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Digital Computer  Solutions of the Rigorous  Equations 
for Scattering  Problems 

Abstract-A survey of recently developed techniques for solving 
the  rigorous  equations  that arise in scattering problems is presented. 
These  methods generate a  system of linear equations for  the  un- 
known current density by enforcing the boundary  conditions at dis- 
crete  points  in  the scattering body or on its surface. This approach 
shows promise of leading to a systematic solution  for a dielectric or 
conducting  body of arbitrary size and  shape. 

The relative merits of the  linear-equation  solution  and  the  varia- 
tional solutions are discussed and  numerical results, obtained by 
these two methods, are presented for  straight wires of finite length. 

The  computation  effort  required  with  the  linear-equation solution 
can be reduced  by  expanding  the  current  distribution  in a  series of 
modes of the proper type, by  making a change of variables for  in- 
tegration, and  by employing  interpolation  formulas. 

Solutions are  readily  obtained  for a scattering  body  placed in  an 
incident plane-wave field or  in the near-zone of a source.  Examples 
are included for  both cases, using a straight  wire of finite length as 
the  scattering  body. 

The  application of these techniques to scattering by a dielectric 
body is illustrated with dielectric rods of finite length. 

R 
I.  INTRODUCTION 

IGOROUS  SOLUTIONS exist  for  plane-wave 
scattering  by  the  perfectly  conducting  plane,  cir- 
cular  cylinder [I], elliptic  cylinder [2], sphere 

[3], and  the  prolate  spheroid [4]. These  solutions  are 
obtained  by  the  method of separation of variables. The 
wave  equation,  given  by 

V2# + k2# = 0 

is separable  only in the following  eleven coordinate  sys- 
tems [SI : rectangular,  circular  cylinder,  elliptic  cylinder, 
parabolic  cylinder,  spherical, conical,  parabolic,  prolate 
spheroidal,  oblate  spheroidal, ellipsoidal, and  parabo- 
loidal. Thus,  the  number of scattering  problems  that  can 
be solved by  this classical method is severely  limited, 
A comparable  solution is not possible  for the hemisphere, 
the  circular  cylinder of finite  length,  and  other  such 
bodies  whose  surfaces do  not coincide with  a  complete 
constant-coordinate  surface  in  one of the  systems  listed 
previously. In  fact, difficulty is experienced  in obtaining 
numerical  data  with  the classical  solution even for 
spheroids [4] and  large  spheres. 

Variational  and  quasi-static  solutions  have  shown 
considerable  success  for  scatterers of various  shapes,  but 
these  techniques  have been  limited to  bodies  which are 
small  in  comparison  with the  wavelength  or  are  on  the 
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order of one  wavelength  in  maximum  diameter.  Large 
scatterers  are  handled  with  the  aid of physical  optics, 
geometric  optics,  and  the  geometrical  theory of diffrac- 
tion.  These  optical  solutions  provide  reliable  data  only 
when the  scatterer  has a diameter  or  width which is 
large in comparison  with  the  wavelength.  Complications 
arise  when  a  portion of the surface is concave  as, for 
example,  with  the hollow hemisphere.  Furthermore,  the 
solution  for  each new scattering  shape  requires  a  great 
deal of thought  and  ingenuity. 

In  the  past few years,  with  the  widespread  availability 
of high-speed digital  computers,  attention  has  been 
given to  a  distinct  approach  to  the  scattering problem. 
First, a system of linear  equations is obtained  by  en- 
forcing the  boundary  conditions at many  points  within 
the  scatterer  or  on  its  surface.  Next,  with  the  aid of a 
digital  computer,  this  system of equations is solved to  
determine  the  current  distribution  on  the  surface  or  the 
coefficients in the mode  expansion  for the  scattered field. 
Finally,  one  computes  the  distant  scattering  pattern. 

This  linear-equation  technique is valid  for  scatterers 
of any convex  or  concave  shape,  and  the  exact  solution 
can  be  approached  simply  by  enforcing  the  boundary 
conditions a t  a  sufficiently large  number of points. The 
computation  time is least  for  small  scatterers (in the 
Rayleigh  region) but i t  is reasonable  even  for  bodies of 
resonant size or  larger,  depending  on  the  capacity of the 
computer.  Solutions  can  readily  be  obtained  for  per- 
fectly  conducting,  imperfectly  conducting,  and  dielectric 
bodies. If the  body is placed  in the near-zone field of a 
source,  the  solution  proceeds  in  the  same  straight- 
forward  manner  as  in  the  plane-wave case. 

Thus,  the  linear-equation  solution  shows  promise  for 
accurate,  systematic  calculations  for bodies of arbitrary 
material, size, and  shape.  This  paper reviews  briefly the 
recent progress in this  technique, discusses  several 
methods for  reducing the  computation  effort,  and illus- 
trates  the  techniques  by  considering a wave  to  be in- 
cident  on a straight wire  or a dielectric  rod of finite 
length. 

11. SURVEY OF RECENT PROGRESS 
Some of the  recent  applications of the  linear-equation 

technique follow: 
Mei  and Van Blade1 [ 6 ]  calculated the surface- 

current  density  and  the  scattering  patterns of perfectly 
conducting  rectangular  cylinders of infinite  length. Re- 
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sults  were  obtained for incident  plane  waves  having 
parallel  and  perpendicular  polarization  with  respect  to 
the  cylinder  axis. 

