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The focal length was optimized at each sean angle by judging the
quality of the radiation pattern, The optimum feed position loci
were found to be linear as shown in Fig. 1. By plotting all values of 8
(beam scan angle) for each 2.5° change in 8’ (feed scan angle), it
was found that the beam deviation factor was essentially linear with
g = 1.0768". This factor is slightly greater than unity in contrast to a
conventional parabolic antenna whose beam deviation factor is
less than unity.

The gain and efficiency characteristics as a function of scan angle
are shown in Fig. 5. For a 3-dB drop in gain, the beam may be
steered to 18° or 7.65 beamwidths. The half-power beamwidth and
the first sidelobe level as a function of scan angle, both in the plane of
scan and perpendicular to the plane of scan, are also shown in this
figure, For the 18° scan, the sidelobe level has increased to —11 dB
from the on-axis value of —22.5 dB. The measured VSWR as a
function of scan angle remained essentially constant.

IV. CoxcrusioNs

Some of the significant electrical characteristics of a 3-foot-
diameter circularly polarized metallic lens antenna have been estab-
lished. On the basis of this limited study, a few observations may be
made, The efficiency of this lens is somewhat lower than that of con-
ventional reflector antennas. The lens was designed for an index of
refraction equal to 0.5, which requires operating the waveguide
medium fairly close te cutoff. If & lens were designed with & higher
index of refraction, the total number of waveguides required for a
given diameter would be reduced and the effects of dispersion
minimized. The bandwidth of this lens is limited by its thickness;
zoning or reducing the thickness would improve the bandwidth.

H. E. Kixg
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Mutual Impedance Between Coplanar-Skew Dipoles

Abstract—The induced EMF formulation is employed to de-
velop a closed-form expression for the mutual impedance between
coplanar~skew dipoles. Numerical results are presented in graphical
form,

I INTRODUCTION

King [1] has determined the mutual impedance between parallel
dipoles, and Lewin [2] has analyzed the coplanar-skew dipoles.
Lewin’s analysis, however, is restricted to half-wave center-fed
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Fig. 1. Linear dipole and coordinate system.

dipoles. In this paper we derive an expression for the mutual im-
pedance between coplanar-skew dipoles with arbitrary lengths and
terminal positions, This expression is relatively simple and convenient
for computer programming.

In Section II we present a new expression for the near-zone field
of a linear dipole, in a form most convenient for the mutual-imped-
ance analysis.

II. TeE NEAR-ZONE FIELD OF THE LINEAR DIPOLE
As shown in Fig. 1, we consider a dipole located on the z axis and
let z; and 2; denote the endpoints and z» the terminals. In the induced

EMF method, the dipole current is given by

sink(z — z)

I(z) = zh T , a<z<ae 1)
sin kg
in Bz —

I(z) = an—f—), <z < (2)
sin ke,

The time dependence exp ( jw!) is suppressed, ¢; and ¢. denote the
dipole arm lengths, z is a unit vector, I, is the terminal current, and
k = 2z/\. The field generated in free space by this dipole (or
sinusoidal line source) is determined most readily from the expres-
sions of Schelkunoff and Friis [3]. The cylindrical components of
the electric field intensity are

7 = 7301 | (2 — 21) exp (—jkR)) I 22) exp (—jkR») sin ke
? p R sin ke, R: sin ke; sin kes
(z — z3) exp (—jkRs)
(3)
+ Rs sin ke, ’
. exp (—jkR:) | exp (—jkR,) sin ke
E. =j30L | — - + p ;
I [ R; sin key R sin ke, sin ke,

exp (—ija)
Ry sin ke, ] ()

where ¢ is the dipole length and R;, R., and R; are the distances
defined in Fig. 1.
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The radial component of the field is obtained from a linear combi-
nation of E, and E.:

—330I, & xp ( —jkR,
E’_:iolZszmM (5)
m=1 R’"
where
Cy = 1/(sin ke1) (6)
C: = — (sin ke¢) / (sin key sin key) (7)
Cs = 1/(sin kes). (8)

Equation (5) is believed to be a new and useful form for the rigorous
near-zone field of the linear dipole.

III. Tee MuTuAL IMPEDANCE

For the coplanar-skew dipoles shown in Fig. 2, the mutual im-
pedance is

1 73
Zuw= —— | L(r)-E.(r) dr.
12 L), (7} B (r) dr (9)

The current on dipole 2 is

_ fI2Si.nk(T ‘—7'1)

L(r) = sin b , m<r<n (10)
Iz sin k -
L(r) =Amh.(r3‘_r), e <17 < 13 (11)
sin kd»
From (5) and (9),
i30 & '8 Iy —jk d
Z12=J—ZZ-,,.C,,./ (r) exp (=jkRy) dr (12)
I? m=1 N TR'"

These integrals are given in terms of the sine and cosine integrals as
follows:

2 / " exp (£jr) exp (—jRa) dr

R = [exp (—jzn) E(Rm — 2 F 1)

3

~ exp (j2n) E(Rn + 2m F 1) ] (13)
where

Ez) = Ci(lz]) — jSi(z). (14)
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Fig. 3. Mutual impedance between coplanar-skew dipoles.

