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TABLE  V 
~ S E  DELAY VERSUS DIRECTOR LENGTH 

kh 0 

4.28  2.16 

4.30  2.18 

4.32  2.20 

4.34  2.23 

4.36  2.26 

4.38  2.30 

4.40  2.36 

4.42  2.44 

4.44  2.60 

4.46  2.94 

Note: a/h = 0.01, b/h = 0.5, second passband. 

TABI;E VI 
YAGI ARRAY DESIGN PAWTERS 

N 

6 

8 

10 

12 

14 

16 

18 

20 

24 

2% 

32 

36 

40 

kh 

4.34 

4.35 

4.35 

4.35 

4.35 

4.35 

4.35 

4.35 

4.34 

4.34 

4 . 3 4  

4.34 

4.33 

D (db) 

5.8 

7.4 

8.9 

10.1 

10.1 

1.2.0 

12.8 

13.6 

14.8 

15.8 

16.6 

17.3 

17.9 

Band- 
w i d t h  ( % )  

2.7 

3.2 

3.2 

3.2 

3.2 

3.2 

3.2 

3.2 

3.0 

3.0 

3.0 

2.5 

2.3 

hrray 
Size ( A )  

2.07 

2.77 

3.46 

4.15 

4.85 

5.55 

6.23 

6.91 

8.30 

9.65 

11.05 

12.40 

13.80 

Note: b/h = 0.5, second passband. 

Unfortunately, the maximum directivity does not usually coincide 
with the central  frequency of the passband. For example, for the 
Yagi array of N = 6, a/h = 0.01, and b/h = 0.5, the maximum 
directivity occurs at  kh = 1.46 with D = 9.3 dB. The center of 
the passband, as seen from Table 11, is at kh = 1.35 with D = 7.6 
dB. Should the array be operated at  the frequency ssociated with 
the maximum directivity, the frequency  bandwidth would be only 
4.1 percent  since kh = 1.46 is very close to the cutoff frequency of 
kh = 1.49. Thus it should  be  noted that in Tables 11-IV the kh 
values correspond to that of the cent-ral frequency, and  the cor- 
responding directivity is not necessarily equal to the maximum 
value. This is why for shorter  arrays the theoretical direc- 
tivity shown in  Fig. 2 is lower than  that of t,he measured 

value. For longer arrays the bandwidth is narrower;  therefore, the 
discrepancy gradually disappears. 

In Table  V  the kh versus @ values  are  listed for the second pass- 
band. The dat,a  are used to calculate  t,he  direct.ivity and bandwidth 
for Yagi  arrays  operated in this passband.  The  result is listed in 
Table VI. The information contained in Tables VI and I1 is useful 
in the design of a Yagi array to be  operated a t  two frequency bands. 
An example is given in the next section to illustrate the design 
procedure. 

111. DESIGN METHOD-EXAMPLES 

EmmpZe I 

Design a Yagi array which is to be  operated at 200 =E 10  MHz 
and is limited to 3 m  in total length.  Determine the  array param- 
eters which  would give maximum directivity  with minimum number 
of elements. 

Solutim: It is given that the  array size is limited to 2X, and  the 
bandwidth is 10 percent.  From  Fig. 2, it. is seen that  the parameter 
b/h = 1.0 can be chosen. The corresponding directivity is roughly 
equal to 12 dB. From Table 111, by  interpolation, AT is found to  be 
equd to 9, kh = 1.36, D = 11.9 dB, and bandwidth = 10.3 percent. 
In term of physical  lengths, a = 0.0032 m, 2h = 0.65 m, b = 0.324 
m, and  array  length = 2.92 m. The  array will have  one reflector, 
one feeder, and  eight  directors. 

Exumple 2 

Design a Yagi array  subject to the same conditions as in the 
previous example, but  it is to be  operated also at another  frequency 
about  three  times higher than  the fundamental frequency. 

Soluth: Since the second passband occm roughly a t  kh = 4.49 
and kb must  be less than 3.14, the separation of the element must 
be made smaller. Therefore, b/h = 0.5 is chosen. From Table 11, 
N = 19, kh = 1.28, D = 12.2 dB, and bandwidth = 13.7 percent. 
From Table VI, for the same N ,  kh = 4.35, D = 13.2 dB, and 
bandwidth = 3.2 percent. In  terms of physical lengths, a = 0.0031 
m, 2h = 0.61 m, 6 = 0.153 m, and  array  length = 2.90 m. The 
array will have one reflector, one feeder, and 18 directors. When 
operat,ed at  200 MHz,  the frequency  bandwidt,h is f l 4  MHz with 
D = 12.2 d B ;  when operated at  680 MHz, D = 13.2 dB  and  the 
bandwidth  is  equal to  f l l  MHz. 
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Formulation of Echelon  Dipole Mutual Impedance for 
Computer 