Andreasen [7]  solved  for the  surface  currents  and  the 
scattered fields of perfectly  conducting  cylinders of ellip- 
tic  and  parabolic  cross  sections,  and  arrays of parallel 
cylinders. A plane  wave  was  assumed t o  be  normally 
incident  on  these  cylinders of infinite  length,  and  results 
were  published  for  parallel  and  perpendicular  polariza- 
tion.  Cylinders  with  a  circumference  up  to  about 40 
wavelengths  could  be  handled  with  the  aid of a CDC 
1604 computer. 

Richmond [SI obtained  solutions  for  arrays of thin 
parallel wires of infinite  length  and  for  conducting 
cylinders of semicircular  and  I-beam  cross  section. The 
incident  plane  wave  was  assumed t o  propagate a t   any 
angle 8 with  respect to  the  cylinder  axis,  with  the  inci- 
dent  magnetic field intensity  perpendicular  to  the 
cylinder  axis. 

Richmond [9] calculated  the field distribution  in- 
duced  in  a  dielectric  cylinder of infinite  length,  and  the 
distant  scattering  patterns.  The  incident  plane  wave  was 
assumed to  be  polarized  parallel  with the  cylinder axis. 
Results were  published  for  dielectric  cylindrical  shells 
of circular  and  semicircular  cross  section  and  for  plane 
dielectric  slabs of infinite  height  and  finite  thickness  and 
width.  Both lossless and low-loss dielectric  cylindrical 
shells  were  considered,  and  results  are  given for homo- 
geneous and  inhomogeneous  cases.  In  one  case,  the  in- 
cident field is that  of a  parallel  line  source  near the  di- 
electric  cylinder. 

Mullin,  Sandburg,  and Velline [ lo]  calculated  the bi- 
static  echo  width of conducting  elliptic  cylinders  for  in- 
cident  plane  waves  having  parallel  and  perpendicular 
polarization.  The  scattered field external  to  the  cylinder 
was expanded in a  series of outward-traveling  modes.  In 
its  present  form,  this  technique  gives  accurate  results 
only  for  cylinders which do  not  depart  greatly from the 
circular  cross-section  shape. 

Kennaugh [ l l ]  made  one of the  earliest  studies of 
digital-computer  solutions of scattering  problems  in 
which the  boundary  conditions  are  enforced a t  discrete 
points.  Successful  calculations  were  carried out for  pro- 
late  and  oblate  spheroids  illuminated  by  a  plane  wave 
incident  along  the  symmetry  axis. A system of 21 linear 
equations  was  obtained  by  setting  the  tangential  electric 
field intensity  equal  to  zero a t  evenly  spaced  points  on 
the  surface.  Eight coefficients were determined  for  the 
scattered field expansion in spherical  modes  by  obtain- 
ing  a  least-squares  solution  for  the 21 equations. 

Andreasen [12] has  set  up a computer  program  for 
calculating  the  current  distribution  and  the  scattered 
field of a  perfectly  conducting  body of revolution.  The 
incident  plane  wave  may  have  arbitrary  polarization 
and  angle of incidence. The  current  distribution is ex- 

perimeter of the  conducting  body is approximately 20 
wavelengths. 

Waterman [I31 has  also  developed  a  program  for 
solving for the  current  distribution  and  the  scattered 
field of a  perfectly  conducting figure of revolution.  The 
scattered field is expressed as  an  integral of the  surface 
current  density.  The  electric field intensity  is forced 
to  vanish  throughout a portion of the  interior of the 
conducting  body  to  obtain  a  system of linear  equa- 
tions.  Green’s  identity is employed to  decouple  the  pair 
of integral  equations,  to  reduce  the  number of unknown 
currents  by  a  factor of 2, and,  after  calculating  them  for 
one  polarization,  to  obtain  by  inspection  the  current ex- 
pansion coefficients for the  orthogonal  polarization. 

Schultz,  Ruckgaber,  Richter,  and  Schlindler [I41 
have  employed  the  linear-equation  technique  to  obtain 
the  scattering  patterns of conducting  cones  with  spheri- 
cal  caps.  The field was  expanded in spherical  mode  func- 
tions of the  proper  type for each of the  two regions of 
space.  Relations were obtained  for  the field expansion 
coefficients by  applying  the  appropriate  boundary  con- 
ditions.  The  infinite  series for the field was  approxi- 
mated  with  the  finite  series of spherical  modes,  and  the 
system of linear  equations  for  the coefficients was  solved 
with  the  aid of an IBM 7090 computer. 

Baghdasarian  and  Angelakos [15] have  obtained 
solutions  for  the  current  induced  on  a  circular  conduct- 
ing  loop  by  an  incident  plane  wave,  and for the  scattered 
field of the loop. Excellent  results  were  obtained  for 
normal  and  oblique  incidence. 

Two  distinct  approaches  have  been  employed  to  ob- 
tain  a  system of linear  equations  for  these  scattering 
problems.  One  may  expand  the  scattered field in a series 
of mode  functions  (cylindrical  modes,  spherical  modes, 
etc.)  and  obtain  a  system of linear  equations  for  the  co- 
efficients in this  series.  Alternatively,  the  surface  current 
density  can  be  expanded in a  series of mode  functions 
and  a  system of linear  equations is then  obtained  for  the 
coefficients in  this  series.  In  the  latter  case,  the  scattered 
field is expressed as  an  integral  over  the  surface  current 
density  and  one is led to  an  integral  equation.  The  inte- 
gral  expression  for the  scattered field is valid a t  every 
point  in  space,  whereas  a  mode  expansion  for  the  scat- 
tered field is usually  valid  only  in  a  particular  region. 
Mode-series  expansions  for the  scattered field have  been 
employed  by  Sommerfeld [16], JIullin [ lo] ,  Kennaugh 
[ l l ] ,  Schultz [14], and  others.  Integral  expressions  for 
the  scattered field were  used by Mei  and  Van Blade1 [6], 
Andreasen [7] ,  [ l2] ,  Richmond [8],  [9], Waterman 
[Is] ,  and  Baghdasarian  and  Angelakos [15]. 