From (12) and (13), the mutual impedance is

3 3 1 1
Zi= =152 2 CuDn 2. 3 pgexp [ jk(pen + qra)]
m=1 n=}1 p==1g=-1

~E(kRun + kpzn + kqru)  (15)

where p and ¢ assume only the values =1, and R... is the distance
from point z, on dipole 1 to point r, on dipole 2

Ron = (2m? + 722 — 22,7, cos ¥) V2 (16)
The coefficients D, have the same form as the C»

Dy = 1/(sin kdy) 17)

Dy = — (sin kd) / (sin kd, sin kds) (18)

D; = 1/(sin kdy). (19)

The coordinates z. and r, are measured from the coordinate origin
at the intersection. of the axes of the coplanar-skew dipoles. For
center-fed half-wave dipoles, (15) reduces to (13) of Lewin’s
paper [2]. .

For parallel dipoles, z,, and 7, go to infinity and it is not difficult
to show that (13) reduces to the expression published by H. E.
King [1].

1V. NuMERIcAL RESULTS

Fig. 3 illustrates the mutual impedance between half-wave center-
fed dipoles as a function of the angle ¢ between their axes. Using
(15), the calculations require 0.15 seconds on an IBM 7094 computer
for each value of ¢.

Although the numerical approach of Baker and LaGrone [4] is
efficient when the dipoles are adequately separated, (15) is preferable
for closely spaced dipoles.
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V. CoxcLusion

A convenient new form is presented for the rigorous near-zone
field of the linear dipole with sinusoidal current distribution. This
is employed to derive a closed-form expression for the mutual im-
pedance between coplanar-skew dipoles.

J. H. RiceEMOND
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Dept. of Elec. Engrg.

Ohio State University
Columbus, Ohio 43212.
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Table of the Field Patterns of a Loaded
Resonant Circular Loop

Abstract—A table of F- and H-plane patterns of the circular
loop antenna with 8b = 1.0 loaded with Z;, = K + jX at ¢ = 180°
is presented. The table gives useful information for determining the
values of the load impedance for a given field pattern. The results
were experimentally examined.

The purpose of this communication is to supply another table for
the convenience of the antenna designer.

Theoretical investigations on loaded circular loops have been re-
ported by relatively few authors [1]-[4] and very limited amounts
of experimental data have been reported. This study is concerned
with the systematic determination of the degree to which the
radiation pattern of the loop can be altered by varying the load
impedance. Experiments were performed to verify the more typical
cases of the computations.

The loop with b = 2x/\ = 1 was chosen because the current
distribution along an unloaded loop of this size is in the dipole mode
and is of particular interest [5]-[7]. It should be mentioned that,
although the cases for the negative resistance are included, the prime
purpose of the loading of such elements is not for amplification
but rather for the alteration of the field pattern by significant changes
in the current distribution along the loop caused by a negative
resistance such as an Esaki diode.

The general expression for the far field of a thin wire at an observa-
tion point in terms of the unit vector R, and unit vector S along
the wire that has an element of integration ds [8] is

E =’-“’—"°lf [RoX (Ro X §).exp (—joRY ds (1)
4r Ro J,
where R, is a unit vector pointing from 0 to P. With the aid of the
geometry of the loaded circular loop in Fig. 1, (2) is obtained

_ Joub exp (~j8Ry)

E, = qHy =
6 = TNilg A R,

. f I(¢) cos (¢ — &) exp [ jBb sin 6 cos (¢ — ¢') Jdo”.  (2)
4]
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Fig. 1. Geometry of ioaded circular loop.
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Fig. 2.
Bb = 1.0 loaded with Z, = « at¢ = 180° and with Z; = 110 = j9.0
at ¢ = 180°.

Magnitude and phase distribution of current on loop with

The radiation patterns can be obtained from (2) if the distribution
of the current I(¢’) for the loaded antenna is known. The expression
for the current distribution I (¢") along such an antenna has been
previously reported in [1, eq. (22)] without experimental verifica-
tion. Experiments were conduected to verify (22) in our laboratory.
The experimental results were found to be in agreement with the
theory. A typical result is shown in Fig. 2.

The field patterns of the loaded loop with various values of load
impedance Z; can now be calculated using the experimentally
verified expression for current. Fig. 3 shows the calculated patterns
of the circular loop antenna with b = 1.0loaded with Z,, = R + jX.
Because of symmetry, only one half of the entire pattern is shown.
It also should be noted that both the E pattern [Es (¢) with ¢ = 90°]
and the H pattern [E;(0) with ¢ = 0, ¢ = 180°] should meet at
8 =90° ¢ =0° and 8 = 90°, ¢ = 180°. The patterns with the
same value of B are arranged in a column and those with the same
value of X are placed in a row. The values of K and X used are
~500, —150, —50, 0, 50, 150, and 500 ohms.

It is observed from the figure that, in general, larger changes in the
radiation patterns take place in the columns; i.e., changes in X
affect the radiation pattern more than do changes in B. However, for
large changes in the radiation pattern, the values of both R and X
have to be changed.

It is worthwhile noting that the position of the minimum of the
E-pattern curves shifts toward larger values of ¢ as the value of R is