R. C. HANSEN 

Abstracf-A concise formula  suitable  for computer calculations 
is given for  mutnal  impedance of two dipoles with sinusoidal current 
in echelon. It is a  rearrangement of that of King [2]. 
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In the moment method for determining current distributions, 
piecewise  sinusoidal segments are often used. For this situation the 
mutual impedance is needed  between two dipoles, each with a 
sinusoidal current distribution with rimximum in the center. This 
zeroth-order impedance is of course also directly useful in calculating 
mutual impedance between  dipoles in  an  array provided they  are 
thin and with length  not near  a multiple of a  wavelength. 

Carter [l] computed mutual impedance betwen half-wave 
dipoles in echelon, and King [a] extended this to two antennas of 
arbitrary  and  not necessarily equal lengths in 1957. King’s result 
contains 24 pairs of different cosine and sine integrals (Ci  and Si) 
and is tedious to implement on a computer. For the moment method 
and for array use,  dipole lengths gre usually equal, in which case 
King’s formula reduces  t.o 10 pairs of Ci/Si. This note provides a 
concise form which is easily programmed, for either a batch computer 
or for a remote terminal computer. It is somewhat easier to integrate 
from the beginning than to rearrange and simplify King‘s formula. 
Using the rigorous electri4eld formulation of Schelkunoff and 
Friis [a], and the geometry of Fig. 1, the  mutual impedance can 
be mitten as 

with 

Rm,’ = Yo2 + (x0 + md + n Z ) Z  

and C-1 = Cl = 1, Co = -2 cos kd, and  the n sum indexes by 2. 
After subst,itutions and rearrangements which  allow  use of the Ci 
and Si, the result is: 

Here 

01 = (YO’ + [ZO + (m + q)dle11’2 - P C S O  + (m +  dl 
and t,he exponential integral is E (x) = Ci (x) - j Si (x). This 
form, however, has 24 Ci/Si terms of which many  are  redundant. 
When the coefficients of like Ci/Si are combined, the 4 sums have 
reduced to 2 sums, d t . h  10 Ci/Si terms: 

B = b o 2  + (x0 + md)21”2 - 12 (2% + md) .  

Here A ( l )  = A(5) = 1, A (2) = A(4) = -4 cos kd, A (3) = 
2(1 + 2 cos2 kd) and  the n sum steps  by 2. The formula is quite 
easy to program and allows a short mutual impedance subroutine. 
When yo = 0, Le., the dipoles are collinear, yo in t,he argument is 
replaced by radius a. For this case  t,he n = 1 terms  may  be replaced 
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Fig. 1. Echelon dipoles. 

by  natural log approximations to the Ci. However,,in most com- 
puters this is not necessary although  there is a time saving as 
half of the Si terms are  not calculated. When the dipoles are half- 
wave, the m = 2 and 4 terms disappear and  the exponential 
simplifies. 

This formulation is simiiar to that of Richmond [4] for two 
equal  length  thin dipoles with axes at an angle $. Both formulations 
compute quickly due  to  the use of econoniized  series  developed by 
Wimp and Luke [SI. A worst  case  Ci/Si typically reqtiires 25 
multiplications to yield 8 place accuracy, which  makcs the Ci/Si 
computat.ion time comparable to that of sine/cosine. Thus the 
mutual impedance computation is quite fas t  and accurate. 
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Trough  Waveguide Dual-Frequency Antenna 

hL4URICE L. FEE 

Abstract-A new type of dud-frequency  antenna using .a hollow- 
fin trough waveguide is described. The hollow fin is used as a 
TElo mode wavegllide  with  sidewall radiating elements. These 
sidewall radiathg elements  constitute the high-frequency section 
of the  antenna.  The low-frequency section consists of a thick hollow- 
fin trough waveguide antenna. The attenuation  due to radiation 
and wave$pide  wavelength of the trough waveguide section are 
analyzed. This analysis shows good agreement with experimental 
measurements. Esisting data may be used as a guide in the design 
of the high-frequency section of this antenna,  and the data  presented 
may be used as a guide in the design of the low-frequency  section. 

INTFLODECTIOK 

Various forms of t,rough  waveguide antennas  have appeared in 
the  literatme. over the  past several years [1>[5]. However, to 
the author’s knowledge, the  trough waveguide has not been  pre- 
viously used in the design of a dud-frequency antenna. 
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