111. AN EXAMPLE: THE SLENDER STRAIGHT 
WIRE OF FINITE LENGTH 

Consider a harmonic  electromagnetic  wave  in  free 
space  incident  on a slender,  finite,  perfectly  conducting 

pressed- as  a  series of mode  currents.  The  maximum  wire  as  illustrated  in  Fig. 1. The  time  dependence eiw* 
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is understood.  The wire radius a is assumed to  be  much 
smaller  than  the  length L and  the  wavelength X. The 
wire is considered to  be  a  hollow metal  tube,  open a t  
both  ends.  The  scattered field may be  generated  by  the 
surface  current  Jon  the  circular  cylinder p =a, radiating 
in  free  space.  With good accuracy,  the  surface  current 
density on the  thin wire  can  be  considered to  have  only 
an axial  component.  Furthermore,  the  current  density 
(representing  the  sum of the  currents on the  inner  and 
outer  surfaces of the  thin-wall  metal  tube)  can  be  as- 
sumed to  be  distributed  uniformly  around  the  circum- 
ference of the wire. That  is. 

J = U(z) (1) 

where i represents  a  unit  vector  parallel  to  the wire  axis. 
Solutions  can  also  be  obtained  for solid or hollow  wires 
of large  radii,  but  the  purpose  here is to  illustrate  the 
techniques  by  considering  a  relatively  simple  example. 

1 P 
-A L2. 

Fig. 1. A plane wave has oblique  incidence on a conducting  wire 
of length L and  radius a. 

The z component of the field scattered  by  the  wire is 
given  by  the following expression: 

where p and z are  the  cylindrical  coordinates of the  ob- 
servation  point, (a, +’, 2’) are  the  cylindrical  coordinates 
of the  source  point, r is the  distance  between  these  two 
points: 

I = d p z  + a2 - 2ap cos 4‘ + (z’ - z)? (3) 

F(r ,  z ,  2’) = [2r2(1 + j k r )  

- (3 + 3jkr - k2r2)(r2 - (2’ - z ) ~ ) ]  --+- (4) 
e- jkr 

and k = 2a/X. The  angular  coordinate + of the  observa- 
tion  point  has  been  taken  equal  to  zero  in (3), since the 
scattered field is independent of + under  the  assumed 
conditions.  Equation ( 2 )  can  be  derived  with  the  aid of 
the  vector  potential  or  by  starting  with  the  expression 
for the field of an infinitesimal  electric  dipole and  em- 
ploying the  superposition  theorem. 

The  current  density is related  to  the  current I(z)  by 

If  the  observation  point is on the axis of the wire, p = O ,  
and  the  preceding  expression  for  the  scattered field re- 
duces to  

where 

r = d a z  + (2’ - 2)’. (7) 

The  interior region of the hollow  wire (p <a) can  be 
regarded  as  a  circular  waveguide,  and  the field there  can 
be  expanded  in  a  series of waveguide  modes  beyond  cut- 
off. In  this  way,  it  can  be  shown  that  the  total field 
essentially  vanishes in the  interior region if the  distance 
from the  nearest  end of the wire  exceeds 3 or 4 radii. 

The electric field intensity is the  sum of the  incident 
and  scattered  intensities: 

E = E’ + E S .  (8) 

Thus, 

E’(p, Z) = - E’(p, Z )  (9) 

for p <a and for 1 z I  <OSL -4a. I t  follows from (9) that  
we may  set  the  right-hand  side of ( 6 )  equal t o  -Ezi(O, z). 

I t  will be  noted that  we are proposing t o  force the 
axial  electric field intensity  to  vanish  only  on  the  axis of 
the  wire,  although  in  actuality  the  vector E must  vanish 
everywhere in the  interior  region  except  in  the  vicinity 
of the  open  ends. If the wire is slender, i t  can  be  shown 
that  the field  will almost  vanish  everywhere  within  the 
wire if its axial  component is forced to  vanish  on  the 
axis.  Furthermore,  the  computations  are simplified when 
this  condition is enforced  on the axis,  since the  single 
integral  in (6 )  is easier to  evaluate  than  the  double  inte- 
gral  in ( 2 ) .  

Even if the  current  distribution I (z)  were  known,  the 
integral  in (6 )  could not be  evaluated  analytically, ex- 
cept  in  the  form of an  infinite  series.  However,  numerical 
integration is possible and  feasible  with  the  aid of a 
digital  computer. 

In  many  problems,  the  incident field intensity 
E,‘(O, z) in ( 6 )  is  known. I t   may,  for  example,  represent 
the field of an  incident  plane  wave  having  oblique  inci- 
dence  as in Fig. 1. The  current  distribution I (z)  induced 
on the wire is then  an  unknown  function  which  is  to  be 
determined.  Techniques  for  solving  this  integral  equa- 
tion to  any desired  degree of accuracy,  with  the  assis- 
tance of a digital  computer,  are  considered  next. 

