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Communications 

On Numerical  Convergence of Moment  Solutions of 
Moderately Thick Wire  Antennas Using 

Sinusoidal Basis Functions 

WILLIAM A.  IMBRIALE AKD PAUL G. INGERSON 

Absirucf-Wire antennas  are solved  using a moments solution 
where  the  method of subsectional basis  is applied with both the 
expansion and  testing functions  being  sinusoidal  distributions. 
This allows not only a simpli6cation of near-field terms  but also 
the far-field expression of the radiated field from each segment, 
regardless of the  length L. Using sinusoidal basis functions, the 
terms of the impedance  matrix  obtained  become  equivalent to 
the  mutual impedances  between the subsectional dipoles. These 
impedances are the f ami l i a r  impedances  found using the induced 
EMF method. In the induced EMF  method an equivalent radius 
is usually used in the evaluation of the self-impedance term to 
reduce computation time. However, it is shown that only for very 
thin segments  that  the correct  equivalent radius  is  independent 
of length. When  the  radius to length ratio (u/L) is  not  small, an 
expansion  for the equivalent radius in terms of u/L  is given for 
the self-impedance term. The  use of incorrect self-term, obtained 
by using  a  constant  equivalent radius term, is shown to  be re- 
sponsible  for divergence of numerical  solutions as  the  number of 
sections is increased. This occurrence is related  to  the ratio of 
a/L  of the subsections and  hence becomes a problem for  moderately 
thick wire antennas even  for a reasonably small  number of segments 
per  wavelength.  Examples are given showing the convergence with 
the correct self-terms  and  the divergence when only a length 
independent equivalent radius  is used. The converged solutions 
are  also compared to King’s second- and third-order  solutions 
for  moderately thick dipoles. 

I. IKTRODUCTIOK 

The method of moments is applied to wire antennas as discussed 
in other papers [l], [Z], but carried to a higher order of approxima- 
tion which allon~s treating  the case where the length to radius ratio 
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Fig. 1 Straight mire and coordinate  system. 

is small. The theory will discuss the st.raight wire antenna  but  the 
extension to wires of arbitrary  shape is straight.forward. 

Fig. 1 shows a straight section of -xire of circular cross section, 
and defines the coordinate  system. The wire extends from z = 0 
to z = L along the z axis and is of radius a. It is assumed that  the 
radius is small  compared to a wavelength but  the  ratio of a to L 
need not  be small. The only significant component of current on 
t,he wire is then  the axial  component, ahich can be expressed in 
terms of the  net  current I ( z )  a t  any  point z along the wire. The 
current distribution will then be modeled as an infinitely thin  sheet 
of current forming a tube of radius a, with  the  density of current 
independent of circumferential position on the tube. 

An operator  equation for the problem i s  given by 

where E,’@) is the z component of the impressed electric field at 
the wire surface, I @ ‘ )  is surface current density, .fc dc represents 
the integration around  the circumference, and R is the dist.ance 
from the source point  to t.he  field point,. The  boundary condit,ion 
for t,he current. is I ( 0 )  = I ( L )  = 0. 

11. THEORY 

The procedure is basically one for which the wire is divided into 
subsect.ions, and a generalized impedance matrix ( Z )  obtained  to 
describe the electromagnetic  interactions between subsections. The 
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problem is thus reduced to a matrix one of the form 

where [ I ]  is related to the  current on the subsections and [VI to 
the electromagnetic  excitation of the subsections. 

Matrix inversion is a simple procedure for high-speed digital 
computers, and hence the problem is considered solved once a 
well-conditioned matrix [Z] is obtained. Of considerable import,ance 
is the ease and speed of evaluating  the  matrix elements and  the 
realization of a well-conditioned matrix [Z]. 

The solution to be described uses sinusoidal  subsectional currents 
and Galerkin's method [SI, which is equivalent to the reaction 
concept [41, and  the  variational  method [SI. Let the wire be broken 
up into N segments each of length 2H and  let I ( z )  be expanded 
in a series of sinusoidal  functions 

N -1 

I ( z )  = I ,S(z  - nH) (3) 
n-1 

where I, are constants and 

&'*(H - I z l ) ,  Iz[ < H 

l z l  > H .  
S(2) = (4) 

Substituting (3) into (l) ,  and using the  linearity of 2, one  has 
N-1 

I&S(Z - n H )  = E Z i ( z ) .  (5) 
n-I 

Each side of (5) is multiplied by S(z - mH),  m = 1,2,. - -,hr - 1, 
and  integrated from 0 to L on z. This results in t,he matrix of (2), 
where the elements of [I] are I,, those of [Z] are 

Z m n  = S(Z - ~ H ) C S ( Z  - nH) dz lL (6) 
and those of [VI are 

Vm = lL S(z - mH)E,i(z)  dz. (7) 

