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On the  Integral Equations of Thin Wire Antennas 

Absfraci-The feasibility of direct  numerical calculations of 
anrenna integral  equations is investigated. It  is shown that integral 
equation of Hallen’s type is the most adequate for such applications. 
The extension of Hallen’s integral equation to describe thin wire 
antennas of arbitrary geometry is accomplished, and  results  are 
presented for dipole, circular loops, and equiangular spiral antennas. 

INTRODUCTION 
URING THE PAST seven  years,  the  advance- 
ment of antenna design  has  been  characterized 
by  an  exhaustive  utilization of antenna geome- 

try.  Broadband  antennas  are  notable  examples.  In  the 
study of antenna  theory, a knowledge of the  current 
distribution  is of fundamental  importance.  Such  data 
may be  obtained  either  by  measurement  or by solving 
the  antenna  integral  equation.  Integral  equations  are 
difficult to  solve  even  for  the  simplest  case of a dipole 
antenna.  However,  as  a  result of the  development in 
modern  high  speed  computers,  the  range of application 
of the  integral  equation  method  has been greatly  en- 
larged.  The  purpose of this  paper  is  to  present  an  in- 
vestigation of the  feasibility of direct  numerical  calcula- 
tions of antenna  integral  equations. T o  simplify  the  dis- 
cussion,  the  trapezoidal  rule of integration is assumed 
throughout,  although  it is realized that  in a practical 
calculation  better  integration  schmes,  such as quad- 
ratic  rule,  etc.,  may  need  to  be  used.  Typical  results of 
calculations  are  presented. 

NUMERICAL SOLUTIONS OF DIPOLE AYTEIWAS 

I t  is well known  that  the  axial  component of the 
electric field produced  by  the  current on a  cylindrical  di- 
pole antenna [I ] is given  by 

G(z,  c; z‘c‘)dc‘dz‘ 
dd 

+ K 2  JLfJ(z’)G(z, c; z‘, c‘)dc‘dz‘ = jucE(z) (1) 

where  the  symbol J ( d )  represents  the  surface  current 
density,  Xdc‘  represents  the  integration  around  the 
periphery of the  cylinder,  and G(z,  c; z’, c’) is the free 
space  Green’s  function, 
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For  simplicity we shall  omit  the  integration Xdc’ in  the 
discussion that  follows, i.e., the  symbol S L d d  will repre- 
sent  the  surface  integral  over  the  cylinder. 

13,7hen the  electric field on  the  surface of the  antenna 
is considered, (1) reduces to  

- d s / ’ ( d ) G ( z ,  z’)dz’ 

dz 

+ K 2  J(z’)G(z, z‘)dz’ = - ~ w E E , ~ ( z )  (2) SL 
where E,‘(z) is the  electric field produced  by  the  genera- 
tor.  Equation (2) is an integrodifferential  equation  for 
the  current, which may  be solved  numerically  by a com- 
bination of the difference  equation  method  and  the  nu- 
merical  integration  method. The  disadvantage of such 
an  approach is that  difference  equations  are  generally 
unstable  and  critical  to  the  errors  in  the  approximation. 
An  alternative  approach is to  transform (2) into  a  pure 
integral  equation.  Equation (2) may  be  readily  trans- 
formed  into  such  an  equation of one of several  familiar 
forms. The one used by  Pocklington [2] is 

integrating  both  sides of (3), say  from 0 t o  z,  gives 

=  WE J Ezi(l)dE + A (4) 
0 

The  integral  equation used by  Hallen [l ] is, 

In  these  integral  equations,  the  constants of integration 
A and B are  to  be  determined  by  the  condition  that  the 
current  vanishes at  both  ends of the  antenna; V and 2 0  

are,  respectively,  the  voltage  applied  and  the  intrinsic 
impedance of free  space. 

The numerical  solution of an  integral  equation  may 
be  effected by  approximating  the  integration  with a 
finite  sum at n different  points. The  resulting  algebraic 
equations will have  the following form [SI, [4]  : 

. . . . . . . . . . . . . . . . . . . .  
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Fig. 1. Relevant of a dipole antenna  and its subdivisions 

1000 n= 10 

milliamperes per volt 

Fig. 2. Current distribution I=I~+j j l {  on a dipole antenna 
of parameters fi = 2 log 2 L / a  = 10, kL= r / 2  

The  matrix  elements Kii and F ( z i )  for ( 3 ) ,  (4), and (5) 
are  given,  respectively, as 

F(z; )  = -jweE,i(zJ 1 

. ,  

i 

where Azj's, the  subdivisions of the  antenna, as shown 
in Fig. 1 are sufficiently  small so that  the  current  in  each 
may  be considered  constant. 