IV.  CHANGE OF VARIABLES 
Integration is often  facilitated  by  making a change  of 

variables.  This is helpful  both  in  numerical  integration 
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and in  analytic  integration.  Although  the  optimum 
change of variable  may  be difficult to  determine, one 
that  has been  found  very  helpful in the problem of the 
slender  finite  wire is the following: 

z' - z = a tan@' (10) 

dz' = a sec2 e' de'. (11) 

With  this  change of variables,  the  integral  equation  (6) 
for the  slender  wire  becomes: 

[ ( jka + cos e ' )  (2 - 3 cos2 e') + k2a2 cos e ' ]  d8' 
(12) 

= - E,"O, z). 

The  limits of integration  are 

0.5L + z 
a 

e: = - tan-' 

0.5L - z 
8; = t a r 1  

a 

If the  integral is evaluated  numerically  with  the 
Newton-Cotes  formulas  [17],  the  integrand is sampled 
at equally  spaced  points of the  variable of integration. 
The  integrand  varies  most  rapidly  when  the  source 
point is in  the  vicinity of the  observation  point.  The 
number of terms  required  in  numerical  integration is 
fixed by  the  requirement  that  the  integrand  be  ade- 
quately  sampled  in  the region  where it  varies  most 
rapidly. If the  integration is on z' as in  (6),  a  large 
number of terms  are required to  obtain  adequate 
sampling. If one  makes  the  change of variables  de- 
scribed  previously,  equal  intervals  are  taken  in 0' 
(instead of in z'), providing  a  dense  sampling  in the 
vicinity of z' = z  where the  integrand  varies  most 
rapidly,  and  tapering  to a  lighter  sampling  as  one  moves 
away from  this region. Thus, fewer terms  are  required 
in the numerical  integration. 

V. MODE EXPANSION OF THE CKRRENT DISTRIBUTION 
The  current on a hollow  wire  with thin walls must 

vanish at  the  ends. A  suitable  expansion  for  the  current 
is the  Fourier series  given by 

I, cos (2n - 1) - + I,,' sin - 
7rz 2nrz] . (15) 

n=l L L 

Inserting  this  expression  in (12) we obtain: 

Adz - [. G(0') cos (2n - 
8h2a2 l) I de' 

rd 

where 

G(#) = e-jka/cos 8' 

.[(cosO' +jka)(2 - 3  cos2e') + k2a2cose']. (17) 

The  limits of integration  are  again  given  by (13) and 

If (16) is enforced at N points z =z1, z2, - , z . ~  along 
the wire  axis,  a  system of N linear  equations is obtained 
which have  the following form: 

(14). 

.v 
( C m J n  + CmntInt )  = - ~ z ' ( 0 ,  (18) 

n=l 

C,, represents  the  scattered field a t  a  point (0, z,) gen- 
erated  by  the  current  distribution I =  cos (2% - l)az/L, 
and C,,' is the  scattered field a t  zm generated  by  the 
current  I=sin  2nazlL.  The complex  mode amplitudes 
In and I,' are  obtained  by  solving  this  system of linear 
equations.  The  method of Crout  [18]  has been  found t o  
be  convenient  and efficient for  solving the  system of 
linear  equations  on  a  digital  computer. 

The  Fourier series  for the  current I(z)  converges 
rapidly a t  first,  and  then  more slowly, as shown  in 
Table  I.  In  calculating  the  data shown  in Table  I,  the 
integrals in (16) were evaluated  with  the  fifth-order 
Newton-Cotes  formula (which is exact for integrals of 
fifth-degree  polynomials)  using 1000 terms for the  inte- 
gration  along  the wire. 

TABLE I 
FOCRIER COEFFICIEKTS FOR THE CURRENT I ( z )  FOR AN 

INCIDENT  PLANE  LvA4VE: L=O.Sx; U=0.005X. 

I .  ei = 300 

1 
2 
3 
4 
5 
6 
7 
8 

10 
9 

11 
12 
13 

15 
14 

0.0800 135.8 0.0230 

0.0235 140.0 0.0064 

0.0132 141.0 0.0035 

0.0092 141.3 0.0024 

0.0072 141.5  0.0019 
0.0065 -38.4 0.0017 
0.0060 141.6 0.0016 
0.0056 -38.3 0.0015 
0.0053 141.7 0.0014 
0.0050 -38.3 0.0007 

1.4272 -35.3  0.1408 

0.0373 -41.1  0.0101 

0.0169  -39.3 0.0045 

0.0108  -38.8  0.0029 

0.0080  -38.6  0.0021 

179.1 

179.1 

179.1 

179.1 

179.1 

179.1 

179.1 

179.1 

~~ 

-0.9 

-0.9 

-0.9 

-0.9 

-0.9 

-0.9 

-0.9 

ei = 90" 
-1- 

- I -  

In order to  reduce the  number of lin 

3 ,4762 -36.1 

0.0849  -34.2 
0.1700 146.9 

0 .OS47 145.4 
0.0399  -34.8 

0.0256 -35 .O 
0.0312 145.1 

0.0218 145.0 

0.0169 144.9 
0.0152 -35.1 
0.0140 144.9 
0.0130 -35.1 
0.0121 144.9 
0.0115 -35.1 

