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TABLE V
Paase DELAY VERsUs DirecTor LENGTH

kh ¢

4,28 2.16
4.30 2.18
4.32 2.20
4.34 2.23
4.36 2.26
4.38 2.30
4.40 2.36
4.42 2.44
4,44 2.60
4.46 2.94

Note: a/h = 0.01, b/h = 0.5, second passband.

TABLE VI
Yac1 ArraY DESIGN PARAMETERS

Band- Array

N kh D(&b) width (%) Size (1)
6 4.34 5.8 2.7 2.07
8 4.35 7.4 3.2 2.77
10 4.35 8.9 3.2 3.46
12 4,35 10.1 3.2 4.15
14 4.35 jo.1 3.2 4.85
16 4.35 12.0 3.2 5.55
18 4,35 12.8 3.2 6.23
20 4.35 13.6 3.2 6.91
24 4.34 14.8 3.0 8.30
28 4.34 15.8 3.0 9.65
32 4.34 16.6 3.0 11.05
36 4.34 17.3 2.5 12.40
40 4.33 17.9 2,3 13.80

Note: b/h = 0.5, second passband.

Unfortunately, the maximum directivity does not usually coincide
with the central frequency of the passband. For example, for the
Yagi array of N = 6, a/h = 0.01, and b/h = 0.5, the maximum
directivity occurs at kh = 1.46 with D = 9.3 dB. The center of
the passband, as seen from Table I, is at kk = 1.35 with D = 7.6
dB. Should the array be operated at the frequency associated with
the maximum directivity, the frequency bandwidth would be only
4.1 percent since kh = 1.46 is very close to the cutoff frequency of
kh = 1.49. Thus it should be noted that in Tables II-IV the kh
values correspond to that of the central frequency, and the cor-
responding directivity is not necessarily equal to the maximum
value. This is why for shorter arrays the theoretical direc-
tivity shown in Fig. 2 is lower than that of the measured
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value. For longer arrays the bandwidth is narrower; therefore, the
discrepancy gradually disappears.

In Table V the %k versus & values are listed for the second pass-
band. The data are used to calculate the directivity and bandwidth
for Yagi arrays operated in this passband. The result is listed in
Table VI. The information contained in Tables VI and II is useful
in the design of a Yagi array to be operated at two frequency bands.
An example is given in the next section to illustrate the design
procedure.

I1I. DesieaN METHOD—EXAMPLES
Ezample 1

Design a Yagi array which is to be operated at 200 & 10 MHz
and is limited to 3 m in total length. Determine the array param-
eters which would give maximum directivity with minimum number
of elements.

Solution: It is given that the array size is limited to 2), and the
bandwidth is 10 percent. From Fig. 2, it is seen that the parameter
b/h = 1.0 can be chosen. The corresponding directivity is roughly
equal to 12 dB. From Table III, by interpolation, N is found to be
equal 10 9, kb = 1.36, D = 11.9 dB, and bandwidth = 10.3 percent.
In term of physical lengths, ¢ = 0.0032 m, 2k = 0.65 m, b = 0.324
m, and array length = 2.92 m. The array will have one reflector,
one feeder, and eight directors.

Ezample 2

Design a Yagi array subject to the same conditions as in the
previous example, but it is to be operated also at another frequency
about three times higher than the fundamental frequency.

Solution: Since the second passband occurs roughly at kh = 4.49
and kb must be less than 3.14, the separation of the element must
be made smaller. Therefore, b/h = 0.5 is chosen. From Table II,
N =19, kh = 1.28, D = 12.2 dB, and bandwidth = 13.7 percent.
From Table VI, for the same N, kh = 4.35, D = 13.2 dB, and
bandwidth = 3.2 percent. In terms of physical lengths, a = 0.0031
m, 2h = 0.61 m, b = 0.153 m, and array length = 2.90 m. The
array will have one reflector, one feeder, and 18 directors. When
operated at 200 MHz, the frequency bandwidth is 414 MHz with
D = 12,2 dB; when operated at 680 MHz, D = 13.2 dB and the
bandwidth is equal to +=11 MHaz.
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Formulation of Echelon Dipole Mutual Impedance for
Computer

R. C. HANSEN

Abstract——A concise formula suitable for computer calculations
is given for mutual impedance of two dipoles with sinusoidal current
in echelon. It is a rearrangement of that of King [2].

