1

j��
Bm� z� � �

z�

dBn� z��

dz�
K� z � z��dz�


z1

z2

. (16)

The diagonal elements of the matrix (corresponding to the self-
term) can be evaluated using the scheme presented in subsection
2.1., since the basis-function integrations only involve linear or
constant functions. The kernel integrals for off-diagonal elements
can be expressed as elliptic integrals, and evaluated using standard
numerical techniques [19, 24].

3. NUMERICAL RESULTS

This section demonstrates the accuracy of results obtained by the
proposed technique, and compares the kernel-integration method
considered here to the reduced-kernel method. In particular, the
results presented here focus on the convergence of different

Figure 2 Basis functions associated with a wire segment
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schemes as the wire is further discretized. All the simulations will
assume delta-gap excitation at the center of the antenna.

Figures 3(a) and 3(b) compare the normalized far-field pattern
returned by the proposed technique and the thin-wire approach for
a half-wave dipole and a full-wave dipole, respectively. The an-
tenna length to radius ratio L/a for these dipoles is 150. Thirty
segments are used to model current flow on the antenna, making
the segment-to-radius ratio �/a � 5. One can see an excellent
correspondence in the results obtained by the two techniques.

Figure 4 compares the antenna current returned by the two
techniques for a highly discretized full-wave dipole. The antenna
has been discretized into 150 segments with a segment-to-radius
ratio �/a � 1. The graph illustrates the breakdown of the reduced-
kernel technique for this level of discretization. On the other hand,
the current obtained by the proposed technique for high discreti-
zation compares well with results for coarser discretization.

Finally, Figure 5 compares the input conductance calculated by
the proposed technique with available experimental data [5, 25].
The numerical results match the experimental data for a wide
range of wavelengths. The ratio of the wire radius to the wave-
length a/ is kept constant at 7.002  10�3. The wire is dis-

cretized into 50 segments and the segment length-to-radius ratio
�/a for this test varies from 0.9 to 2.85 as the frequency of
operation changes. This result reflects the accuracy of the numer-
ical technique, even at high levels of discretization.

4. CONCLUSION

This study has proposed a new integration method for a wire
kernel, assuming constant or linear basis functions. This scheme is
not limited to coarse discretizations such as the classical reduced-
kernel approach. Moreover, the integration scheme is exact and the
only approximations it makes pertain to the quadrature scheme
used to evaluate the integrals. The numerical results presented
confirm these claims.

The technique presented here can be extended to model com-
posite wire structures using higher-order basis functions and also
to model transient wire scattering [26]. These applications will be
discussed by the authors in a future contribution.
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ABSTRACT: A simple, compact pulse shaper of inverse Gaussian
monocycle with picosecond duration and wideband response is proposed
in this paper. By modifying the conventional pulse shaping circuit, the
pulse shaper utilizes the RC differentiator and Schottky diode to con-
struct the clamping circuit, and form an inverse Gaussian monocycle
pulse. In addition, the short-stub is used for constructing the resistive
matching network as well as adjusting the shape of inverse Gaussian
monocycle pulse. In applications, an ultra-short inverse Gaussian mono-
cycle pulse with duration of 600 ps, symmetry of 100%, and ring level
of 5.8% has been obtained. Meanwhile, the frequency response presents
the characteristic of wideband spectrum with a �3-dB BW of 141.7%.
Both the measured and simulated results are in good agreement with the
time and frequency responses. © 2006 Wiley Periodicals, Inc.
Microwave Opt Technol Lett 48: 744–749, 2006; Published online in
Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.
21462

Key words: pulse shaper; inverse Gaussian monocycle pulse; short-stub

1. INTRODUCTION

Recently, ultra-wideband (UWB) communications have been de-
veloped as a good and cost-effective method for short range,
especially in building systems [1, 2]. Basically, it is a carrier-free
communication in which baseband messages are contained in the
narrow pulse. Restated, only the shaped pulse is transmitted and
received between the terminals, and it is called the “impulse radio”
for applications [3–6]. The pulse duration is usually in the range of
a picosecond. Thus, the ultra-short pulse-shaping circuit is a main
research topic in UWB systems [7–12].

Generally, step, Gaussian, and Gaussian monocycle pulses are
applied in UWB systems due to the common characteristic of
UWB spectrum. Several possible monocycle pulses, including
Gaussian monocycle, Scholtz’s monocycle, Manchester mono-
cycle, Sine monocycle, rectangular monocycle, and so forth, have
been developed. However, the spectrum of the Gaussian mono-
cycle pulse does not includes the dc portion and low-frequency
parts for applications [2]. Basically, Gaussian monocycle pulse-
shaping circuits consist of a step-recovery diode (SRD), an RC
differentiator, and a time-delay line. Therefore, the attractive fea-
tures of these pulse-shaping circuits are simplicity, compact size,
and low cost.

In this paper, based on the modified conventional monocycle
pulse-shaping circuit, we propose a novel inverse Gaussian mono-
cycle pulse shaper with picosecond pulse duration and wideband
spectrum. Based on the RC differentiator and Schottky diode, the
clamping circuit is constructed, and the inverse Gaussian mono-
cycle pulse is formed. Meanwhile, we employ the short-stub for
establishing the resistive matching network as well as adjusting the
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