0.0190  -35.1 

ear  equations 
which must  be  solved,  it would  be advantageous  to ex- 
pand  the  current I ( z )  in a  series of functions which con- 
verges  more  rapidly  than  the  Fourier series  given  in 
Table  I.  Table  I1 lists the coefficients for the  current 
expansion in several  types  of series. The  Chebyshev  and 
Legendre  series  appear  most  promising, but  this  matter 

= - E,'(O, z) (16) requires  further  investigation. 
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TABLE I1 
COEFFICIENTS FOR THE CURRENT I ( z )  FOR AN INCIDENT PLANE 

WAVE: L=OSX;  ~ = O . @ X X ;  ei=900 

"",' No' Fourier  Maclaurin  Chebyshev  Hermite Legendre 

1 3.476  3.374  1.7589  8.2929  2.2762 

3 0.085 3.128  0.0319  4.4135  0.0655 
4 
5 

0.055 4.101 0.0112 0.3453 0.0421 
0.040 1.871 0.0146 0.0073 0.0372 

2 0 . 1 7 0  4.037  i.5581 14.3644 Z.ioOs 

Table I1 gives the  magnitude of In in mA for  the following series: 

where 
x = 2z/L. 

VI. THE DISTANT SCATTERED FIELD 
The  distant  scattered field of a slender  wire of finite 

length  has  only  a 8 component which is given by 

Ea(@,) = - e-jkro sin e, I(z')eikz' 01 &' jw 
4aYo S -LIP L'2 (19) 

where ro is the  distance from the origin (at  the  center of 
the wire) and 8, is the  scattering angle  measured  from 
the axis of the wire. 

If the  current I ( z )  is  represented  by  a piecewise 
uniform  function,' the  distant  scattered field is given by 

where I ,  is the  current on  segment n, z ,  is the  coordinate 
of the  center of segment n, and N is the  total  number of 
segments. 

If the  current  distribution is expressed as a  Fourier 
series as in (15), the  distant  scattered field is given by 

+ 2jnI,' sin (aL' cos e,) 
4n2 - (2L' cos eJ2 

where L' = L/X. 

tude EO, the  echo  area of the wire  is  given  by 
If the  incident field is that  of a plane  wave of ampli- 

a piecewise uniform  function  for  the  current. 
See Baghdasarian  and Angelakos 1151 for an example  employing 

Figure 2 shows  several  calculated  scattering  patterns 
based  on the  Fourier series  expansion  for the  current. 
The  results shown  in  this figure  correspond to  the  cur- 
rent  distribution listed in Table I.  Fifteen cosine  modes 
and 15 sine modes  were  used, and 1000 terms were em- 
ployed  in  each integration  along  the wire. 

A  comparison of the measured  and  calculated  back- 
scatter  echo  area of straight wires is illustrated in Fig. 3. 
The.  measured data  are  those published by  KOUYOUM- 
jian [19]. In  the  calculations, 15 cosine terms were  used 
in the  Fourier series  for the  current  and 1000 terms were 
employed  in the numerical  integrations. The  variational 
solution of Tai [20] is also  shown. It  may  be  noted  that 
the  linear-equation  solution  shows  better  agreement 
with  the  experimental  measurements. 

In principle,  a  high  degree of accuracy  may  be  ob- 
tained  with  the  variational  solution  by  including a suf- 
ficient number of terms in the  trial  function for the  cur- 
rent  distribution.  In  practice,  however,  the  computa- 
tional  effort  increases  rapidly as  the  number of terms is 
increased. In  the  scattering problem  for the  slender 
wire, only  two  terms  are  usually  included  in  the  trial 
function for normal incidence and  four  terms for  oblique 
incidence. On  the  other  hand, i t  is practical to  include  a 
much  greater  number of terms in the  current expansion 
with the  linear-equation  technique. 

An interesting  property of the zero-order  variational 
solution [20] is that   i t  yields  for  normal  incidence an 
echo  area which is independent of the wire radius  when 
the wire  length is 0.5 X, 1.5 X, etc.  Experimental  measure- 
ments [21], however,  show that  the echo  area is defi- 
nitely  a  function of the  radius  even  when  the  length is an 
odd  number of half wavelengths.  Higher-order  varia- 
tional  calculations  by  Hu [22] show  quite  accurately  the 
dependence  on  the  radius for  wire  lengths up  to  two 
wavelengths. The  linear-equation  solution  also  shows a 
dependence  on  the  radius which  agrees with experi- 
mental  data  and  the  calculations of Hu.  This  depen- 
dence is slight for the half-wave  wire, but  not for the 3/2 
wavelength case. 

Van Vleck,  Bloch, and  Hamermesh [23], King [24], 
and  Dike  and  King [25] have  obtained  an  approximate 
solution  for the  thin  wire  by  solving  the  integral  equa- 
tion  to  obtain  the leading  terms  in  the series  for the 
current  distribution.  Although  Lindroth [26] has  ob- 
tained useful results  by  this  method for wire lengths  up 
to  2.5 wavelengths,  it  does  not  appear  to  show  much 
promise  for  longer wires. The rigorous  solution of HallCn 
[27 ]  has  apparently  not  yet  been  exploited  to  obtain  ac- 
curate  solutions for scattering  by long  wires. 