In solving thin wire antennas, the  integration  around  the  current 
tube is normally removed by replacing the integral  with the value 
of the  integrand at one  point. This  then reduces the  equation  to 
a single integral and obviates the  singularity of the  integrand which 
occurs when t.he source and field points coincide during  the  cdcula- 
tion of the self-term and first-adjacent mutual terms. The singularity 
i s  of course integrable, and  by suit.ab1y expanding the integrand, 
special series for these terms can be obtained and  the integration 
performed  in closed form. However, many  authors have used an 
"average" value equal to the radius a. This approximat,ion is 
described as assuming the  current to be  totally located on the center 
axk and  the distance a is used to represent  an  average  distance 
from  the  current filament to  the  true  current surface. One of the 
purposes of this  communication is to show that  the value used in 
this approximation is critical to t.he convergence of the solution 
as the number of segments N and hence the rat.io of relative half- 
length H to radius a becomes comparable to unity. In  fact,  the use 
of a single value of the equivalent  radius  nil1 be shown to  be in- 
correct at any time but less important for  a  small  radius. To show 
this, first consider the evaluation of the general term Z,, of an 
infinitely thin curcent filament. Since S(z) is the same sinusoidal 
function used in evaluating radiation and impedancesvia the induced 
EMF method and e S ( z )  is the z directed  electric field radiated  by 
the subsectional dipole, it  can easily be shown that (see [SI, [7], 
and Fig. 2) Zmn is given by 

+ 2j cos kH, ("&)sin k ( H m  - I z I) dz. (8) Ro 

Fig. 2. Geometry for evaluation of Z,,,". 

T 
'i - I 

8 
Fig. 3. Geometry for self-term calculation. 

The only  problem occurs for  the self-term and  the  firstradjacent 
subdipole when the source and fieId points coincide and hence the 
impedance calculation for inhi te ly  thin dipoles would yield a 
value of ~ i t y .  It is evident  that in computing the impedance of 
these  terms t.he finite diameter of the ant.ennas -ivilI have to be 
considered. 

The self-impedance of the finite  diameter  subsegment can  be 
accomplished as follows: Consider the finite diameter segment to 
be made up of a number of very thin strips of height ZH arranged 
in  a circle of radius a as shown in Fig. 3. The  strips  are all assumed 
to be centel-fed with  a volt,age V; hence, the voltage can  be  written 
as follows: 

V = 21111 + ~ I J Z  + ... + Z d n .  (9) 

Since t,he currents Z l , l ~ , -  - -,Zn are all  identical and  are  equal to 
the  total  current on the dipole divided by  the  width of the  strip 
and t.he impedance Zll,Zl2,.-.,Zln are  the self- and mut,ual- 
impedances of the  thin  strips, (9) can then be  remihten as a s u m  
over the impedances 

Transferring the sum into an  integral using the impedances as a 
function of r = (2)%(l - cos $#)1/2 and also using the definition 
of self-impedance as being the voltage  divided by  the current, we 
have 

where Z ( r )  is the  mutual impedance between two inhi te ly  thin 
dipoles separated  by a distance r. 

It is possible for special cases to come up  with a closed form 
approximation for the self-impedance of a subsegment. First, 
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consider the  very thin wire case where a << 1 and a << H. Writing 
the impedance 2 = R + j X  and considering the resistance part 
&st, we can m i t e  R as a function of r as folloxs: 

- 2 Ci (kr) + 2 Ci (2kH) - Ci ( 4 k H )  - Ci (3 )  

where Si  and  Ci  are sine and cosine integrals. Substituting (12) into 
(11) and integrating, we have 

1 2r 
Rse,r = 2"/, R ( r )  de E R((2)1'*ka). (13) 

Equat,ion (13) states that for thin dipoles the self-resistance can 
be obtained by  evaluating  the  mutual resistance between two  
in6nity  thin dipoles at a dist.ance equal to (2)% and is the  same 
result as obtained  in [SI. Next, we m i t e  the reactive part of the 
impedance as a function of r as follows: 

- cos (2kH) 2 Si (2kH) - Si ( 4 k H )  - 2 Si (2kH) [ 1 
(14) 

where 7 = 0.5572. - is Euler's constant. Again, substituting (14) 
into (11) and  integrating we have 

1 
Xeelf = X ( k r )  4 X (h). (15) 

Equat,ion (15) states  that for thin  dipole t,he self-reactance can be 
obtained by  evaluating  the  mutual reactance between two infinitely 
thin dipole  at  a distance equal t,o the radius a .  This is different than 
the r e u l t  for the real part  and  that given in [6] where (2)1'* a is 
used instead. 