Manuscript received March 20, 1972; revised April 7, 1972.
The author is a Consulting Engineer in Encino, Calif, 91316.



COMMUNICATIONS

In the moment method for determining current distribiutions,
piecewise sinusoidal segments are often used. For this situation the
mutual impedance is needed between two dipoles, each with a
sinusoidal current distribution with maximum in the center. This
zeroth-order impedance is of course also directly useful in ealculating
mutual impedance between dipoles in an array provided they are
thin and with length not near a multiple of a wavelength.

Carter [1] computed mutual impedance between half-wave
dipoles in echelon, and King [2] extended this to two antennas of
arbitrary and not necessarily equal lengths in 1957. King's result
contains 24 pairs of different cosine and sine integrals (Ci and Si)
and is tedious to implement on a computer. For the moment method
and for array use, dipole lengths are usually equal, in which case
King’s formula reduces to 10 pairs of Ci/Si. This note provides a
concise form which is easily programmed, for either a batch computer
or for a remote terminal computer. It is somewhat easier to integrate
from the beginning than to rearrange and simplify King’s formula.
Using the rigorous eleciric-field formulation of Schelkunoff and
Friis [3], and the geometry of Fig. 1, the mutual impedance can
be written as

—330 [*
[ — 2 cos kd ¥o + ¥ + o — 2 cos kd ¥ + ¥s5]
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+sin k(d — 2) dz
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In condensed form this impedance becomes:
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and C; = C, =1, C; = —2 cos kd, and the n sum indexes by 2.

After substitutions and rearrangements which allow use of the Ci
and 8i, the result is:
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Here
u = n[x + (m + n)d],
o = {y? + [= + (m + ng)d P} — pn[zo + (m + ng)d]

and the exponential integral is E(z} = Ci (z) — 7 8i (z). This

form, however, has 24 Ci/Si terms of which many are redundant.

When the coefficients of like Ci/Si are combined, the 4 sums have
reduced to 2 sums, with 10 Ci/Si terms:

15 2 1,2

prw kd,,éz ':[:1 A (m) exp [~jkn (z, + md) JE (k8),

= Do + (20 + md)? T2 — n(zo + md).

Here A(1) = A(5) =1, A(2) = A(4) = —4dcoskd, A(3) =
2(1 + 2 cos? kd) and the n sum steps by 2. The formula is quite
easy to program and allows a short mutual impedance subroutine.
When y, = 0, i.e., the dipoles are eollinear, y, in the argument is
replaced by radius a. For this case the n = 1 terms may be replaced

D0='—1, D1=1
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Fig. 1. Echelon dipoles.

by natural log approximations to the Ci. H'oweve‘r,‘in most cora-
puters this is not necessary although there is a time saving as
half of the Si terms are not calculated. When the dipoles are half-
wave, the m =2 and 4 terms disappear and the exponential
simplifies.

This formulation is similar to that of Rlchmond [47 for two
equal length thin dipoles with axes at an angle ¢. Both formulations
compute quickly due to the use of economiized series developed by
Wimp and Luke [5]. A worst case Ci/Si typically requires 25
multiplications to yield 8 place aceuracy, which makes the Ci/Si
computation time comparable to that of sine/cosine. Thus the
mutual impedance computation is quite fast and accurate.
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Trough Waveguide Dual-Frequency Antenna

MAURICE L. FEE

Abstract—A new type of dual-frequency antenna using a hollow-
fin trough waveguide is described. The hollow fin is used as a
TE1, mode waveguide with sidewall radiating elemenfs. These
sidewall radiating elements constitute the high-frequency section
of the antenna. The low-frequency section consists of a thick hollow-
fin trough waveguide antenna, The atteruation due fo radiation
and waveguide wavelength of the trough waveguide section are
analyzed. This analysis shows good agréement with experimental
measuremerits. Existing data may be used as a guide in the design
of the high-frequency section of this antenna, and the data presented
may be used as a guide in the design of the low-frequency section.

INTRODTCTION

Various forms of trough waveguide antennas have appeared in
the literature over the past several years [11-[5]. However, to
the author’s knowledge, the trough waveguide has not been pre-
viously used in the design of a dual-frequency antenna.
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