Solutions were readily  obtained  with  the  linear- 
equation  technique  for wires of length L=2.865 X 
(kL = 18) and  radii a = 0.00415 X and 0.0105 X (ka = 0.026 
and 0.066). For  normal  incidence,  the  backscatter  echo 
areas were  found to  be 1.65 and 2.63 square  wavelengths, 
respectively,  showing  excellent  agreement  with the 
measurements  by As and  Schmitt [21]. For a length 
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Scattering  Angle os (Degrees) 

Fig. 2. Calculated  bistatic echo area of strai  ht  wire  vs.  scattering 
angle  for  incident  plane  wave  with  angle of incidence of 30°, 60°, 
and 90". 

o.il+- - -- - Experimental  Data  From 

8 8 8 Linear-Equation  Solution 
Variational Solution By Tai  

o p -  1 I I I I I 
0.30 0.35 0.40  0.45  0.50 0.55 0.60 0.65 0.70 

Wire  Length L/A 

Fig. 3. Measured  and  calculated  backscatter  echo  area of straight 
wire  for normal  incidence. 

L = 3.82 X (kL = 24) and  radius a = 0.0035 X the calcu- 
lated  result is 2.8 square  wavelengths  and  the  measured 
result  by  Sevick [21]  is 2.01 square  wavelengths. The 
difference is believed to  arise  from  phase  errors  along  the 
wire in the  experimental  measurements. 

VII. THE RECIPROCITY THEOREM 

When  a  plane  wave is incident  on  a  straight  wire,  the 
distant  scattered field is a  function of the angle of inci- 
dence Qi and  the angle of scattering 8,. The reciprocity 
theorem  assures us that  the phase and  strength of the 
scattered field is unchanged  when the angle of incidence 
and  the angle of scattering  are  interchanged.  Thus, 

This  provides  a useful  check on  the  accuracy of numeri- 
cal scattering  calculations,  except in cases  where the 
reciprocity  theorem  has  been  incorporated  into  the  solu- 
tion.  Furthermore,  the  reciprocity  theorem  can  be 
utilized to  speed up  the calculations. Of course, the reci- 
procity  theorem is automatically satisfied by  any rigor- 
ous solution. 

In  the  linear-equation  technique,  the  currents  on  the 
wire satisfy  a  system of equations of the following type: 

N 

CmnIn = - E,'(&, Zm) (24) 
n = l  

where Ezi(0i, z,) represents  the  tangential  electric field 
intensity of the  incident  plane  wave.  The I ,  may repre- 
sent  the  mode-current  amplitudes or the piecewise uni- 
form  currents  induced on the wire. From (24) it is obvi- 
ous that  the  currents will be  a  function of the angle of 
incidence Bi. The  distant  scattered field in any  angular 
direction 0, is given by (19)-(21), which can  be  written 
in the following general  form: 

N 

- w e i ,  0,) = C In(eJsn(e8>. (25) 
n=l 

The  scattering  functions S,(e,) are  given by (20) and 
(21) when the piecewise uniform  or  the  Fourier series 
representation is employed  for the  current. 

From (23) and  (25), it is required  that 

N N 

In(SJSn(eJ = In(e,)Sn(e;>. (26) 
n=l  n-1 

I t  does  not  necessarily follow that  In(eJ =A.S,,(Bi), al- 
though  this is the  most  obvious  solution of (26). I t  is 
possible to  determine  by  means of (26) the  currents I ,  
for  all  angles of incidence  once they  have  been  calcu- 
lated  for  one  angle of incidence. However,  this  approach 
will not  be  pursued  here  since the  technique  described 
in Section  VI11  accomplishes the  same  end  result  with 
equal efficiency. 

I t  is not difficult to show that  the reciprocity  theorem 
and (26) are satisfied  precisely by  the solution  using the 
piecewise uniform  representation,  even when the solu- 
tion is inaccurate  as  a  result of dividing  the  wire  into  a 
small  number of segments. Thus  the reciprocity  theo- 
rem  does  not in this  case  provide  a useful  check  on the 
accuracy. On the  other  hand,  the  reciprocity  theorem is 
not precisely  satisfied by  the  solution  in  Section V, 
which employs  a  Fourier series  expansion for the  current. 
For  the case  illustrated  in  Table I and  Fig. 2, the reci- 
procity  theorem is satisfied to  a  high  degree of accuracy, 
but  it  is not satisfied so accurately  when  the  same  prob- 
lem is solved  with  an  inadequate  number of terms in the 
Fourier series and  in  the  numerical  integration.  This is 
illustrated  in  Table 111. 
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TABLE I11 
ECHO AREA OF STRAIGHT WIRE WITH PLANE-WAVE IXCIDEXT 

L = 0.5x a = 0.005x 

Number of Terms  Number of Terms  Calculated  Echo 
in Integration in Fourier Series " Area/X* 

300 
300 4 cos and 4 sin 60 30 0.07428 

4 cos and 4 sin 30"  60" 0.07390 

loo0 15 cos and 15 sin 30 60 0.06763 
1000 15 cos  and 15 sin 60 30 0.06762 

VIII.  REPEATED SOLUTIONS FOR DIFFERENT 
ANGLES OF INCIDENCE 

Most of the  computation  effort in the  linear-equation 
technique is concerned  with the  integrations  over  the 
surface of the  conducting  body  and  the  solution of the 
system of linear  equations.  Once  a  solution  has  been 
obtained  for  the  currents  on  a  given wire with  a  given 
incident  field,  very  little  additional  effort is required to  
obtain  the  solution  for  a new incident field or a new 
angle of incidence. The  integrations need not be  re- 
peated,  since  they  depend  only  on  the wire length  and 
radius  and  the  frequency of the  incident  wave. The 
matrix  inversion  for  the  linear  equations need not be 
repeated,  since  the coefficients depend  only  on  these 
same  factors.  Thus,  it would  be inefficient to  repeat  the 
entire  calculation  for  each new  angle of incidence. 