Continuing on for  the case where the  radius is still  small  compared 
to a wavelength (a  >> I) but comparable to  the  height H ,  a e  can 
expand the reactance in a series of ( r / H )  as follows: 

where C1' and Ci are  constants  that  are  not dependent on ( r / H ) .  
Subst,ituting (16) into (11) and integrating, there follows: 

Seeking an expansion of the  equivalent radius (Le., a value of 
r = a, which will make (16) and (17) equal) in terms of a/H we 
find 

1 3 0 ,  
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Fig. 5. Input resistance  of  half-wave1engt.h dipole  with h/e  = 12.5. 

Fig. 4 is a plot of the reactance of a dipole versus half-length com- 
paring the results of using the fist two terms of the  equivalent 
radius series (18) to the  result  obtained when t,he actual  integration 
(11) is performed. For comparison, the corresponding  values  using 
a constant  equivalent radius a are also shown. 

111. E X - ~ P L E S  

The importance of the utilization of the correct equivalent 
radius and  its  effect on the relative convergence of moments  solutions 
is displayed in the following examples. 
As a rather extreme case, let us choose a half-wavelength linear 

dipole with a half-length to radius h/a = 12.5. When the dipole is 
divided into 12 segments the H / a  per segment. is approximately 
equal to unity.  The calculation of the  input impedance  for  various 
equivalent radii and different  numbers of subdipoles is shown in 
Fig. 5. Note  that for this h/u it was necessary to use the complete 
integration for t,he self-term to get a solution that converged as 
the number of subdipoles increased. Using an  equivalent radius of 
(2)%,a, and even the two term  equivalent  radius was not sufliicient 
to yield a convergent  solution. 

The same type of plot (Fig. 6) is made for a h/a = 50. Here, 
the two term  equivalent radius is sufficient whereas using a and 
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INlEGBAL OF SELF IMRDANCE OF SUB DIPOLE 

h/o = M 
h = DIPOLE HALF LENGiH 

a = DIPOLE RADIUS 

70 t- 
1 I I I I I 
0 10 20 30 40 50 60 

NUMBER OF SUBDIPOLES 

Fig. 6. Input resistance of half-wavelength  dipole with h / a  = 50. 
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Fig. 7. Input resistance of half-wavelength  dipoles versus number of 
subsections. 

&ll I I I I I I I 
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9 = 2 1 n ( 2 h / o )  

Fig. 8. Input resistance of half-wavelength dipoles for varying h/a. 

(2)% is not. Plots of the  input impedance  versus number of sub- 
dipoles for various h/u ratios are s h o r n  in Fig. 7 using the two 
term  equivalent radius  for the self-term. Fig. 8 compares the results 
of the converged solutions to results given by [SI. 
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Comparison Between the Peak Sidelobe of the Random 
Array and Algorithmically Designed Aperiodic  Arrays 

BERNARD D. STEINBERG 

Abstract-Thinned arrays  (mean  interelement spacing greater 
than one-half wavelength) are  made aperiodic to  suppress grating 
lobes. Many thinning  algorithms were  created in the 1960’s and 
tested  by computer  simulation. Seventy  such algorithmically 
designed aperiodic arrays  are examined and the distribution of 
their peak  sidelobes,  relative to the expected values  for  random 
arrays having the  same  parameters, is obtained. The distribution 
is compared to  that of a set of 170 random arrays.  Both distributions 
are  found  to  be nearly log normal with the same average  and 
median values. They differ markedly in their  standard deviations, 
however, the  standard deviation of the random  array distribution 
(1.1 dB) is approximately half that of the algorithmic group. The 
compactness of the random distribution almost guarantees  against 
selection of a random  array with catastrophically large  peak side- 
lobes. Among the  several algorithms  examined, the  method of 
dynamic programming produced the lowest peak sidelobe on the 
average. 

INTRODUCTION 
A firsborder property of an  antenna  array is the  width of its 

main lobe, which is approximately the reciprocal of the number 
of wavelengths across t.he array.  Thinning t.he array, Le., mean 
spacing between elements is larger than one-half wavelength, can 
materially reduce the number of elements and, therefore, the cost 
with  lit.tle effect upon the  beamaidth.  Thinning introduces  grating 
lobes into t.he radiation pattern unless the periodicity  in the locations 
of the  antenna elements is destroyed [l]. Many aperiodic designs 
have been created for this  purpose (e.g., [2]-[13]). Randomizing 
the element. locations also eliminates periodicities [14]. In this 
paper  the peak sidelobe result.ing from random design is compared 
nit.h t.he results of many algorithmic procedures developed during 
the last. decade. 

In  a  random array,  the location of t.he nth element is a random 
variable dram from a populat.ion described by a  probabilit,y  density 
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