We  notice  that  the  integral in (7) does  not  converge 
a t  i = j .  Whether  the  often used approximation  for a 
thin  antenna of radius a ,  

can  be  applied  in  the  divergent  integral of (7) is open to  
question [SI-[7]. An  inspection of (6), (7), and (10) 
indicates  that  such  approximation will not lead to   the 

milliamperes per volt 
Fig 3. Current distribution on a dipole antenna of parameters 

0 = 2  log 2 L / a = 1 0 ,   k L = r .  

milliamperes per volt 
Fig. 4. Current distribution I=Iz+jIi on a dipole antenna 

of parameters 0 = 2  log 2L/B=10, k L = h / 4 .  

correct  solution.  This  is so because, if approximations 
(7) and (10) are used in  the  limit of small  radius a (6) 
approaches a diagonal  matrix. Tha t  is to  say,  for a very 
thin  antenna,  the  solution of (6) would then  give 
J(z)dE, ' (z) ,  which  is not  compatible  with  the well 
founded  knowledge of antenna  current  distributions. 

The  improper  integrals in (8) and (9) at i = j  may  be 
integrated  by using  Cauchy's  principal  value. In these 
cases, we  may  also use the  approximation (10). Actual 
computations  based  on  such  an  approximation  indeed 
give  correct  results.  This  possibly  accounts  for  the  fact 
that  approximations (7) and (10) have been  successfully 
used  in variational  form [8], [ 9 ] ,  since  the  variational 
formulation  introduces  an  additional  integration,  which 
in  effect  suppresses  the  divergent  nature of the  integral. 

Of particular  importance  in  the  inversion of a large 
matrix is the  problem of round-off errors  accumulated 
through  large  number of arithmetic  operations. In 
general,  the round-off errors  depend on the  orientations 
of the  hyperplanes  represented by each  row of the 
matrix,  in  the  n-dimensional  vector  space.  Qualitatively 
speaking,  the round-off errors will be  small if the  hyper- 
planes  are  essentially  perpendicular  to  one  another,  and 
the  reverse is t rue if two or more of them are almost 
parallel [lo]. Inspection of (8) indicates  that for  small 
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radius a the coefficient K;j will be  small  for i < j ,  and 
large  for izj. Hence,  in  the  limit of a  very  thin  antenna, 
the  matrix  elements  described  by (8) approach  those of 
a triangular  matrix.  For  the  same  situation,  however, 
the  matrix  elements  described  by (9) approach  those of 
a diagonal  matrix,  which is certainly  superior  to  a  tri- 
angular  one  in  view of the  previous  consideration  on 
computational  errors.  We  shall,  therefore, use integral 
(5) as the  basis  of  our  calculations. 

A few typical  results of calculation  on  dipole  antennas 
are  shown  in  Figs. 2-4. I t  is of interest  to  note  that  cal- 
culations  based on the model of a slice  generator  exci- 
tation [l], and  those  based  on  the  model of a magnetic 
loop  current  excitation [ll ] have no noticeable  dif- 
ferences  in  their  results. 

ARBITURY THIN W I R E  ANTENKAS 
The extension of ( 3 )  and (4) t o  describe  a  general 

curved  wire  antenna  is  immediate,  provided  a  curved 
cylindrical  coordinate  system is used.  Figure 5 describes 
such a coordinate  system,  where s is  the  arc  length 
measured  from  the feed gap,  and 3 is the  unit  tangent 
vector a t  s. If the  radius a of the  wire  is  sufficiently 
small so that  the  current  density  may be  considered t o  
be  uniform  around  the  periphery of the  wire,  the cor- 
responding  integral (3 )  and (4)  for  a  curved w 'Ire ' an- 
tenna  are,  respectively, [SI  

= jw&,'(s) (11) 

and 

= jwsJSE,'(E)dE + A (12) 

The extension of (5) to  describe a general  curved  wire 
antenna  is  not so apparent.  The  complication  arises  in 
that   the kernel of the closed-cycle type is essential  in  the 
conventional  way of deriving  integral ( 5 ) .  Such a kernel 
has  the special  property 

Fig. 5. A curved Cylindrical coordinate system. 

and 

IVe define  a  scalar  function @(s) as 

Integrating (16) by  parts  and  considering J ( s )  t o  
vanish at  both  ends,  we  obtain 

For  the s component of the  electric field on  the  an- 
tenna  to  vanish,  it is required tha t  

E&) + E,i(s) = 0 (18) 

where ESi(s)  is  the s component of the  incident  electric 
field when  the  antenna is receiving, or i t  is  the  impressed 
field of the  source if the  antenna is transmitting. 

From  the well-known  equation 

E&) = - V,# - j w p  A , 
we have 

or 

a a 
- K(s ,  s') = - - K(s,  s') 
as as' Adding k*(s) to  both  sides of (20), we obtain 

The  structures which  give  rise to  kernels of this  type 
are  limited to  straight  wires,  circular  arcs,  and  helical 
wires [9]. In  the following  we  shall at tempt  to generalize 
( 5 )  so as  to include  wire  antennas of arbitrary  geometry. 