This  can be  illustrated  with  a  simple  example.  Con- 
sider  the  solution of the following  system of linear 
equations: 

C d l  + C d z  = El ( 2   7 )  

C2111 + C2212 = E2. (28 )  

In  solving  such  a  system  by  the  method of Crout [18], 
one  first  calculates an "auxiliary"  matrix C' whose ele- 
ments  are defined  as  follows: 

Clll = c11 ( 2 9 )  

C12' = C12/Cll (30)  

Czl' = C2l ( 3  1) 

c22f = c22 - C2llC12'. ( 3 2 )  

The preceding  calculations  for  the  auxiliary  matrix need 
be  carried  out  only  once,  since  the  elements of the  ma- 
trices C and C' depend  only  on  the  scattering  structure. 
The  elements E1 a n d  E2 in ( 2 7 )  and ( 2 8 )  represent  the 
incident field intensity a t  certain  points  along  the  axis 
of the wire. For  each new incident field (or each new 
angle of incidence  in the  plane-wave  case),  one  first 
calculates 

El' = EI/CI{ (33) 
Ez' = (E2 - Cz{E?)/C22'. (34) 

The  solution  for  the  system of linear  equations is then 
given  by 

1 2  = E; (35) 
11 = El' - Ez'C14. (36) 

When  a  large  system of linear  equations is involved,  the 
efficiency is greatly  increased  by  repeating  only  the  cal- 
culations  like  those in ( 3 3 )  through ( 3 6 )  for  each new 
incident field or  angle of incidence,  instead of treating 
each  one  like  an  entirely new  problem. 

This  method of Crout is easily  programmed  for  a  digi- 
tal  computer.  Even  for  large  systems of linear  equations, 
i t  has been found  to  be efficient with  respect to  computa- 
tion  time  and  memory  storage  requirements. (As each 
element in the  auxiliary  matrix is calculated, it is stored 
in  the  location  previously  occupied  by  the  corresponding 
element of the original  matrix.) 

The  incident field E,i(O, z) enters  into  the  problem 
only in the  right-hand  side of the  linear  equations.  Thus, 
it is straightforward  to  solve  for  the  currents  induced  on 
a wire by  any  type of incident  wave.  Section I X  de- 
scribes the  results  obtained  when  the  incident field is 
generated  by  a  short  dipole  parallel  with  a  slender  wire, 
as  a  function of the  distance  between  the wire and  the 
dipole. 

Ix. SCATTERING BY WIRE IN NE.4R-ZONE FIELD 
Figure 4 shows the  current  distribution  induced  on  a 

wire when  the  source of the  incident field is an  electric 
dipole  parallel  with the wire. If the  dipole is a t  a dis- 
tance d from the wire,  as  shown  in  Fig. 4, the  tangential 
component of the  incident field is given  by 

K e - j k T  

r5 
Egl(O, Z) = - [(l + j k r ) ( 2 z 2  - d2)  + k2r2d2] (37 )  

where 

r = d z z  + d2 .  (3  8) 

For  the  solutions  shown  in  Fig. 4, the  dipole  strength 
was adjusted  to  maintain  the  incident field E,' a t  unit 
strength  at  the  center of the wire  as  the  distance d was 
varied. It  may  be  noted  in  Fig. 4 that  the  current  distri- 
bution  approaches  that  for  an  incident  plane  wave  as 
the  distance  to  the dipole  increases. I t  is interesting  that 
the  current  distribution  in  the  plane-wave  case  differs 
noticeably from the cosine  current  generally  assumed 
for the  half-wave wire in  the  variational  solution. 

I t  is believed that considerable  effort would be  re- 
quired to  set  up  a  variational  solution  for  the  straight 
wire near  a  dipole  source.  In  particular, a trial  function 
would have  to be  found  for  the  current  distribution 
which  would permit  a  reasonably  accurate  representa- 
tion of the  true  current  function  and at  the  same  time 
would contain  not  more  than  about  four  unknown  con- 
stants. On the  other  hand, a minimum of effort  is  re- 
quired  with  the  linear-equation  formulation  for  each new 
type of incident field considered. 

X. SCATTERING BY A FINITE DIELECTRIC  ROD 
The linear-equation  technique  applies  equally well in 

calculating  the  scattered fields of a  dielectric  body. If 
the  permeability of the  body is the  same  as  that of free 
space,  the  scattered field may be  generated  by  an  equiv- 
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Fig. 4. Current  distribution  induced on straight  wire by parallel 
electric  dipole. 

alent  electric  current  density J radiating  in free space, 
where 

J = ~ W ( E  - eo)E. (39) 

E represents  the  total  electric field intensity  in  the  di- 
electric  body,  given by  the  sum of the  incident  and 
scattered field intensities  as follows: 

E = Ei + Ea. (40) 

The  techniques  may  be  illustrated  by  considering  the 
problem of scattering  by a dielectric  rod of finite  length. 
From  a  study of the rigorous  solution  for  a  plane-wave 
incident  on  a  dielectric rod of infinite  length, it   may be 
deduced that  the fields in a  slender rod are  nearly  inde- 
pendent of the angle 4. On  the axis of the rod the 
tangential  scattered field is given,  with  the  aid of (39) by 

EZa(O. z) = 0.5(Er - 1) l u E z ( p ,  z')F(r,  P )  dpdz' 
-LIZ 

= E,(O, 2) - E,"O, 2 )  (41) 

where a denotes  the  radius of the  rod, L is the  length, 
eI is the  relative  permittivity, 

e- jkr 

F ( r , p )  = p[(l + j k Y ) ( 2 Y 2  - 3 p 2 )  + k2p*r2] - (42) 
Y5 

and 

r = z / p 2  + (2' - 2)'. (43) 

0.016 I I I 
Frequency: 9.5 Gc 

- - - Physical Optics 
/ - Linear-Equation Solution 

Dielectric  Constant: 2.54 

/ Radius Of Dielectric  Rod! 0.0625" 
/ 

0.014 / - Rod Material: Polystyrene 
/ 

/ 

Approximation / o'o'2- 
Experimental  Results 

/ 

803 

0 
Rod  Lenqth  Ilnches) 

Fig. 5. Calculated  and  measured  echo  area of dielectric rod as a 
function of length. 

Let  it  be assumed that  a  plane  wave is normally inci- 
dent on the dielectric  rod  with the  incident  electric field 
vector  parallel  with  the  axis of the rod. In  this case, the 
total field EE(pl z )  must  be  an  even  function of z .  With 
the aid of Maxwell's  equations,  it  can  be  shown that  
the  total field in the rod  can  be  expanded in a  mode 
series as follows: 

where Jo(x) represents  the Bessel function of zero  order 
and L' = L/X. In a rigorous  solution,  an  infinite  number 
of modes  would  be  employed  in (44), but  here we shall 
include  only  a  finite  number N .  The  summation in (44) 
is substituted for E,(O, z )  and E,(p, z')  in (41). 

The  integral  equation (41) is enforced a t  N points 
z = zm on the axis of the rod (between z = 0 and z = L/2)  
to  obtain N linear  equations  for  the  mode  amplitudes 
En. The  integrals in (41) may be  evaluated  numerically 
with  the  Newton-Cotes  formulas,  but  it  must  be recog- 
nized that  a  singularity  occurs a t  z' = z and p = 0 where 
r goes through zero. The difficulties  involved in handling 
this  integrable  singularity  may  be  avoided  by  changing 
the limits of integration  to 6<p<a where 6 is much 
smaller than  the  radius a. The solution then will cor- 
respond to   that  for  a  dielectric  rod  having  a  tiny hole 
of radius 6 drilled  along its axis. If 6 is  much  smaller 
than a, the  volume of dielectric  material  thus  removed 
is small  compared  with  the  total  volume  and  the  error 
from  this  source  should  be negligible. The  change of 
variables dz' = p  sec2 8'8' is found t o  be  helpful. 

Figure 5 shows the  echo  area  calculated  in  this  man- 
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ner  for polystyrene  rods of +-inch  diameter a t  a  fre- 
quency of 9.5 Gc. I t   may be  noted that  the  calculations 
show  excellent  agreement  with  the  experimental  mea- 
surements which are  also  presented in Fig. 5 .  The  double 
integration (on p and e’) in (41) was  performed  with the 
fifth-order Sewton-Cotes  formula. 

Comparatively poor  results  are  obtained  from  the 
physical-optics  solution  for  this  problem,  shown by  the 
dashed  curve  in Fig. 5 .  In  the physical-optics  solution, 
the field in the rod is taken  to be the  same  as  that in a 
rod of infinite  length. The  scattered field  is then  con- 
sidered to  be the field generated  by  the  equivalent  cur- 
rent (39) radiating  in free  space. This  current is assumed 
to  exist  only in the region  occupied by  the  finite dielec- 
tric  rod.  Evidently,  the field in the finite  rod  differs sig- 
nificantly  from that  in the infinite  rod. 

XI. CONCLUSIONS 

In  recent  years, we have  begun to exploit the high- 
speed  digital  computer  to  obtain  accurate  solutions for 
the fields scattered  by bodies of complex  shapes.  Ap- 
proaches are now feasible which overcome the  limita- 
tions  inherent  in  the  method of separation of variables, 
the  variational  solutions,  physical  optics,  geometrical 
optics,  and  the  geometrical  theory of diffraction. 

In  the  method  considered  here,  a  system of linear 
equations is obtained  by  enforcing  the  boundary  condi- 
tions a t  a  finite  number of points  on  the  surface  or  in 
the  interior of the  scattering  body.  The  solution of this 
set of equations  yields  the  current  distribution  induced 
on the  conducting  surface. 

This  paper  surveys  the  recent progress in this  area 
and discusses  several techniques for  increasing the effi- 
ciency of the  calculations  and  extending  the  maximum 
dimensions of the  scattering bodies that  can  be  handled. 
Among  these  techniques  are  the  change of variables for 
integration,  expansion of the  current in a  series of 
modes,  and  interpolation. 

These  techniques  are  illustrated  by  considering a 
comparatively  simple  example:  the  slender wire of finite 
length.  Numerical  results  are  shown for the  current dis- 
tribution  induced  on  such wires and for the  backscatter 
and  bistatic  echo  area.  Calculations  are  illustrated for 
a half-wave  wire  near an electric  dipole  which acts  as 
the source of the field. 

This  linear-equation  technique is also  applicable to  
dielectric  bodies. This is illustrated  by  considering a 
plane-wave  incident  on  a  dielectric rod of finite  length. 
The  results show  excellent  agreement  with  experimental 
measurements. 
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