In  accord  with  the  assumptions of a  thin wire antenna, 
the  tangential  component of the  vector  potential  and 
scalar  potential  on  the  antenna  are  given,  respectively, 
as 

d"(s) + k'@(s) = k2(@(s) - A,(s)) - jw&,i(s) (21) 
ds? 

The  solution of (21) is 
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Since @(O) = 0, we see that  the  constant C must  vanish. 
Now consider  the  integration 

F ( s )  = K l’Cb(5) sin K(s - ,$)dl‘ 

After  changing  the  order of integration  in ( 2 3 ) ,  me obtain 

F ( s )  = - K J L  [’ l ’ J ( s ’ )  sin K(s - 6)dEdVds‘ 
ds‘ 

= - JL [‘J(s’) E [l - cos K(s - ~ ) ] d q d s ’  
ds‘ 

aG(71’ ”) cos, K (s - q)d& (24) 
ds‘ 

Kext we consider the  integration 

H ( s )  = k ~ ’ A t ( ~ )  sink(s - t)dE 

= K L ’ J / ( s ’ ) G ( &  s’)$-i’ sin K(s - E)d[ds‘ (25) 

Integration  by  parts gives 

H ( s )  = J J(s’)G(f,  s‘)$.i’ cos K(,s - E )  I ~ = o  ds’ 
E= 8 

L 

‘COS k(s - f )dE 

= J/(s’)G(s, s’)i. i’ds’ 

- J/(s’)G(O, s’)B.i’ cos ksds’ 

‘ C O S  k ( ~  - ()dE (26) 

Substituting (24) and (26) into (2), we obtain  the  inte- 
gral  equation  for  the  current, 

J/(s’)T(s, s’)ds’ = D sin K I s I 

+ J/(s’)G(O, s‘)d-s’ cos ksds’ 

- i l ’ E $ ( ( I )  sin k(s  - E)dl (27) 
2 0  

where 

*COS K ( s  - 4)dE (28) 

The  term D sin kl S I  represents  the  effect of a slice 
generator  which is redundant  when  the  integral of Eti 
is  present.  Indeed, if Eti(t)  = V/26(t) ,  where 6(E) is the 
Dirac  delta  function, me have 

l’Eti([) sin k(s - 4)dE = -sin K I s I (29) 
- j V  

2 0  220  

which  is  consistent  with (5). 
T o  show that  (27) reduces to  ( 5 )  for  a  dipole  antenna, 

we assume  the  source t o  be a slice generator,  and  notice 
that  in this  particular  case 

a w ,  s t )  - aG(4, s’) 

a4 8s’ 

and 

&i = 1 

Hence, (27) becomes 

J:(z’)G(z, z’)dz’ 

j 17 
2 2 0  

= J/(z’)G(O, z’)dz’ cos Kz - -sin K I z I (30) 

Comparing (30) with ( 5 ) ,  we have 

B = JLJ(z‘)G(O, z’)dz’ 

which  may  be  shown  to  be  correct  by  considering (5) 
a t  z=O.  Consequently,  the  term JLJ(d )G(O,  z’)dz’ 
should  be  replaced  by a constant, which  has to  be  deter- 
mined  by  the  condition of the  current at the  ends of the 
antenna,  otherwise  the  solution of the  integral  equation 
will not be  unique.  Therefore,  the  integral  equation 
describing  an  arbitrary  thin  wire  antenna  is 

J;(s’)T(s, s’)ds’ 

= C’ cos Ks - - Eti([) sin K(s - t )dE (31) 
2 0  j LS 

The specialization of (31) to  a  circular  loop  antenna 
also  agrees  with  that  derived  by  Adachi  [12]. 

A further  check of the  integral  equation  may be 
effected as following. We  differentiate (31) twice  with 
respect  to s, and  make use of the  differential  relation, 
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Fig. 6. Amplitude and phase of the  current on a circular loop 
antenna of the parameter 0 = 2  log 8/ap = 15 (p =radius of the 
loop, a =radius of wire) k p  =4.0. 

and  obtain 

a aG(s, s') 

as as' 
- cos k(s  - 4)dEds' - - J:(s') ~ ds' 

k2 8 

= - K T '  cos ks + j - E&) 
20 

(33) 

Multiplying (31) by k? and  adding  the  result  to  (33), 
results  in 

which  is  essentially  (19).  Therefore, the  integral (31) is 
shown  to  be  the  correct one. 

APPLICATIONS 

Equation (31) has been  applied t o  circular  loop  an- 
tennas  [I31  and  equiangular  spiral  antennas.  The  repre- 
sentative  results  are  shown  in  Figs. 6 and 7. 

Fig. 5. Current distribution of a 3X-arm equiangular  spiral antenna 
or r=ce"Q, with a=0.2, c=O.OjX, radius of wire 0.025X. 
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